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Abstract

Visual tracking is a key component in many computer vi-
sion applications. Linear subspace techniques (e.g. eigen-
tracking) are one of the most popular approaches to align
templates with appearance variations (e.g. illumination,
iconic changes). A number of well known tracking algo-
rithms have been proposed in the last years to accurately
fit these models to images. Computational efficiency is an
important limitation in object tracking algorithms and dif-
ferent efficient techniques, such as the “projected-out” op-
timization, have been proposed. They reduce the compu-
tational cost using an efficient formulation in which many
of the involved operations can be precomputed. On the
other hand, alternative “simultaneous” algorithms jointly
optimize pose and appearance parameters, providing better
performance but increasing the computational cost.
In this paper, we propose an algorithm for efficient lin-

ear appearance model fitting based on the inverse com-
positional simultaneous optimization of pose and appear-
ance. We introduce a novel formulation which reduces
the required computational time while maintaining simi-
lar convergence properties of previous “simultaneous” ap-
proaches. Experimental results illustrate the capabilities of
this algorithm in face tracking.

1. Introduction
Linear appearance models are an effective method for

representing visual changes in an object class. The popular-
ity of these models comes from their simplicity and compu-
tational efficiency. They are based on the assumption that
the visual appearance of the considered target lie in a low
dimensional manifold and approximate the relationship be-
tween the input image and the manifold by means of a linear
mapping (such a PCA). This approach has proven to be ef-
fective in many applications. In particular, linear subspace
models haven been extensively used for representing human
faces, approximating facial images viewed under different
conditions (e.g. illumination, expression or identities).

In many applications, the performance of the linear ap-
pearance model fitting algorithm must be balanced with
practical speed requirements. Whether the task is offline,
or real-time, constraints on processing time are typically an
important issue in many applications. Several authors have
proposed efficient techniques which reduce the execution
time [7, 9] by projecting out the appearance variations of
the linear basis in the fitting process. However, as other
authors have pointed out from empirical testing, the perfor-
mance of these algorithms is worse than the obtained by the
simultaneous optimization of pose and appearance parame-
ters [5, 3].
In this paper, we propose an efficient formulation for the

inverse compositional simultaneous algorithm that reduces
the computational cost while maintaining the convergence
properties. The rest of the paper in organized as follows.
Section 2 reviews previous works on linear models fitting
algorithms. Section 3 presents a novel formulation for lin-
ear appearance model fitting algorithm. Section 5 experi-
mental results are provided for the tracking of face images.
Finally, in section 5 some conclusions and future work are
presented.

2. Previous work
Linear appearance models [13, 12, 2, 3, 4] have been ex-

tensively studied within the pattern recognition community.
These models can be used in conjunction with pose param-
eterizations to analyze the visual appearance of moving tar-
gets in images by means of image alignment techniques.
Image alignment using linear appearance variation has been
considered by a number of previous works, most notably
by Black and Jepson for general appearance variation [2],
by Hager and Belhumeur for illumination changes [7], by
Buenaposada et al. [3] for face expression and illumination
changes and by Cootes and Taylor for non-rigid face mod-
eling [4].
The image alignment algorithms using linear appearance

models optimize the pose and appearance parameters to
minimize the difference between the model and an input im-
age. Gradient descent is the most popular approach to im-
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age alignment and different model fitting methods based on
the Lucas-Kanade algorithm [8] have been developed in the
last years. An efficient technique, the “projected out” op-
timization, deals with pose changes as well as appearance
variations without increasing computational costs. It per-
forms the alignment process in two steps: first, it projects
out the appearance variation in the target model and solves
for the warp parameters and, then, it computes the appear-
ance parameters in a second step. Hager and Belhumeur
[7] initially proposed an inverse additive formulation of
this “projected out” algorithm. Baker, Gross and Matthews
[1, 9, 5] introduced a different formulation using the inverse
compositional framework.
Alternatively, a second solution called the “simultane-

ous” algorithm [1, 9, 5, 3], optimizes simultaneously pose
and appearance parameters of linear appearance models
placed onto a new image. It provides better convergence
properties but at the cost of performing slower than the
“projected out” algorithm. In order to reduce the required
computational cost, different alternatives have been pro-
posed. Mercier et al. [10] proposed a modified version of
the “simultaneous” algorithm based on an approximated so-
lution that regularizes the gradient descent update direction
using a set of weighting coefficients instead of the Hessian
matrix. Buenaposada et al. [3] proposed an alternative for-
mulation of the simultaneous algorithm based on the inverse
additive approach that reduces the computational cost by in-
troducing an efficient Jacobian matrix factorization.
In the following section, we introduce a novel inverse

compositional formulation of the simultaneous algorithm to
jointly optimize pose and appearance parameters. The pro-
posed technique has similar convergence properties than the
original “simultaneous” algorithm but it reduces the compu-
tational cost by effectively reorganizing the involved opera-
tions into an efficient algorithm.

3. Linear appearance model fitting formula-
tion

In this section, we formulate different methods for image
alignment using linear appearance models. First, the “pro-
jected out” and the “simultaneous” optimization algorithms
are presented for comparison purposes. Then, an efficient
alternative formulation of the “simultaneous” algorithm is
presented. We follow an inverse compositional approach
because warping the linear model template instead of the
target image accelerates the image fitting process by pre-
computing different required quantities.
The target appearance is represented using a reference

template t(x) and a linear basis of images {ak(x)} , k =
1, ..., mmodeling the changes which can occur in the object
appearance at each pixel x = [x, y]

T . The tracking process

can be expressed as the following minimization process:

min
p,λ

∑
x

[
t(x) +

∑
k

λkak(x) − i(w(x,p))

]2

(1)

where p = (p1, p2, · · · , pn)T and λ = (λ1, λ2, · · · , λm)T

are the pose and appearance parameter vectors respectively.

3.1. Projected out optimization

Hager and Belhumeur [7] proposed an efficient “pro-
jected out” algorithm that reduces the computational cost
by marginalizing appearance changes contained in the lin-
ear basis in the fitting process. It was later reformulated
by Baker, Gross and Matthews [1, 9, 5] using the inverse
compositional scheme.
The error function in equation 1 can be expressed as:

ε(p, λ) =
∑
x

[
t(x) +

∑
k

λkak(x)− i(w(x,p))

]2

span(ak)

+
∑
x

[
t(x) +

∑
k

λkak(x) − i(w(x,p))

]2

span(ak)⊥

(2)

with span(ak) representing the linear subspace spanned
by the vectors ak = [ak(x1), ak(x2), · · · , ak(xd)]

T and
span(ak)⊥ its orthogonal complement.
This equation can be simplified considering that the

norm in the second term only operates on the error com-
ponent in the orthonormal complement of span(ak). Then,
component in span(ak) can be dropped, resulting the fol-
lowing expression:

ε(p, λ) =
∑
x

[
t(x) +

∑
k

λkak(x)− i(w(x,p))

]2

span(ak)

+
∑
x

[t(x)− i(w(x,p))]2span(ak)⊥

(3)

The second of these two terms does not depend on λ.
For any p, the minimum value of the first term is always
0 because the term

∑
k λkak(x) can represent any vector

in span(ak). As a result, the simultaneous minimum over
both p and λ can be found sequentially by first minimizing
the second term with respect to p alone, and then treating
the optimal value of p as a constant to minimize the first
term with respect to λ.
Using a inverse compositional approach for the opti-

mization, the error function can be referred to incremental
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parametersΔp:

ε(Δp) =

[
t(w(x, Δp) +

∑
k

λkak(w(x, Δp))

−i(w(x,p))]
2
span(ak) +

[t(w(x, Δp)) − i(w(x,p))]
2
span(ak)⊥

(4)

The optimal pose obtained from the second term can be
expressed as:

Δp = −H−1
po

∑
x

jpo(x)T epo(x) (5)

with:
epo(x) = t(x) − i(w(x,p)) (6)

jpo(x) = ∇t
∂w

∂p
(x,0)−

∑
k

[∑
y

ak(y)∇t
∂w

∂p
(y,0)

]
ak(x)

(7)

Hpo =
∑
x

jpo(x)
T
jpo(x) (8)

Computation of jpo(x) is carried out by projecting
∇t∂w

∂p
(x,0) vectors into span(ak)⊥, by removing the com-

ponent in the direction of ak, for k = 1, ..., m in turns.
The optimal appearance parameters are given from the

first term as:

λ =

(∑
x

a(x)T a(x)

)−1∑
x

a(x)
T
epo(x) (9)

with a(x) = [a1(x), a2(x), · · · , am(x)]

It is worth pointing out that these expressions are based
on the following implicit approximation in equation 4:

∑
k

λkak(w(x, Δp)) ≈
∑

k

λkak(x) (10)

3.2. Simultaneous pose and appearance optimiza-
tion

The error function that has to be minimized is given by:

ε(Δλ, Δp) =
∑
x

[t(w(x, Δp))+

∑
k

(λk + Δλk)ak(w(x, Δp)) − i(w(x,p))

]2 (11)

The first order expansion of eq. 11 , neglecting second
order terms, can be expressed as:

ε(Δλ, Δp) =
∑
x

[
t(x) +

∑
k

λkak(x)− i(w(x,p))+

(
∇t +

∑
k

λk∇ak(x)

)
∂w

∂p
Δp +

∑
k

Δλkak(x)

]2

(12)

Considering the combined parameters vector q =(
pT , λT

)T and Δq =
(
ΔpT , ΔλT

)T , the joint optimal
parameters can be obtained by:

Δq = −H−1
sic

∑
x

jsic(x)
T
esic(x) (13)

with:

esic(x) = t(x) +
∑

k

λkak(x) − i(w(x,p)) (14)

jsic(x) =

[(
∇t +

∑
k

λk∇ak

)
∂w

∂p1
, ...,

(
∇t +

∑
k

λk∇ak

)
∂w

∂pn

,

a1(x), · · · , am(x)]

(15)

Hsic =
∑
x

jTsic(x)jsic(x) (16)

The steepest descent images computed in equation 15
depend on the current appearance parameters λ and must
be recomputed at every iteration. In order to reduce the
computational cost of the image alignment process, in the
following section we derive an alternative formulation for
this algorithm.

3.3. Efficient formulation of the simultaneous pose
and appearance algorithm

The elements in the Steepest Descent Matrix in equation
12 can be rearranged as follows:

ε(Δλ, Δp) =
∑
x

[
t(x) +

∑
k

λkak(x)− i(w(x,p))+

⎡
⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎣

∇xt
∇xa1(x)

...
∇xam(x)

⎤
⎥⎥⎥⎦

T

,

⎡
⎢⎢⎢⎣

∇yt
∇ya1(x)

...
∇yam(x)

⎤
⎥⎥⎥⎦

T
⎤
⎥⎥⎥⎥⎦C(λ)

∂w

∂p
Δp+

∑
x

Δλkak(x)

]2

(17)
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with:
C(λ) =

[
[1, λ]T 0

0 [1, λ]T

]
(18)

Grouping together all the elements that can be recom-
puted, equation 17 can be rewritted as:

ε(Δλ, Δp) =
∑
x

[
t(x) +

∑
k

λkak(x) − i(w(x,p))+

⎡
⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎣

∇xt
∇xa1(x)

...
∇xam(x)

⎤
⎥⎥⎥⎦

T

,

⎡
⎢⎢⎢⎣

∇yt
∇ya1(x)

...
∇yam(x)

⎤
⎥⎥⎥⎦

T
⎤
⎥⎥⎥⎥⎦

∂w

∂p

∗

[Il×l ⊗C(λ)] Δp +
∑

k

Δλkak(x)

]2

(19)

with ∂w
∂p

∗ being a rearrangement of the Jacobian matrix
evaluated at p = 0 and Il×l the identity matrix of dimen-
sion l (where l depends on the considered warping func-
tion). See appendix A for a description of different motion
parameterizations.
It results in:

ε(Δλ, Δp) =
∑
x

[
e(x) + [jp(x)C∗(λ), jλ(x)]

[
Δp

Δλ

]]2
(20)

with:

e(x) = t(x) +
∑

k

λkak(x)− i(w(x,p)) (21)

C∗(λ) = Il×l ⊗C(λ) (22)

jp(x) =

⎡
⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎣

∇xt
∇xa1(x)

...
∇xam(x)

⎤
⎥⎥⎥⎦

T

,

⎡
⎢⎢⎢⎣

∇yt
∇ya1(x)

...
∇yam(x)

⎤
⎥⎥⎥⎦

T
⎤
⎥⎥⎥⎥⎦

∂w

∂p

∗

(23)

jλ(x) = [a1(x), a2(x), · · · , am(x)] (24)

We now optimize eq. 20, using the par-
tial derivative with respect to the joint parameter
vector Δq =

[
ΔpT , ΔλT

]T . Using the vec-
torial notation e = [e(x1), e(x2), · · · , e(xd)]

T ,
Jλ =

[
jTλ (x1), j

T
λ (x2), · · · , jTλ (xd)

]T and Jp =[
jTp (x1), j

T
p (x2), · · · , jTp (xd)

]T , the following expres-
sion is obtained:

[
C∗(λ)

T
JT
p

JT
λ

]
[JpC∗(λ),Jλ]Δq =

−

[
C∗(λ)T

JT
p

JT
λ

]
e

(25)

The resulting composed parameters increment is then
given by:

Δq =

−

[
C∗(λ)T

JT
pJpC

∗(λ) C∗(λ)T
JT
pJλ

JT
λ JpC

∗(λ) JT
λ Jλ

]−1

[
C∗(λ)

T
JT
p

JT
λ

]
e

(26)

Applying the matrix inversion lemma:

Δp = −
(
(JpC∗(λ))T

Nλ (JpC
∗(λ))

)−1

(JpC(λ))
T

Nλe

(27)

Δλ =
(
JT

λ N∗

pJλ

)−1
JT

λ Npe (28)

withN∗
p = I− (JpC

∗(λ)) (JpC
∗(λ))

+ andNλ = I−

JλJ
+
λ .
Considering that N∗

p = N∗
p

T N∗
p and Nλ = NT

λNλ, it
results:

Δp = −
(
CT (λ)(NλJp)T (NλJp)C(λ)

)−1

CT (λ)(NλJp)T e
(29)

Δλ = ((N∗

pJλ)T (N∗

pJλ))−1(N∗

pJλ)T e (30)

Here NλJp represents the component of Jp orthogonal
to Jλ. Similarly, N∗

pJλ represents the component of Jλ

orthogonal to different linear combinations of Jp (whose
coefficients are C∗(λ)). It is not necessary to compute the
orthogonal subspaceN∗

pJλ for each value of λ as if we find
the orthogonal complement of Jλ with respect to Jp it will
be orthogonal to JpC

∗(λ) as well.
Finally:

Δp = −
(
C∗(λ)

T
Hp⊥C∗(λ)

)−1

C∗(λ)
T
JT
p⊥e (31)

Δλ = H−1
λ⊥JT

λ⊥e (32)

with:
Jp⊥ = NλJp (33)

Jλ⊥ = NpJλ (34)

Hp⊥ = JT
p⊥ · Jp⊥ (35)

Hλ⊥ = JT
λ⊥ · Jλ⊥ (36)
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Np = I− JpJ
+
p (37)

In this formulation, all the components Jp⊥, Jλ⊥,Hp⊥,
Hλ⊥ can be precomputed, reducing the required computa-
tions on each iteration compared to the standard simultane-
ous inverse compositional approach presented in [1, 6]. The
resulting steps in the algorithm and the associated compu-
tation times are then summarized in tables 1 and 2 respec-
tively. We can see how the iteration time is reduced, obtain-
ing a linear increment of the computational cost in respect
to the number of appearance vectors.

Template alignment algorithm
(Efficient formulation for the SIC algorithm)

Precompute:
(3) Compute the gradients∇t and∇ak for k = 1, · · · , m
(4) Compute the Jacobian ∂w

∂p
evaluated at (x,0)

(5a) Compute the steepest descent matrix Jp and
find the orthogonal complement to ak(x).

(5b) Compute the steepest descent matrix Jλ and
find the orthogonal complement to Jp.

(6a) Compute the hessian matrixHp⊥ and invert it.
(6b) Compute the hessian matrixHλ⊥ and invert it.

Iterate:
(1) Obtain i(w(x,p)), warping the input image i(x)
(2) Compute the error image esic(x) using eq. 21
(7) Use equations 31 and 32 to compute Δp and Δλ

(8) Update the parameters using
w(x,p)← w(x,p) ◦w(x, Δp)−1

and λ← λ + Δλ

Table 1. Efficient formulation of the simultaneous inverse compo-
sitional linear appearance model fitting algorithm.

4. Experimental results
In this section, we provide an empirical comparison of

the convergence and computational costs for the different
image alignment algorithms proposed in previous section.
We make use of the “Database of Moving Faces and Peo-
ple” [11] kindly provided by Perception Lab. at the Uni-
versity of Texas at Dallas. This database contains images
and video sequences of different subjects captured in sev-
eral sessions.
First, we analyze the performance of the algorithms in

an experiment involving static images. A linear appearance
model is built from different face images using PCA anal-
ysis (the selected template dimension is 100 × 100 pixels
and the experiments were repeated for 4 and 6 training im-
ages). Then, we use one of the training images as input to
the fitting algorithms. Affine transformations (six parame-
ters warps) are generated by randomly perturbing the four
corners of the model previously aligned with its instance

in the considered image. We then try to recover the ini-
tial pose running the different fitting algorithms. Appear-
ance parameters are initialized to 0. Two magnitudes were
measured: the average frequency of convergence and the
average rate of convergence. We perform as many experi-
ments as needed to let all the algorithms converge at least
25 times, and 15 iterations per experiment were used. A
maximum spatial error of one pixel is given as criterion for
convergence. Figure 1 represents the obtained results for
a basis containing 5 appearance vectors. We can see how
“simultaneous” approaches achieve better performance than
the “projected-out” algorithms.

On the other hand, traditional “simultaneous” formula-
tions require a higher number of operations per iteration
than the “projected out”, resulting in increased execution
times as presented in figure 2. However, it can be seen
as the efficient implementation of the simultaneous algo-
rithm allows for competitive times while keeping the same
performance. The offline computation of different numeri-
cal structures drastically reduces the iteration time. All the
measured times correspond to unoptimized matlab imple-
mentations.
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Figure 2. Execution time for different fitting algorithms. Dis-
played times correspond to the total number of iterations (15).
Top image corresponds to the linear model containing 3 appear-
ance vectors. The bottom image corresponds to the model with 5
appearance vectors
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Precomputation
Step 3 Step 4 Step 5 Step 6 Total
O(md) O(nd) O(nmd) O(n2m2d + n3m3) O(n2m2d + n3m3)

Per Iteration
Step 1 Step 2 Step 7 Step 8 Total
O(nd) O(md) O(mnd + n3m3) O(n2 + m) O(mnd + n3m3)

Table 2. Computation cost of one iteration of the efficient inverse compositional linear appearance models fitting algorithm. d is the number
of pixels in the template image t(x), n is the number of warp parameters,m is the number of illumination vectors.
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Figure 1. Comparison between different inverse compositional algorithms: “Projected-out”, “Simultaneous” and the efficient “Simultane-
ous” formulation. The top representation correspond to the linear model containing 3 appearance vectors. The bottom graphs correspond
to the model with 5 appearance vectors

In a second experiment we apply the efficient simulta-
neous inverse composition algorithm to the tracking of face
video sequences to test the generalization properties of the
algorithm. In this case, the appearance basis are used to
model expression changes in a considered subject. Figure
3 represents the results for an example sequence. First we
learn a linear model from a training sequence. We choose a
modular eigenspace composed of three areas, both eyes and
the mouth, resulting in basis with dimensions 5 for mouth
(23 × 23 pixels) and 4 for each eye region (15 × 18 pix-
els). The model is used to track another sequence of the
same subject captured in a different session using a rota-
tion/translation/scale (RTS) parameterization for the motion
function. While the iteration time required for the proposed
efficient formulation is greatly reduced, the visual inspec-
tion of the tracking results confirms the accuracy of the

technique when fitting new sequences not included in the
training set.

5. Conclusion and future work

In this paper, we have introduced an efficient formula-
tion of the simultaneous inverse compositional algorithm
for the problem of image alignment using linear appearance
models. This approach reduces the computational cost of
the algorithm as the computational time increases linearly
with respect to the number of appearance vectors (versus
the quadratic dependency of the standard formulation). Ad-
ditionally, it achieves higher convergence rates and frequen-
cies of convergence that alternative efficient minimization
schemes such as the “projected out” algorithm. The perfor-
mance of the proposed algorithm is empirically analyzed by
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Figure 3. Using the simultaneous inverse compositional algorithm
to track a face sequence. (a) Example images from the training
sequence. (b) Some of the obtained frames in the tracking process.
In the graph, the sum of squares differences errors for the mouth
and eye regions is represented

comparing the results achieved by these model fitting tech-
niques on a dataset of facial images. Future work will in-
clude the study of efficient fitting formulations for non-rigid
motion.

A. Motion parameterizations
A.1. Rotation, translation and scale model

The rotation, translation and scale model is described by
four parameters p = [s, θ, tx, ty]T :

w(x,p) = (s + 1)R(θ)

[
x
y

]
+

[
tx
ty

]
(38)

withR(θ) a 2D rotation matrix.
The Jacobian matrix is given by:

∂w

∂p
=

[
∂wx

∂s
, ∂wx

∂θ
, ∂wx

∂tx
, ∂wx

∂ty

∂wy

∂s
,

∂wy

∂θ
,

∂wy

∂tx
,

∂wy

∂ty

]
=

[
cosθx− sinθy −(s + 1)(sinθx + cosθy) 1 0
sinθx + cosθy (s + 1)(cosθx − sinθy) 0 1

]
(39)

For the identity transformation (p = 0) its value is:

∂w

∂p

∣∣∣∣
p=0

=

[
x −y 1 0
y x 0 1

]
(40)

The resulting matrices ∂w
∂p

∗ andC∗(λ) are:

∂w

∂p

∗

=[[
xIm′×m′ −yIm′×m′

yIm′×m′ xIm′×m′

]
, I2m′×2m′

] (41)

C∗(λ) = I2×2 ⊗C(λ) (42)

withm′ = m + 1.

A.2. Affine model

In this case the warp function is represented by

w(x,p) =

[
(1 + p1) p3

p2 (1 + p4)

] [
x
y

]
+

[
p5

p6

]
(43)

The Jacobian matrix does not depend on the evaluation
point p and is given by the following expression:

∂w

∂p
=

[
∂wx

∂p1

, ∂wx

∂p2

, ∂wx

∂p3

, ∂wx

∂p4

, ∂wx

∂p5

, ∂wx

∂p6

∂wy

∂p1

,
∂wy

∂p2

,
∂wy

∂p3

,
∂wy

∂p4

,
∂wy

∂p5

,
∂wy

∂p6

]
=

[
x 0 y 0 1 0
0 x 0 y 0 1

]
=

∂w

∂p

∣∣∣∣
p=0

(44)

The corresponding ∂w
∂p

∗ and C∗(λ) matrices for the
affine parameterization are:

∂w

∂p

∗

= [xI2m′×2m′ , yI2m′×2m′ , I2m′×2m′ ] (45)

C∗(λ) = I3×3 ⊗C(λ) (46)

withm′ = m + 1
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A.3. Projective model

The projective warp function can be expressed as:

w(x,p) =

⎡
⎣ r(x,p)

s(x,p)
t(x,p)

⎤
⎦ =

⎡
⎣ (1 + p1) p4 p7

p2 (1 + p5) p8

p3 p6 1

⎤
⎦
⎡
⎣ x

y
1

⎤
⎦

(47)

where the transformed point coordinates are obtained divid-
ing by the homogeneous coordinate:

[
x
y

]
→

[
r(x,p)/t(x,p)
s(x,p)/t(x,p)

]
(48)

In this case, the Jacobian matrix is:

∂w

∂p
=

[
∂wx

∂p1
, ∂wx

∂p2
, ∂wx

∂p3
, ∂wx

∂p4
, ∂wx

∂p5
, ∂wx

∂p6
, ∂wx

∂p7
, ∂wx

∂p8

∂wy

∂p1

,
∂wy

∂p2

,
∂wy

∂p3

,
∂wy

∂p4

,
∂wy

∂p5

,
∂wy

∂p6

,
∂wy

∂p7

,
∂wy

∂p8

]
=

[
x/t 0 −rx/t2 y/t 0 −ry/t2 1/t 0
0 x/t −sx/t2 0 y/t −sy/t2 0 1/t

]
(49)

Considering that r(x,0) = x, s(x,0) = y and t(x,0) =
1, the value of the Jacobian at p = 0 is:

∂w

∂p

∣∣∣∣
p=0

=

[
x 0 −x2 y 0 −xy 1 0
0 x −xy 0 y −y2 0 1

]
(50)

Thus, ∂w
∂p

∗ andC∗(λ) matrices are:

∂w

∂p

∗

=

[
xI2m′×2m′ ,

[
−x2Im′×m′

−xyIm′×m′

]
, yI2m′×2m′ ,[

−xyIm′×m′

−y2Im′×m′

]
, I2m′×2m′

]
(51)

C∗(λ) = I4x4 ⊗C(λ) (52)

withm′ = m + 1.
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