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Abstract

We consider regions of images that exhibit smooth statis-
tics, and pose the question of characterizing the “essence”
of these regions that matters for recognition. Ideally, this
would be a statistic (a function of the image) that does not
depend on viewpoint and illumination, and yet is sufficient
for the task. In this manuscript, we show that such statistics
exist. That is, one can compute deterministic functions of
the image that contain all the “information” present in the
original image, except for the effects of viewpoint and illu-
mination. We also show that such statistics are supported
on a “thin” (zero-measure) subset of the image domain,
and thus the “information” in an image that is relevant for
recognition is sparse. Yet, from this thin set one can recon-
struct an image that is equivalent to the original up to a
change of viewpoint and local illumination (contrast). Fi-
nally, we formalize the notion of “information” an image
contains for the purpose of viewpoint- and illumination-
invariant tasks, which we call “actionable information” fol-
lowing ideas of J. J. Gibson.

1. Image Representations for Recognition
Visual recognition is difficult in part because of the large

variability that images of a particular object exhibit depend-

ing on extrinsic factors such as vantage point, illumination

conditions, occlusions and other visibility artifacts. The

problem is only exacerbated when one considers object cat-

egories subject to considerable intrinsic variability.

Attempts to “learn away” such variability and to tease

out intrinsic and extrinsic factors result in explosive growth

of the training requirement, so there is a cogent need to fac-

tor out as many of these sources of variability as possible as

part of the representation in a “pre-processing” phase. Ide-

ally, one would want a representation of the data (images)

that is invariant to nuisance factors, intrinsic or extrinsic1

and that represents a sufficient statistic for the task at hand.

1What constitutes a nuisance depends on the task at hand; for instance,

sometimes viewpoint is a nuisance, other times it is not, as in discriminat-

ing “6” from “9”.

The most common nuisances in recognition are (a) view-

point, (b) illumination, (c) visibility artifacts such as occlu-

sions and cast shadows, (d) quantization and noise.2 The

latter two are “non-invertible nuisances”, in the sense that

they cannot be “undone” in a pre-processing stage: For in-

stance, whether a region of an image occludes another can-

not be determined from an image alone, but can be ascer-

tained as part of the matching process with a training da-

tum. What about the former two? Can one devise image
representations that are invariant to both viewpoint and il-
lumination, at least away from visibility artifacts3 such as
occlusions and cast shadows?

Viewpoint? Yes. Contrast? Yes. Both? . . .

The answer to the question above is trivially “yes” as any

constant function of the image meets the requirement. More

interesting is whether there exists an invariant which is

non-trivial, and even more interesting is whether such an

invariant is a sufficient statistic, in the sense that it con-

tains all and only the information necessary to accomplish

the task, regardless of viewpoint and illumination. For the

case of viewpoint, although earlier literature [3] suggested

that general-case view-invariants do not exist, it has been

shown that it is always possible to construct non-trivial

viewpoint invariant image statistics for Lambertian objects

of any shape [13]. For instance, a (properly weighted) local

histogram of the intensity values can be shown to be view-

point invariant. For the case of illumination, it has been

shown [5] that general-case (global) illumination invariants

do not exist, even for Lambertian objects. However, there

is a considerable body of literature dealing with more re-

stricted illumination models that induce a monotonic con-

tinuous transformation of the image intensities, a.k.a. con-
trast transformation. It has been shown [1] that the geom-

etry of the level curves (the iso-contours of the image), is

contrast invariant, and therefore so is its dual, the gradient

2Note that we intend (a) and (b) to be absent of visibility artifacts, that

are considered separately in (c).
3Visibility is addressed explicitly in [11].
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But even in this more constrained illumination model,

what is invariant to viewpoint is not invariant to illumina-
tion, and vice-versa. So it seems hopeless that we would

be able to find anything that is invariant to both. Even less

hopeful that, if we find something, it would be a sufficient

statistic! And yet, we will show that under certain condi-

tions (i) viewpoint-illumination invariants do exist; (ii) they

are a “thin set” i.e. they are supported on a zero-measure

subset of the image domain; finally, despite being thin, (iii)

these invariants are sufficient statistics!
It is intuitive that discontinuities (edges) and other salient

intensity profiles such as blobs and ridges are important, al-
though exactly how important they are for a given recogni-
tion task has never been elucidated analytically.5 But what
about regions with smooth statistics? These would include
shaded regions (Fig. 1) as well as texture gradients at scales

Figure 1. Regions of an image that exhibit smooth texture gradient

are not picked up by local feature detectors (Harris-affine, SIFT),

and are over-segmented by most image segmentation algorithms.

How do we “capture” the essence of these regions that matters for

recognizing an object regardless of its viewpoint and illumination?

significantly larger than that of the local detectors employed
for the structures just described. Feature selectors would not
fire at these regions, and segmentation or super-pixel algo-
rithms would over-segment them placing spurious bound-
aries that change under small perturbations. So, how can
one capture the “information” that smooth statistics con-
tain for the purpose of recognition? We articulate our con-
tribution in a series of steps:

1. We assume that some image statistic (intensity, for simplicity,

but could be any other region statistic) is smooth, and model the

image as a square-integrable function extended without loss of

generality to the entire real plane or - for convenience - to the

sphere S
2.

2. Again without loss of generality, we approximate the extended

image with a Morse function.

3. We introduce the Attributed Reeb Tree (ART ), a determinis-

tic construction that is uniquely determined from each image.

4This fact is exploited by the most successful local representations for

recognition, such as the scale-invariant feature transform (SIFT) and the

histogram of oriented gradients (HOG).
5Many representations currently used for recognition involve combi-

nations of these structures, such as extrema of difference-of-Gaussians

(“blobs”), non-singularities of the second-moment-matrix (“corners”),

sparse coding (“bases”) and segmentation or other processes to determine

region boundaries.

4. We show that two images that have the same ART are related

by a domain diffeomorphism and a contrast transformation.

5. We conclude that the ART is a viewpoint-illumination invari-

ant, and that it has measure zero in the image domain.

6. Finally, we show that the ART is a sufficient statistic, in the

sense that it is equivalent to the original image up to an arbitrary

domain deformation and contrast change.6

7. We propose a notion of “actionable information” that mea-

sures the complexity not of the data, but of what remains of the

data after the effect of the nuisances (viewpoint and illumination)

is removed, i.e. the ART .

Clearly this is only a piece of the puzzle. It would be

simplistic to argue that our key assumption, which we in-

troduce in the next section, is made without loss of gener-

ality (Morse functions are dense in C
2, which is dense in

L
2, and therefore they can approximate any discontinuous,

square-integrable function to within an arbitrarily small er-

ror). Co-dimension one extrema (ridges, valleys, edges) in

images are qualitatively different than regions with smooth

statistics and should be treated as such, rather than generi-

cally approximated. This is beyond our scope in this paper,

where we restrict our analysis away from such structures

and only consider regions with smooth statistics. Our goal

here is not to design another low-level image descriptor, but

to show that viewpoint-illumination invariants exist under a

precise set of conditions, and to provide a proof-of-concept

construction. Yet it is interesting to notice that some of the

most recent face recognition [10] and shape coding [2] use

a representation closely related to the ART .

In the next section, we introduce the mathematical tools

that are necessary to characterize the set S ′′ of viewpoint-

illumination invariants. A summary of this section is pro-

vided in Sect. 1.2, for the reader who wishes to skip the

mathematical details and proceed with the rest of the paper.

1.1. Mathematical Preliminaries (summary in 1.2)

For simplicity, we will represent a smooth portion of an

image by a positive-valued Morse function on the plane. A

Morse function f : R
2 → R

+;x �→ f(x) is a smooth func-

tion such that all critical points are non-degenerate. A criti-

cal point is a location x ∈ R
2 where the gradient vanishes,

∇f(x) = 0. A non-degenerate critical point x is where

the Hessian is non-singular, det(∇2f(x)) �= 0. Morse are

dense in L
2, and therefore can approximate edges, ridges

and other discontinuities in the image arbitrarily well. We

introduce the following subset of Morse functions that have

6Note that this does not necessarily mean that a viewpoint-illumination

invariant is a unique signature for an object. As [13] have pointed out,

different objects that are diffeomorphically equivalent in 3-D (i.e. they

have equivalent albedo profiles) yield identical viewpoint-invariant statis-

tics. Discriminating objects that differ only by their shape can be done, but

not by comparing viewpoint-invariant statistics, as shown in [13].
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distinct critical values and where all the “structure” is con-

centrated, to avoid having to deal with critical points that

escape outside the domain of the image.

Definition 1 (F) A function f : R
2 → R

+ is in class F
(f ∈ F) iff

1. f is Morse

2. the critical values of f (corresponding to critical
points of f ) are distinct

3. each level set (i.e. La(f) = {x ∈ R
2 : f(x) = a} for

a ∈ R
+) of f is compact,

4. lim|x|→+∞ f(x) > f(y) ∀y ∈ R
2 or

lim|x|→+∞ f(x) < f(y) ∀y ∈ R
2,

5. there exists an a ∈ R
+ so thatLa(f) is a simple closed

contour that encloses all critical points of f

If f ∈ F , then we may identify f with a Morse function

on the sphere f̃ : S
2 → R

+ via the inverse stereographic

projection from the north pole, p. We then extend f̃ to

the south pole, −p, by defining f̃(−p) = lim|x|→+∞ f(x),
which will be either the global minimum or maximum of f̃ .

From now on, we make this identification and any f ∈ F
will be represented as a Morse function on S

2 such that its

global minimum or maximum is at the south pole. Condi-

tions 1 and 2 make the class F stable under small perturba-

tions (e.g. noise in images); we will make more precise this

notion of stability later. Now consider the set of surfaces

that are the graph of a function in F :

S .= {{(x, f(x))|x ∈ S
2} | f ∈ F}. (1)

The set of monotonically increasing continuous functions,

also called contrast functions in [4], is indicated by

H .= {h : R
+ → R

+ | 0 < dh

dt
<∞, t ∈ R

+}. (2)

Contrast functions form a group, and therefore each sur-

face in S that is the graph of a function f forms an orbit

(equivalence class) of surfaces that are different from the

original one, but related via a contrast change. We indicate

this equivalence class by [f ]H = {h ◦ f | h ∈ H}. The

topographic map of a surface is the set of connected com-

ponents of its level curves, S ′ .= {x | f(x) = λ, λ ∈ R
+};

it follows from Proposition 1 and Theorem 1 on page 11 of

[4] that the quotient of the surfaces S moduloH is given by

their topographic map,

S ′ = S/H. (3)

In other words, the topographic map is a sufficient statistic

of the surface that is invariant to contrast changes; all sur-

faces that are equivalent up to a contrast change have the

same topographic map. Or, given a topographic map, one
can uniquely reconstruct a surface up to a contrast change.

Remark 1 In the context of image analysis, where the do-
main of the image is rectangular (for instance a continu-
ous approximation of the discrete lattice D = [0, 640] ×
[0, 480] ⊂ Z

2) and f(x) is the intensity value recorded at
the pixel in position x ∈ D, usually between 0 and 255,
contrast changes in the image are often used as a first-order
approximation of illumination changes in the scene away
from visibility artifacts such as cast shadows. Therefore, the
topographic map, or dually the gradient direction ∇f

‖∇f‖ , is
equivalent to the original image up to contrast changes, and
represents a sufficient statistic that is invariant to h.

Now consider the set of domain deformations in F :

W .= {w : S
2 → S

2 a diffeomorphism : w(σ) = σ} (4)

where σ denotes the south pole. W is also a group un-

der composition, and therefore each surface determined by

f generates an orbit [f ]W = {f ◦ w | w ∈ W}. If

we consider the product group of contrast functions and

domain diffeomorphisms we have the equivalence classes

[f ] = {h ◦ f ◦ w | h ∈ H, w ∈ W}. The goal of this
manuscript is to characterize these equivalence classes,

i.e., the orbit space

S ′′ .= S ′/W = S/{H ×W} (5)

of surfaces that are equivalent up to domain diffeomor-

phisms and contrast functions.

Remark 2 In the context of image analysis, domain diffeo-
morphisms model changes of viewpoint [13] away from vis-
ibility artifacts such as occlusions.3 Therefore, the quotient
above – if it is found to be non-trivial – can be considered
to be a sufficient statistic of the image that is invariant to
viewpoint and illumination.

We now give a series of definitions that are introduced to

elucidate the structure of the orbit space (5).

Definition 2 (Reeb Graph) Let f : S
2 → R be a function.

We define

Reeb(f) = {[(x, f(x))] : x ∈ S
2}

where (y, f(y)) ∈ [(x, f(x))] iff f(x) = f(y) and there is
a continuous path from x to y in f−1(f(x)).

In other words, the Reeb Graph of a function f is the set of

connected components of level sets of f (with the additional

encoding of the function value of the level set).

Lemma 1 (Reeb Graph is connected) If f : S
2 → R is a

function, then Reeb(f) is connected.
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Proof. Reeb(f) is the quotient space of S
2 under the equiv-

alence relation defined in Definition 2. Therefore, by def-

inition we have a surjective continuous map π : S
2 →

Reeb(f), and connectedness is preserved under a contin-

uous map.

Lemma 2 (Reeb Tree) The Reeb Graph of a surface in S
that is the graph of a function f does not contain cycles.

Proof. Let π : S
2 → Reeb(f) be the quotient map.

We prove that Reeb(f) has no cycles. To do so, assume

Reeb(f) has a cycle, i.e., there exists γ : [0, 1] → Reeb(f),
continuous with γ(0) = γ(1), and we can assume that γ is

one-to-one. We may then lift γ to a continuous path, γ̂ :
[0, 1] → S

2 that satisfies γ̂(0) = γ̂(1) and π ◦ γ̂ = γ. This

path is constructed by solving the gradient flow ẏ = ∇f(y)
between critical points. Now that we have a continuous

loop γ̂ : [0, 1] → S
2 we may contract γ̂ to a point via a

retraction, which is impossible unless γ = γ(0), in which

case we did not have a loop. A retraction of a loop (one-to-

one path with endpoints the same) in Reeb(f) is impossi-

ble.

Definition 3 (Attributed graph) Let G = (V,E) be a
graph (V is the vertex set and E is the edge set), and L
be a set (called the label set). Let a : V → L be a func-
tion (called the attribute function). We define the attributed

graph as AG = (V,E,L, a).

Definition 4 (Attributed Reeb Tree (ART)) Let f ∈ F .
Let V be the set of critical points of f . Define E to be

E = {(vi, vj) : i �= j, ∃ γ : [0, 1] → Reeb(f)

continuous such that γ(0) = vi, γ(1) = vj and γ(t) �=
[(v, f(v))] ∀t ∈ (0, 1), v ∈ V }. Let L = R

+, and a(v) =
f(v) Note that the south pole vsp ∈ S

2, is a critical point,
and we include that in our definition. We define

ART (f) .= (V,E, L, a, vsp).

Note that the definition ofART includes the type of crit-

ical point of each vertex v ∈ V :

Definition 5 (Index of a Vertex of an Attributed Tree)
Let T = (V,E,R+, a) be an attributed tree, we define the
map ind : V → {0, 1, 2} as follows:

1. ind(v) = 2 if a(v) < a(v′) for any v′ such that
(v, v′) ∈ E

2. ind(v) = 0 if a(v) > a(v′) for any v′ such that
(v, v′) ∈ E

3. ind(v) = 1 if the above two conditions are not satis-
fied.

S3

S5

S4

S1

S2

M5 M4

M2
M3

M1

M6

S

Figure 2. The lip region of Fig. 1, its level lines, the level lines

marked with extrema, and a graphical depiction of ART (note that

the height of the vertex is proportional to the attribute value).

Definition 6 (Equivalence Class of Attributed Trees)
Let T1 = (V1, E1,R

+, a1, vsp,1) and T2 =
(V2, E2,R

+, a2, vsp,2) be attributed trees. Then we
say that T1 is equivalent to T2 denoted T1

∼= T2 if the
trees (V1, E1) and (V2, E2) are isomorphic via a graph
isomorphism, φ : V1 → V2, and the following properties
are satisfied:

• if a1(v) > a1(v′) then a2(φ(v)) > a2(φ(v′)) for all
v, v′ ∈ V1

• φ(vsp,1) = vsp,2.

Definition 7 (Degree of a Vertex) Let G = (V,E) be a
graph, and v ∈ V , then the degree of a vertex, deg(v),
is the number of edges that contain v.

Definition 8 (T , a Collection of Attributed Trees) Let
T ′ denote the subset of attributed trees (V,E,R+, a, vsp)
satisfying the following properties:

1. (V,E) is a connected tree

2. If v ∈ V and ind(v) �= 1, then deg(v) = 1

3. If v ∈ V and ind(v) = 1, then deg(v) = 3

4. If v1, v2 ∈ V and ind(v1) �= 1 and ind(v2) �= 1 and
{v1, v2} �= V then (v1, v2) /∈ E

5. n0−n1 +n2 = 2 where n0, n1 and n2 are the number
of vertices of index 0, 1, and 2.

We define T to be the set T ′ under the equivalence defined
in Definition 6.

1.2. Synopsis of the previous section

We summarize the relevant concepts introduced thus far

that are necessary to proceed with the rest of the paper. We

have started by assuming that a smooth portion of the image

can be approximated with a Morse function extended to the

plane and then mapped to the sphere. This can always be
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done up to an arbitrarily small error. Then we have intro-

duced the Reeb Graph for a general surface, and shown that

in the case of the intensity surface of an image it reduces to a

tree. The construction of the Attributed Reeb Tree (ART )

is illustrated in Fig. 2: The extrema are detected, and their

label (maximum, minimum, saddle) retained together with

the ordering of their values, but not the values themselves.

Then extrema that correspond to nested level sets are linked

by an edge. Each point on the edge represents a level set,

but – unlike the Reeb Graph used in [10] – its value is not

stored, and is instead discarded. This construction is con-

ceptual, and in practice one would want to devise a detector

that analyzes the image at multiple scales to locate extrema

in a manner that is robust to noise and quantization artifacts.

Shinagawa has proposed such a procedure in [10].

In order to support the establishment of correspondence

between two attributed trees, we have also introduced the

notion of “equivalence” between two attributed trees if the

nodes of one map to the nodes of the other, and they have

corresponding labels. A subset of attributed trees with spe-

cific properties and under this equivalence relation has been

called T .

2. ART Is a Viewpoint-Illumination Invariant
Sufficient Statistic

The set of attributed trees modulo the equivalence rela-

tion in Def. 6, which we called T , is the object we have

been looking for. In the rest of this section we will show

that S ′′ = T . It follows immediately from the definitions

given in the previous section that ART (f) is invariant with

respect to domain diffeomorphisms and contrast changes,

i.e. h ◦ f ◦ w, since the latter do not change the topology

of the level curves. It is far less immediate to see whether

the Attributed Reeb Tree is a sufficient statistic, or that it

is equivalent to the surface that generated it up to a domain

diffeomorphism. We start by stating a fact from Morse the-

ory that we exploit in our argument:

Lemma 3 (Morse) If f : S
2 → R is a Morse function, then

for each critical point pi of f , there is a neighborhood Ui

of pi and a chart ψi : Ũi ⊂ R
2 → Ui ⊂ S

2 so that

f(x̂, ŷ) = f(pi) +

⎧⎪⎨
⎪⎩
−(x̂2 + ŷ2) if pi is a maximum
x̂2 + ŷ2 if pi is a minimum
x̂2 − ŷ2 if pi is a saddle

where (x̂, ŷ) = ψi(x, y), and (x, y) ∈ S
2 are the native

coordinates of f .

The image around any extremum can be locally warped into

one of the three canonical forms of Fig. 3. We now move to

the core part of our argument:

Figure 3. The Morse Lemma states that a neighborhood of a criti-

cal point of a Morse function looks like one of the three forms (left

to right: maximum, minimum, and saddle).

Figure 4. This figure shows the importance of the structure of the

Reeb tree in determining whether two functions are in the same

equivalence class. The figure shows the level sets of two functions

and their corresponding Reeb trees. In this case, each function has

the same number of min/max/saddles, and values, but the Reeb

trees are different and the functions are not equivalent via a view-

point/illumination change.

Lemma 4 Let f1, f2 ∈ F be functions that generate two
(image) surfaces. Then

ART (f1) ∼= ART (f2) ⇔ ∃ h ∈ H, w ∈ W | f2 = h◦f1◦w.
(6)

So two ART s are equivalent if, and only if, the images that

generated them are related by a domain diffeomorphism,

which is equivalent to a change of viewpoint per [13], and

by a contrast transformation, which is a local approxima-

tion of an illumination change per [1]. Note that the dif-

feomorphism w and contrast function h are not necessarily

unique. See Appendix A for a sketch and [12] for the com-

plete proof.

Remark 3 Note that there is no subset (in general) of the
attributed Reeb tree that is sufficient to determine the do-
main diffeomorphism w. In other words, the vertices, their
values and their indices are not a sufficient statistic to de-
termine a domain diffeomorphism, w. To see this, we give
an example of two attributed Reeb trees that have the same
number and types of critical points and values, but are not
equivalent (Fig. 4).
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Figure 5. Top: A Morse function (its level sets, surface, and at-

tributed Reeb tree, respectively) of a function with multiple sad-

dles on the same connected component of a level set. Bottom: a

slightly perturbed version of the above Morse function. The at-

tributed Reeb tree of the function on the top is not stable under

small perturbations; while the one on the bottom is stable.

Remark 4 Condition 2 in Definition 1 ensures that
ART (f) does not change under small perturbations of
f , e.g., f + εg for small ε. This property is important
in digital images where quantization artifacts and sen-
sor noise can introduce spurious extrema. To demon-
strate this point, consider the following function with
two saddle points that have the same value and be-
long to the same connected component of a level set:
f(x, y) = exp

[
−(x2 + y2)

]
+ exp

[
−((x− 3)2 + y2)

]
+

exp
[
−((x+ 3)2 + y2)

]
; the function and its attributed

Reeb tree is plotted in the top of Figure 5. Now con-
sider a slightly perturbed version of f : g(x, y) =
exp

[
−(x2 + y2)

]
+ exp

[
−(1 + 2ε)((x− 3)2 + y2)

]
+

exp
[
−(1 + ε)((x+ 3)2 + y2)

]
, where ε > 0; the function

is plotted in the bottom of Figure 5. Although f only differs
from g by a slight perturbation, the attributed Reeb trees
are not equivalent. Indeed f is not a stable function under
small perturbations, while the function g is stable.

Furthermore, Condition 2 simplifies our classification of
the equivalence of functions under contrast and viewpoint
changes. Indeed, the attributed Reeb tree may not contain
enough information to determine a domain diffeomorphism
w between two functions with the same Reeb tree in the case
of multiple saddles belonging to the same connected compo-
nent of a level set. In such a case, multiple saddle points of
a function coalesce to a single point in the attributed Reeb
tree. The graph isomorphism φ in the proof of Lemma 4
may not be enough to determine the correspondence be-
tween saddles of f1 and those of f2 in this case since φ
only associates the group of coalesced saddles of f1 to the
group of coalesced saddles of f2.

Lemma 5 For each T ∈ T , there exists a Morse function
f ∈ F so that ART (f) = T .

Proof. Let T ′ be an embedding of the tree T in R
3 such that

T ′ lies in the x − z plane and that also respects the order-

ing of T . Thicken T ′ in R
3: S = ∂

(⋃
p∈T ′ Bε(p)

)
where

Bε(p) is the ball of radius ε centered at p. Note that S is dif-

feomorphic to S
2. Choose f to be the height function (i.e.,

the z coordinate of the surface), which is a Morse function

so that ART (f) = T .

Collecting all these results together, we have the follow-

ing result.

Theorem 1 The attributed Reeb tree of a surface uniquely
determines it up to a contrast change and domain diffeo-
morphism. Equivalently, the quotient of surfaces that are
graphs of Morse functions modulo contrast and domain de-
formations is

S ′′ = T (7)

3. Where is the “Information” in an image?
The traditional notion of information pioneered by

Wiener and Shannon, and later Kolmogorov, quantifies the

information content in the data as their “complexity” re-

gardless of the use of the data. More specifically, the un-

derlying “task” implicit in traditional Information Theory is

that of reproducing an exact replica of the data after it has

been corrupted by accidents, typically additive noise, when

passing through a “channel”. In other words, Information

Theory was built specifically for the task of “transmitting”

or “compressing” data, rather than using it for recognition

or inference.

But in the context of recognition, much of the complexity

in the data is due to spurious factors, such as viewpoint,

illumination and clutter. Following ideas of Gibson [7], we

propose to quantify “actionable information” in an image

not as the complexity of the data itself, but as the complexity
of the quotient of the data with respect to nuisance factors.

In the case of smooth regions of the image considered

in this manuscript, this means that the information content

of the data is the complexity, or coding length, of the ART
corresponding to the given region:

I(f) = 6(#max+ #min)− 7. (8)

Note that the above is the coding length of the ART , which

would include codes for each minima, maxima, saddle, their

values, and the edge set. The number of maxima and min-

ima completely determines the number of saddles (by the

constraints imposed by the Betti numbers [8]), and edges

(since ART is a tree). The case of occlusion is addressed in

[11].

The information content I(f) measures the discrimina-

tive power of a portion of an image. To see this, consider a

recognition problem where a test image is given that either

contains a specific object (ω = 1) or not (ω = 0). As-

sume that P (ω), the probability of the event ω, is given, for

instance equal to 1/2. Let f ∈ F be a test image, and con-

sider the decision function (classifier) α : F → {0, 1} and
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a loss function λ : {0, 1}2 → R
+, for instance the stan-

dard 0-1 loss λ(αi, ωj) = δij . Ideally, we want to find the

function α that minimizes the conditional risk

R(α|f) .=
∑

j

λ(α|ωj)P (ωj |f) (9)

for any choice of f . The conditional risk can be used as a

discriminant function, and it can be shown that this choice

minimizes the expected risk R(α) .=
∫
R(α|f)dP (f). We

say that a statistic φ : F → F is sufficient for the particular

decision represented by the expected risk R(·) if

R(α) = R(α ◦ φ). (10)

Note that, in general, R(α) ≤ R(α ◦ φ), that is, we cannot

“create information by manipulating the data.” If we wish

to compute the optimal decision function using a training

set D = {(ωi, fi)}i=1,...N , using Bayes’ rule we can ex-

press the discriminant R(α|f) in terms of the likelihood

p(f |ω,D). If we isolate the role of the nuisance factors h
(contrast) and w (viewpoint), we have that

p(f |ω,D) =
∫
p(f |ω, h, w,D)dP (h,w) (11)

where the measure dP (·) is degenerate (uninformative) and

therefore it does not depend on the training set. Neverthe-

less, the training set is necessary in order to perform the

above marginalization and “learn away” the nuisance vari-

ables.

If, on the other hand, we consider the modified deci-

sion problem where the data f is “pre-processed” to obtain

ART = φ(f), then to minimize R̃(α̃|f) .= R(α|φ ◦ f) we

must compute

p(φ ◦ f |ω,D) =
∫
p(ART |ω, h, w,D)dP (h,w) =

=
∫
p(ART |ω,D)dP (h,w) = p(ART |ω). (12)

In other words, by using ART instead of the raw data f
we can significantly reduce the complexity of the classifier,

including reducing the size of the training set to one sam-

ple,7 while at the same time keeping the conditional risk un-

changed. The classifier α◦φ, following the invariance prop-

erties of φ, is also called equivariant, and it can be shown

to achieve the optimal (Bayesian) risk [9].

Now, if we restrict the classifier to only use a subset of

the ART of a given complexity K, we have a nested chain

of classifiers R̃K(α̃|f) .= R(α|φ ◦ f ; I(f) ≤ K),

R̃K+1 ≤ R̃K (13)

7If one considers a categorization problem, where the object of interest

exhibits intrinsic variability, the training set is still necessary in the right

hand-side of (12), but it is no longer needed to “learn away” the extrinsic

variability.

and therefore the discriminative power of the statistic φ ◦
f increases monotonically with the actionable information

content I(f) of the ART .

4. Discussion
In this manuscript we have focused on analyzing por-

tions of the image that exhibit smooth shading or smooth

texture statistics. Such regions of the image would be dis-

carded by most feature selectors used in the recognition

literature as they contain no discontinuities (edges or cor-

ners), no salient blobs or ridges. They would also be “mis-

interpreted” by any segmentation algorithm, as the smooth

gradient would generate spurious boundaries that are un-

stable with respect to perturbations of the image [6]. And

yet, smoothly shaded regions convey a significant amount

of “information,” however one wishes to define it. But how

do we define information, and how can we quantify it? We

have shown that

• It is possible to compute functions of an image region

that exhibits smooth statistics that are invariant to both

viewpoint and a coarse illumination model (contrast

transformations), called ART s.

• Such statistics are sufficient for recognition of objects

and scenes under changes of viewpoint and illumina-

tion, in the sense that they are equivalent to the image

up to an arbitrary change of viewpoint (domain diffeo-

morphism, see footnote 6) and contrast transformation

(a first-order approximation of illumination changes).

• Such statistics have support on a set of measure zero

of the image domain.

• The “information content” of an image for the purpose

of recognition (as opposed to transmission) is given by

the coding length of its associated ART . Such action-
able information grows with the discriminative power

of the representation, and measures the complexity of

the data after the effect of nuisance factors, specifically

viewpoint and contrast changes, is factored out.

These results do not cover the case of image surfaces that

are not graphs of Morse functions. These include discon-

tinuities and ridges/valleys. Therefore, the analysis above

applies only to a segment (a sub-set) of the image domain,

which can be mapped without loss of generality to the unit

square. Non-isolated extrema such as ridges and valleys

are also commonplace in images; they can be turned into

a Morse function by an infinitesimal perturbation. The

Reeb graph is stable with respect to such perturbations, al-

though one could question the loss of discriminative power

of the representation of ridges as “thin blobs” that renders

them indistinguishable from other blobs, regardless of their
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shape. Finally, contrast transformations are only a pale re-

semblance of the complex effects that illumination changes

induce in an image. Devising illumination models that are

phenomenologically consistent and yet amenable to analy-

sis is an open research topic in computer vision.

A. Proof of Lemma 4
Proof. We give an outline of the proof, details are in

[12]. Let ART (f1) = (V1, E1, R
+, a1) and ART (f2) =

(V2, E2, R
+, a2). We prove the forward direction in steps:

1. We may associate critical points pi of f1 to corresponding

critical points p̃i of f2 via the graph isomorphism φ : V1 →
V2.

2. Using Morse Lemma, there exist neighborhoods Ui, Ũi ⊂
S

2 and diffeomorphisms wi : Ui → Ũi where pi ∈ Ui is a

critical point of f1 and p̃i ∈ Ũi is the corresponding critical

point of f2 such that

f2|Ui = hi ◦ f1 ◦ wi|Ui

for some contrast change hi : R
+ → R

+. We may assume

that {Ui} are disjoint as are {Ũi}.

3. Let π1 : S
2 → Reeb(f1) and π2 : S

2 → Reeb(f2) be the

natural quotient maps. We extend each wi : Ui → Ũi to

ŵi : Wi → W̃i where

W̃i =
[

q∈Ũi\{p̃i}
π−1

1 ([q, f1(q)])

Wi =
[

q∈Ui\{pi}
π−1

2 ([q, f2(q)])

as follows: ŵi(π
−1
2 ([q, f2(q)])) =

π−1
1 ([wi(q), f1(wi(q))]) where q ∈ Ũi\{p̃i} and

ŵi|π−1
2 ([q, f2(q)]) extends wi|π−1

2 ([q, f2(q)]) ∩ Ũi via a

diffeomorphism of the circle.

4. Finally, we extend the diffeomorphisms ŵi to form a diffeo-

morphism w : S
2 → S

2. Define w on the neighborhoods

Wi so that w|Wi = ŵi. In the following, we define w in the

region S
2\ ∪i Wi.

Let pi and pj be critical points of f1 with correspond-

ing vertices vi, vj ∈ V1 such that (vi, vj) ∈ E1; also

let p̃i, p̃j be the corresponding critical points of f2 and

v′i, v
′
j ∈ V2 (with (v′i, v

′
j) ∈ E2) corresponding vertices.

Let γij : [0, 1] → Reeb(f1) be a continuous path such that

γij(0) = [(pi, f1(pi))] and γij(1) = [(pj , f2(pj))]. Simi-

larly, let γ̃ij : [0, 1] → Reeb(f2) be a continuous path such

that γ̃ij(0) = [(p̃i, f2(p̃i))] and γ̃ij(1) = [(p̃j , f2(p̃j))]. We

define

Xij = π−1
1 (γij([0, 1]))\(Wi ∪ Wj)

X̃ij = π−1
2 (γ̃ij([0, 1]))\(W̃i ∪ W̃j).

We define wij : Xij → X̃ij so that the following hold:

• Let hij : f1(Xij) → f2(X̃ij) where

f1(Xij), f2(X̃ij) ⊂ R be a diffeomorphism.

• wij(f
−1
1 (α)∩Xij) = f−1

2 (hij(α))∩ X̃ij where α ∈
f1(Xij)

• For each α ∈ f1(Xij), wij |f−1
1 (α) ∩ Xij is a diffeo-

morphism of the circle so that wij : Xij → X̃ij is a

diffeomorphism.

• wij |cl(Xij) ∩ cl(Wi) = ŵi|cl(Xij) ∩ cl(Wi) and

wij |cl(Xij) ∩ cl(Wj) = ŵj |cl(Xij) ∩ cl(Wj) where

cl denotes closure. Further Dwij(x) = Dŵi(x) for

x ∈ cl(Xij) ∩ cl(Wi).

Now w|Xij = wij and w|Wi = ŵi specifies a diffeomor-

phism w : S
2 → S

2.
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