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Abstract

This paper presents Bayesian edge inference (BEI), a
single-frame super-resolution method explicitly grounded in
Bayesian inference that addresses issues common to exist-
ing methods. Though the best give excellent results at mod-
est magnification factors, they suffer from gradient stepping
and boundary coherence problems by factors of 4x. Cen-
tral to BEI is a causal framework that allows image cap-
ture and recapture to be modeled differently, a principled
way of undoing downsampling blur, and a technique for
incorporating Markov random field potentials arbitrarily
into Bayesian networks. Besides addressing gradient and
boundary issues, BEI is shown to be competitive with exist-
ing methods on published correctness measures. The model
and framework are shown to generalize to other reconstruc-
tion tasks by demonstrating BEI’s effectiveness at CCD de-
mosaicing and inpainting with only trivial changes.

1. Introduction
Many image processing tasks, such as scaling, rotating

and warping, require good estimates of between-pixel val-
ues. Though this research may be applied to interpolation
in any task, we restrict our attention to single-frame super-
resolution, which we define as scaling a digital image to
larger than its original size.

While recent methods give excellent results at moderate
scaling factors [26], all show significant artifacts1 by scaling
factors of 4x (Figure 1). We contribute a new method ex-
plicitly grounded in Bayesian inference that preserves edges
and gradients and is agnostic to scale. Central to this is an
image reconstruction framework adapted from supervised
machine learning. Certain aspects of BEI require modeling
unknown causes with known effects, which we show can be
incorporated easily into an otherwise causal model.

The simplest existing super-resolution methods are non-
adaptive, which make the fewest assumptions and are easi-
est to implement. Function-fitting variants regard the image
as samples from a continuous function and fit basis func-
tions to approximate it [17]. Frequency-domain variants re-

One decimation (2x) Two decimations (4x)

(a) Local Correlation (LCSR)

(b) Resolution Synthesis (RS)

(c) Bayesian edge inference (BEI)

Figure 1. Comparison of three super-resolution methods on a re-
gion of “Peppers” at factors of 2x and 4x. Insets are subregions
magnified an additional 2x using bilinear interpolation for display
only. LCSR [7] (a) and RS [2] (b) are arguably the best published
methods, as measured in [26]. Note that artifacts are almost en-
tirely absent in 2x but show up clearly in 4x, namely steps in steep
gradient areas (upper inset) and boundary incoherence (lower in-
set). BEI (c) does not exhibit these artifacts even at 4x.

1. Artifacts may be difficult to discern on a printed copy. A color PDF
and supplementary material are available in the conference proceedings.

1
2388978-1-4244-3991-1/09/$25.00 ©2009 IEEE



Figure 2. The recapture framework applied to super-resolution.
The original low-resolution image is assumed to have been gen-
erated by a capture process operating on an unobserved scene. In-
ference recovers the scene, which is used to capture a new image.

gard the image as a sample of a bandlimited signal and tar-
get perfect reconstruction [19, 25]. All of these suffer from
blockiness or blurring with moderate magnification. The
reason is simple: the scene is effectively not bandlimited.

Adaptive methods make strong assumptions about the
nature of scenes to obtain more plausible results. Para-
metric variants attempt to preserve strong edges by fitting
edges [1, 14] or adapting basis functions [16, 18]. Nonpara-
metric variants discover features that should be preserved
using training images [2, 7] or use training images both as
samples from the distribution of all images and as primitives
for reconstruction [12, 24].

Ouwerkerk recently surveyed adaptive methods [26] and
applied correctness measures to their outputs on test images
at 2x and 4x magnification factors. Methods that give ex-
cellent results on 2x super-resolution tend to show artifacts
at higher factors. For example, Figure 1 shows the results
of applying the two methods found to be best to a region
of “Peppers”. Artifacts that are nearly absent at 2x become
noticeable at 4x, namely steps in gradient areas and bound-
ary incoherence. Because artifacts show up so well at those
scales, our research focuses on factors of 4x or more.

Optimization methods [21, 23, 29] formulate desirable
characteristics of images as penalties or priors and combine
this with a reconstruction constraint to obtain an objective
function. The reconstruction constraint ensures that the re-
sult, when downsampled, matches the input image. Though
BEI is similar in many respects, it does not model down-
sampling of a high-resolution image, but models image
capture of a detailed scene and recapture with a fictional,
higher-resolution process (Figure 2). For this we adapt a
Bayesian framework from supervised machine learning [8].

(a) Optimization framework (b) Recapture framework

Figure 3. Bayesian frameworks for image reconstruction. Shaded
nodes are observed. Optimization methods (a) model an assumed
high-resolution original I′ generating the input image I. This re-
quires prior knowledge about I′ and a degradation process I|I′.
The proposed framework (b) models capture and recapture rather
than (or including) degradation. This requires a rich scene model
S and capture process models I|C,S and I′|C′,S.

For scale-invariance we model a projection of the scene
as a piecewise continuous function, much like a facet
model [11]. To address blur analytically, we construct it
such that it approximates the continuous blurring of step
edges with a spatially varying PSF. We address stepping in
gradients by carefully modeling minimum blur.

Outside of modeling the scene hierarchically, some no-
tion of compatibility among scene primitives [12, 24] is re-
quired to ensure that object boundaries are coherent. We
show that Markov random field compatibility functions can
be incorporated into Bayesian networks in a way that is
direct, intuitive, and preserves independence relationships,
and then incorporate compatibility into our model.

2. Reconstruction by recapture
Optimization methods apply to reconstruction tasks in

general. These assume that an original image I′ existed,
which was degraded to produce I. They are either mo-
tivated or formulated explicitly in Bayesian terms, in two
parts. First is a prior on I′, which encodes knowledge about
images such as gradient profiles [23] or isophote curva-
ture [21]. The second part is often called a reconstruction
constraint [3], back-projection [13] or sensor model [5]: a
conditional distribution I|I′ that favors instances of I′ that,
when degraded, match I. The result is usually found by
maximizing the joint probability P(I|I′)P(I′) to obtain the
most probable I′|I. Figure 3(a) shows the framework as a
simple Bayesian network.

Consider two tasks that have been addressed in the opti-
mization framework. First, a super-resolution task: scaling
up a full-resolution digital photo for printing. Second, CCD
demosaicing: a camera has filtered light before detecting
it with a single-chip sensor. Two-thirds of the color data
is missing and must be inferred. Both violate assumptions
made by optimization methods. There was no pristine orig-
inal image that was degraded, and the only thing that can be
reconstructed is the scene. In these cases and many others,
the true objective is to produce a novel image of the same
scene as if it had been captured using a better process.

Based on this objective, we propose the more general re-
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capture framework shown in Figure 3(b). Here, a process
(e.g. a camera) with parameters C is assumed to have cap-
tured the scene S as the original image I. This process may
include degradation. A fictional process (e.g. a better cam-
era) with parameters C′ recaptures the same scene as the
result I′. As in optimization methods, I is observed and in-
ference recovers I′, but through S rather than directly. This
requires a scene model rich enough to reconstruct an image.

There is also a practical advantage to recapture. With the
right scene model, if only recapture parameters are changed,
I′ can be recaptured at interactive speeds.

3. Effect modeling in Bayesian networks
Our super-resolution method models the scene using

overlapping primitives, which must be kept locally coher-
ent. This has been done using ad-hoc compatibility [12] and
Markov random field (MRF) clique potentials [24]. How-
ever, converting recapture models to MRFs would hide in-
dependence relationships and the notion of causality—and
image capture is obviously causal in nature. Graphical mod-
els rarely mix causal and noncausal dependence. Chain
graphs do [6] but are less well-known and more complex
than Bayesian networks and MRFs.

It is worth noting that MRFs are not used in reconstruc-
tion to model noncausal dependence for its own sake, but to
model unknown causes that have known effects on an image
or scene, which are usually symmetric. This is appropriate
when inferring causes is cumbersome or intractable.

Fortunately, modeling unknown causes with known ef-
fects in a Bayesian network is simple (Figure 4). In the in-
terest of saving space, we note without giving details that
motivation for the following comes from the conversion
of MRFs to factor graphs to Bayesian networks [28]. Let
X = {X1, X2, ..., Xn} be the set of random variables in
a Bayesian network, and Φ = {Φ1,Φ2, ...,Φm} be a set
of functions that specify an effect (such as compatibility).
Let x be instances of X, with x{i}, i ∈ 1..m denoting an
indexed subset. Each Φi is a mapping from x{i} to R+.
For each Φi, add to the network a new real-valued observed
variable Zi with density fZi such that

fZi
(zi = 0|x{i}) = Φi(x{i}) (1)

Because Zi is real-valued, fZi
does not have to be normal-

ized. Because it will remain observed, its density does not
have to be specified except at 0. (There are uncountably
infinite candidates for fZi ; we will assume one of them.)
Adding this new observed variable cannot create cycles or
introduce unwanted first-order dependence.

Inference may proceed on joint density p′(x):

p′(x) ≡ p(x|z = 0) = fX(x)fZ(z = 0|x)/p(z = 0)

∝ fX(x)fZ(z = 0|x) = fX(x)
m∏
i=1

Φi(x{i})
(2)

Figure 4. Bayesian effect modeling. X1 andX2 share an unknown
cause with known effect Φ1. This is modeled as an observed node
in the network. An equivalent network exists in which X1 and X2

are directly dependent and the joint distribution X1, X2 is sym-
metric if Φ1 is symmetric and X1 ∼ X2.

For Gibbs sampling [10], Markov blanket conditionals are

p′(xj |x{−j}) ≡ p(xj |x{−j}, z = 0)

∝ fXj
(xj |xpar(j))

∏
k∈ch(X,j)

fXk
(xk|xpar(k))

∏
i∈ch(Z,j)

Φi(x{i}) (3)

where par(j) yields the indexes of the parents of Xj and
ch(A, j) yields the indexes of the children of Xj within A.

4. Super-resolution model
The steps to using the recapture framework for recon-

struction are: 1) define the scene model, expressing knowl-
edge about the scene or scenes in general as priors; 2) de-
fine the capture and recapture processes; and 3) observe I
and report I′. Because the objective is to generate an image
as if it had been captured by a fictional process, the proper
report is a sample from (rather than say, a MAP estimate
of) the posterior predictive distribution I′|I. This may be
done by running a sampler such as Gibbs or MCMC on S|I,
followed by sampling I′|S once.

Definitions. An image I, which is an m × n array of RGB
triples normalized to [0, 1], is observed. A real-valued scal-
ing factor s is selected and an bsmc × bsnc image I′ is re-
constructed through an m× n scene model S. Coordinates
of triples, which are parameters of the capture process, are

Cx
i,j ≡ i+ 1

2 i ∈ 0..m− 1
Cy
i,j ≡ j + 1

2 j ∈ 0..n− 1 (4)

where i, j are image indexes. (In this paper, subscripts de-
note indexing an array-valued random variable and super-
scripts a named position in a tuple of random variables; e.g.
Cx
i,j means “the i, j-th element of array x in tuple C”.)
The scene and capture models get the nine nearest neigh-

bors of an integer- or real-valued coordinate with
N9(x, y) ≡ {i ∈ Z | − 1 ≤ i− bxc ≤ 1}

×{j ∈ Z | − 1 ≤ j − byc ≤ 1}
(5)

For clarity we omit here treatment of image borders.
The model uses an approximating quadratic B-spline

kernel [9] to weight facet outputs, which we denote as w.
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(a) A region of “Monarch,” down-
sampled 2x and reconstructed.

(b) The inferred PSF standard devi-
ation Sσ . Darker is narrower.

Figure 5. BEI’s spatially varying PSF. It has correctly inferred a
wider PSF for the flower petals, which are blurry due to shallow
depth-of-field. These are still blurry in the final output.

4.1. Facets

S is similar to a facet model [11] in that it uses overlap-
ping geometric primitives to represent a continuous func-
tion. It differs in these fundamental ways: 1) facets are
blurred step edges, not polynomials; 2) it represents a scene
rather than an image; 3) the combined output of the primi-
tives is fit to the data through a capture model; and 4) facets
are made compatible with neighbors where they overlap.

The assumption that the most important places to model
well are object boundaries determines the shape of the
facets. Each is based on an implicit line:

dist(x, y, θ, d) ≡ x cos θ + y sin θ − d (6)

To approximate blurring with a spatially varying point-
spread function (PSF) [15], we assign each facet a Gaussian
PSF and convolve each analytically before combining out-
puts. For simplicity, PSFs are symmetric and only vary in
standard deviation. The usefulness of modeling the PSF as
spatially varying is demonstrated in Figure 5.

Convolving a discontinuity with a Gaussian kernel gives
the profile of the step edge:

prof(d, σ, v+, v−)

≡ v+

∫ ∞
0

G(d− t, σ) dt+ v−
∫ 0

−∞
G(d− t, σ) dt

= v+−v−
2 erf

(
d√
2σ

)
+ v++v−

2

(7)

where erf is the error function and v+ and v− are the values
on the positive and negative sides. Because of the PSFs’
radial symmetry, facets are defined in terms of profiles:

edge(x, y, θ, d, v+, v−, σ)

≡ prof(dist(x, y, θ, d), σ, v+, v−) (8)

An example step edge is shown in Figure 6.

Figure 6. Scene facets are blurred step edges, or linear discontinu-
ities convolved with blurring kernels. This has θ = −π/4, d = 0
as the line parameters and a Gaussian kernel with σ = 1/3.

4.2. Scene model

The scene model random variables are a tuple of m× n
arrays sufficient to parameterize an array of facets:

S ≡ (Sθ,Sd,Sv
+
,Sv

−
,Sσ) (9)

We regard the scene as an array of facet functions. Let

Sedge
i,j (x, y) ≡

edge(x−Cx
i,j , y −Cy

i,j ,S
θ
i,j ,S

d
i,j ,S

v+

i,j ,S
v−

i,j ,S
σ
i,j)

(10)

be an array of facet functions centered at Cx,Cy and pa-
rameterized on the variables in S.

A generalization of weighted facet output, weighted ex-
pected scene value, is also useful:

E[h(Sx,y)] ≡
∑

k,l∈N9(x,y)

w(x−Cx
k,l, y −Cy

k,l) h(Sedge
k,l (x, y))

(11)
When h(x) = x, this is simply weighted output. Weighted
scene variance will be defined later using h(x) = x2.

Priors. It seems reasonable to believe that, for each facet
considered alone,

1. No geometry is more likely than any other.
2. No intensity is more likely than any other.
3. There are proportionally few strong edges [24].

The priors are chosen to represent those beliefs:

Sθi,j∼Uniform(−π, π) Sv
+

i,j∼Uniform(0, 1)
Sdi,j∼Uniform(−3, 3) Sv

−

i,j∼Uniform(0, 1)
Sσi,j∼Beta(1.6, 1)

(12)

Compatibility. It seems reasonable to believe that scenes
are comprised mostly of regions of similar color, and that
neighboring edges tend to line up. We claim that both can
be represented by giving high probability to low variance in
facet output. (Figure 7 demonstrates that this is the case.)
Recalling that E[S2

i,j ]− E[Si,j ]2 = Var[Si,j ], define

Φi,j(SN9(i,j)) ≡ exp
(
−Var[Si,j ]

2γ2

)
(13)

as the compatibility of the neighborhood centered at i, j,
where γ is a standard-deviation-like parameter that con-
trols the relative strength of compatibility. At values near
ω (defined in the capture model as standard deviation of
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(a) Two samples from the prior predictive I′ (i.e. no data).

(b) Two samples from the posterior predictive I′|I (i.e. with data).

Figure 7. The utility of compatibility. The right images include
compatibility. The samples without data (a) show that it biases the
prior toward contiguous regions. The samples with data (b) show
that it makes coherent boundaries more probable.

the assumed white noise), compatibility tends to favor very
smooth boundaries at the expense of detail. We use γ =
3ω = 0.015, which is relatively weak.

In image processing, compatibility is usually defined in
terms of pairwise potentials. We found it more difficult to
control its strength relative to the capture model that way,
and more difficult to reason about weighting. Weighting
seems important, as it gives consistently better results than
not weighting. This may be because weighted compatibility
has a measure of freedom from the pixel grid.

4.3. Capture and recapture

The capture and recapture processes assume uniform
white noise approximated by a narrow Normal distribution
centered at the weighted output value:

Ii,j |SN9(i,j) ∼ Normal(E[Si,j ], ω) (14)
where i, j are real-valued coordinates and ω is the standard
deviation of the assumed white noise. We use ω = 0.005.

Recapture differs from capture in treatment of Sσ (de-
fined in the following section) and in using a bilinear kernel
to combine facet outputs. The bilinear kernel gives better
results, possibly because it makes up for blur inadvertently
introduced by the quadratic kernel w.

4.4. Minimum blur

To make the recaptured image look sharp, we assume the
original capture process had a minimum PSF width Cσ and

give the recapture process a narrower minimum PSF width
Cσ ′. Because variance sums over convolution of blurring
kernels, these are accounted for in the capture model by
adding variances. That is, rather than computing Sedge us-
ing Sσ , I|S uses

Sσk,l
∗ ≡

√
(Sσk,l)2 + (Cσ)2 (15)

The value of Cσ depends on the actual capture process. For
recapture, we have found that Cσ ′ ≡ Cσ/s tends to give
plausible results. (Recall that s is the scaling factor.)

4.5. Decimation blur

In [26], as is commonly done, images were downsam-
pled by decimation: convolving with a 2×2 uniform kernel
followed by nearest-neighbor sampling. When decimation
blur has taken place, regardless of how many times, the cap-
ture process can model it as a constant minimum PSF.

With image coordinates relative to I, decimation is ap-
proximable as application of ever-shrinking uniform ker-
nels. The last kernel was one unit wide, the kernel previous
to that was a half unit wide, and so on. Let uw be a uni-
form kernel with width w. Assuming no upper bound on
the number of decimations, the upper bound on variance is

u ≡ u1 ∗ u 1
2
∗ u 1

4
∗ u 1

8
∗ u 1

16
∗ · · ·

Var[u] = Var[u1] + Var[u 1
2
] + Var[u 1

4
] + · · ·

=
∑∞

n=0

(1/2)2n

12 = 1
12

(
4
3

)
= 1

9

(16)

The series converges so quickly that Cσ = 1
3 is a good

estimate for any number of decimations.

4.6. Inference

The Markov blanket for Si,j includes its nine children in
I and Φ, and their nine parents each in S.

Only the time to convergence seems to be affected by
choice of initial values. We use the following:

Sθ = tan−1((OI)y/(OI)x) Sd = 0
Sv

+
= Sv

−
= I Sσ = 1

2

(17)

In this model, posterior density in S is so concentrated
near the modes that samples of S after convergence are vir-
tually indistinguishable. Therefore we find a MAP estimate
of S|I and sample I′|S to approximate sampling I′|I.

Gibbs with stochastic relaxation [10] finds a MAP esti-
mate quickly, but a deterministic variant of it is faster. It
proceeds as Gibbs sampling, except that for each random
variable X , it evaluates the Markov blanket conditional at
x, x+ σX and x− σX , and keeps the argmax value.

Tuning σX online results in fast convergence. Every iter-
ation, it is set to an exponential moving standard deviation
of the values seen so far. This is computed by tracking an
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exponential moving mean and moving squared mean sepa-
rately and using Var[X] = E[X2]− E[X]2. Let

σ2
Xi

= vXi
−m2

Xi

mX0 = x0 mXi
= α mXi−1 + (1− α) xi

vX0 = x2
0 + σ2

X0
vXi

= α vXi−1 + (1− α) x2
i

(18)

where σX0 is the initial standard deviation. The value of α
denotes how much weight is given to previous values. Us-
ing σX0 = 0.05 for allX and α = 0.5, we found acceptable
convergence within 100 iterations on all test images.

5. Results
Ouwerkerk [26] chose three measures that tend to indi-

cate subjective success better than mean squared error, and
gave results for nine single-frame super-resolution meth-
ods on seven test images chosen for representative diversity.
The original images were decimated once or twice, recon-
structed using each method, and compared. Therefore we
set minimum blur Cσ = 1

3 as derived in Section 4.5.
Figure 8 shows that BEI keeps boundaries coherent even

in difficult neighborhoods because of compatibility. Note
the boundaries of the narrow black veins, which are espe-
cially easy to get wrong. Figure 9 is a comparison of some
methods with BEI on a region of “Lena,” which shows that
BEI preserves gradients and sharpens edges. Note gradi-
ents on the nose and on the shadow on the forehead, and the
crisp boundaries of the shoulder and brim of the hat.

Table 1 gives measures for BEI in 4x super-resolution
along with linear interpolation for a baseline and the top
two, resolution synthesis (RS) [2] and local correlation
(LCSR) [7], for comparison.

Unfortunately, a bug in computing ESMSE was not
caught before publication of [26], making this measure sus-
pect [27]. Also, it is questionable whether it measures edge
stability, as the edge detector used falsely reports smooth,
contiguous regions as edges. Therefore, Table 1 includes
a corrected ESMSE measure using the same edge detector
with its minimum threshold raised from 10% to 20%.

We give numeric results for noiseless recapture because
the correctness measures are somewhat sensitive to noise.
But in practice, a little noise usually increases plausibility.

6. Other applications
One advantage to Bayesian inference is that missing data

is easy to deal with: simply do not include it.
In CCD demosaicing tasks [24], a Bayer filter, which is

a checkerboard-like pattern of red, green, and blue, is as-
sumed overlayed on the capture device’s CCD array [4]. It
could be said that the filtered two-thirds is missing data. We
implemented this easily in BEI by not computing densities
at missing values. The result of simulating a Bayer filter is
shown in Figure 10. We also found it helpful to change the
prior on Sσ to Uniform(0, 1) and set minimum blur to zero.

(a) Nearest-neighbor (b) BEI

(c) RS (d) LCSR

Figure 8. A difficult region of “Monarch”. Most 3×3 neighbor-
hoods within the black veins include part of the boundary on each
side. While RS and LCSR have done well at avoiding artifacts
here (much better than the others compared in [26]), BEI elimi-
nates them almost entirely because of compatibility.

Inpainting can also be regarded as a missing data prob-
lem. By not computing densities in defaced regions, BEI
returned the image shown in Figure 11. Again we flattened
the prior on Sσ and set minimum blur to zero. We also
set the initial values to the rather blurry output of a simple
diffusion-based inpainting algorithm [22], which tends to
speed convergence without changing the result.

Super-resolution can be regarded as a missing data prob-
lem where the missing data is off the pixel grid. In fact,
there is nothing specific to super-resolution in BEI’s scene
or capture model at all. Bayesian inference recovers the
most probable scene given the scene model, capture pro-
cess model, and whatever data is available. In this regard,
super-resolution, CCD demosaicing, and inpainting are not
just related, but are nearly identical.

7. Limitations and future work
BEI is computationally inefficient. Though inference is

linear in image size, computing Markov blanket log den-
sities for 9mn random variables is time-consuming. Our
highly vectorized Python + NumPy implementation takes
about 5 minutes on a 2.4GHz Intel CPU for 128×128 im-
ages. However, there is interpreter overhead, vectoriza-
tion means BEI scales well in parallel, and nearly quadratic
speedup could be gained by taking NEDI’s hybrid ap-
proach [18], which restricts inference to detected edges.
Also, while inference is inefficient, we believe recapture
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PSNR, higher is better MSSIM, higher is better ESMSE, lower is better ESMSE fixed, 20% thresh.
Image Bilinear RS LCSR BEI Bilinear RS LCSR BEI Bilinear RS LCSR BEI Bilinear RS LCSR BEI
Graphic 17.94 20.19 19.55 20.87 0.775 0.864 0.854 0.898 3.309 2.998 3.098 2.151 5.871 3.760 4.027 3.571
Lena 27.86 29.57 29.08 29.60 0.778 0.821 0.810 0.820 5.480 4.718 4.706 4.786 5.212 4.472 4.547 4.556
Mandrill 20.40 20.71 20.63 20.67 0.459 0.536 0.522 0.519 6.609 6.301 6.278 6.393 6.333 6.097 6.075 6.213
Monarch 23.91 26.41 25.90 26.65 0.848 0.896 0.889 0.902 5.448 4.518 4.606 4.547 5.260 4.177 4.445 4.214
Peppers 25.31 26.26 25.66 26.27 0.838 0.873 0.864 0.876 5.531 4.905 4.864 4.889 5.448 5.061 5.061 5.043
Sail 23.54 24.63 24.31 24.55 0.586 0.679 0.657 0.663 6.211 5.776 5.808 5.893 6.025 5.305 5.418 5.447
Tulips 25.43 28.19 27.56 28.44 0.779 0.843 0.831 0.847 5.994 5.198 5.286 5.161 5.679 4.569 4.769 4.549

Table 1. Comparison of bilinear, BEI, and the top two methods from [26], using correctness measures from the same, on 4x magnification.
PSNR = 10 log10(s2/MSE), where s is the maximum image value and MSE is the mean squared error. MSSIM is the mean of a measure
of local neighborhoods that includes mean, variance, and correlation statistics. ESMSE is the average squared difference in maximum
number of sequential edges as found by a Canny edge detector with increasing blur. See the text for an explanation of “ESMSE fixed”.

(a) Original (b) Nearest-neighbor (c) Bilinear (d) NEDI [18]

(e) LCSR (f) RS (g) BEI (h) BEI 8x

Figure 9. A 256×256 region of “Lena” (a) decimated twice and magnified 4x (b – g). Note the gradient steps in (e) and (f), especially in
steep gradients such as on the nose and in the shadow on the forehead. Because BEI can model decimation blur explicitly in the capture
and recapture processes, it preserves these gradients at 4x (g) and 8x (h) while keeping boundaries sharp.

(a) Cubic interpolation (b) BEI, flat Sσ priors, Cσ = 0

Figure 10. CCD demosaicing with a simulated Bayer filter. BEI,
which was changed only trivially for this, treats it naturally as a
missing data problem. Note the sharp edges and lack of ghosting.

could be done at interactive speeds.

Almost all single-frame super-resolution methods tend to
yield overly smooth results. Sharp edges and relative lack
of detail combine to create an effect like the uncanny val-

(a) Defaced 33% (b) BEI, flat Sσ priors, Cσ = 0

Figure 11. Inpainting with BEI. As with CCD demosaicing, this
requires only trivial changes to the model. Bayesian inference has
recovered the most probable scene given the available data.

ley [20]. BEI, which does well on object boundaries and
gradients, could be combined with methods that invent de-
tails like Tappen and Freeman’s MRFs [24]. Good correct-
ness measures for such methods could be difficult to find.
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Many are confused by small amounts of noise, and would
likely be even more confused by false but plausible details.

Ouwerkerk observed [26] that most methods could bene-
fit from a line model, and we have observed that T-junctions
are another good candidate.

Related to CCD demosaicing is undoing bad CCD de-
mosaicing in images captured by devices that do not allow
access to raw data. This may be as simple as modeling the
naı̈ve demosaicing algorithm in the capture process.

Because Bayesian models are composable, any suffi-
ciently rich causal model can model the scene. If not rich
enough, it can be used as a scene prior. For example, param-
eterized shape functions that return oriented discontinuities
or functions from region classifications to expected gradi-
ents and values can directly condition priors on S. Even
compatibility functions can be conditioned on these.

8. Conclusion
We have presented Bayesian edge inference (BEI), a

single-frame super-resolution method that successfully ad-
dresses two problems common to the best existing meth-
ods, which are steps in steep gradients and boundary in-
coherence. It is based on a recapture framework: a gen-
eral Bayesian reconstruction framework with a rich scene
model and explicit capture and recapture processes. This
explicitness has allowed us to correctly model downsam-
pling blur, which sharpens edges and preserves steep gra-
dients in the upscaled result. The rich scene model re-
quires some notion of compatibility or noncausal depen-
dence among scene primitives, and we have shown how to
incorporate such into any Bayesian model. We have demon-
strated that compatibility, as implemented in BEI, tends
to keep object boundaries coherent in the upscaled result.
These subjective assessments translate to good performance
on correctness measures, competitive with the best existing
methods and surpassing them in many cases.

We have also shown that BEI has good subjective per-
formance on other missing data problems besides super-
resolution, namely CCD demosaicing and inpainting. This
suggests that in this framework, these three problems are
nearly identical. It also suggests that BEI and the recapture
framework should generalize to other reconstruction tasks.
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