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Abstract

We propose a generic grouping algorithm that constructs

a hierarchy of regions from the output of any contour de-

tector. Our method consists of two steps, an Oriented Wa-

tershed Transform (OWT) to form initial regions from con-

tours, followed by construction of an Ultrametric Contour

Map (UCM) defining a hierarchical segmentation. We pro-

vide extensive experimental evaluation to demonstrate that,

when coupled to a high-performance contour detector, the

OWT-UCM algorithm produces state-of-the-art image seg-

mentations. These hierarchical segmentations can option-

ally be further refined by user-specified annotations.

1. Introduction

Applications such as object recognition [34, 25, 1, 19]

and monocular inference of 3D structure [20, 41] have led

to a renewed interest in algorithms for automatic segmenta-

tion of an image into closed regions. Segments come with

their own scale estimates and provide natural domains for

computing features used in recognition. Many visual tasks

can also benefit from the reduction in complexity achieved

by transforming an image with millions of pixels into a few

hundred or thousand “superpixels” [39].

A broad family of approaches to segmentation involve

integrating features such as brightness, color, or texture over

local image patches and then clustering those features based

on, e.g., fitting mixture models [5, 47], mode-finding [10],

or graph partitioning [42, 24, 44, 15]. While this is by no

means the only approach taken (see e.g. the vast literature

inspired by variational formulations [30, 29] and level set

techniques [26]), three algorithms in this category appear

to be the most widely used as sources of image segments

in recent applications, due to a combination of reasonable

performance and publicly available implementations:

• Felzenszwalb and Huttenlocher’s graph based region

merging [15]

∗This work was supported by ONR MURI N00014-06-1-0734.

• Comaniciu and Meer’s Mean Shift [10]

• Shi and Malik’s Normalized Cuts [42] and its multi-

scale variant due to Cour et al. [11]

There does not appear to be a consensus about which

of these algorithms is best. Felzenszwalb and Huttenlocher

[15] is typically used in high recall settings to create a gross

oversegmentation into thousands of superpixels. Mean Shift

and Normalized Cuts provide better precision, but often

produce artifacts by breaking large uniform regions (e.g.

sky) into chunks.

The problem of oversegmentation is common across ap-

proaches based on feature clustering since smooth changes

in texture or brightness due to perspective or shading can

cause patches to appear dissimilar despite belonging to the

same image region. Contour detection ignores such smooth

variations by directly searching for locations in the im-

age where brightness or other features undergo rapid lo-

cal changes [9, 33]. These high-gradient edge fragments

can then be linked together in order to identify extended,

smooth contours [32, 46, 13, 38].

There have been significant advances in contour detec-

tion in the last few years [16, 37, 27, 12, 48, 22, 36]. This

progress is best summarized by the benchmark results in

Figure 1 (left), which show the precision and recall of a

contour detector with respect to human-marked boundaries

based on the evaluation methodology proposed in [27]. De-

spite this progress, without some mechanism for enforcing

closure, a segmentation built up from locally detected con-

tours will often mistakenly join regions due to leaks in the

bounding contour, resulting in an under-segmentation.

In this paper, we propose an algorithm that produces a

hierarchical segmentation from the output of any contour

detector, while avoiding these difficulties. We introduce a

new variant of the watershed transform [6, 31], the Oriented

Watershed Transform (OWT), for producing a set of initial

regions from contour detector output. We then construct an

Ultrametric Contour Map (UCM) [2] from the boundaries

of these initial regions. This sequence of operations (OWT-

UCM) can be seen as generic machinery for going from
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Figure 1. Evaluating boundaries on the Berkeley dataset [17]. Left: Contours. Leading approaches to contour detection are ranked

according to their F-measure (harmonic mean of precision and recall) with respect to human ground-truth boundaries. Iso-F curves are

shown in green. The best detector, gPb [23], does not produce closed boundaries required to form a segmentation. Middle: Hierarchical

Regions. Our algorithm (OWT-UCM) produces a hierarchical segmentation from the output of any contour detector. Comparing the

resulting segment boundaries to the original contours shows that this method constructs regions without losing performance on the boundary

benchmark. In fact, we obtain a boost in performance when using the gPb detector as input. The quality of the contour detector (gPb vs

Canny) on which we build significantly influences the quality of the resulting segmentation. Right: Segmentations. Paired with gPb as

input, our hierarchical segmentation algorithm gPb-owt-ucm produces segments whose boundaries match human ground-truth better than

those produced by alternative segmentation approaches such as Mean Shift, Normalized Cuts, or region-merging (Felz-Hutt).

contours to a hierarchical region tree. Contours encoded

in the resulting hierarchical segmentation retain real-valued

weights indicating their likelihood of being a true boundary.

For a given threshold, the output is a set of closed contours

that can be treated as either a segmentation or as a boundary

detector for the purposes of benchmarking.

To establish the value of the OWT-UCM algorithm, we

examine a number of different benchmark metrics and stan-

dard datasets for both boundary and region detection. Based

on this extensive testing, we report two important results, il-

lustrated in Figure 1 (middle) and (right), respectively:

• Weighted boundary maps can be converted into hierar-

chical segmentations without loss of boundary preci-

sion or recall. (Section 2)

• Using the gPb contour detector [23] as input, our

method, gPb-owt-ucm provides a powerful mid-level

grouping mechanism which outperforms all existing

segmentation algorithms. (Section 3)

2. Contours to Hierarchical Regions

We consider a contour detector, whose output E(x, y, θ)
predicts the probability of an image boundary at location

(x, y) and orientation θ. We build hierarchical regions by

exploiting the information in this contour signal using a

sequence of two transformations, the Oriented Watershed

Transform (OWT) and Ultrametric Contour Map (UCM),

detailed below.

2.1. Oriented Watershed Transform

Using the contour signal, we first construct a finest parti-

tion for the hierarchy, an over-segmentation whose regions

determine the highest level of detail considered. This is

done by computing E(x, y) = maxθ E(x, y, θ), the max-

imal response of the contour detector over orientations.

We take the regional minima of E(x, y) as seed locations

for homogeneous segments and apply the watershed trans-

form used in mathematical morphology [6, 31] on the topo-

graphic surface defined by E(x, y). The catchment basins

of the minima, denoted P0, provide the regions of the finest

partition and the correspondingwatershed arcs,K0, the pos-

sible locations of the boundaries.

Next, we transfer the strength of the boundaries, given

by E(x, y, θ), to the locations K0. For this purpose, we

approximate the watershed arcs with line segments, and

weight each point inK0 by theE(x, y, θ) value at that point,
in the direction θ given by the orientation of the correspond-

ing line segment, as detailed in Figure 2. This procedure,

which we call the Oriented Watershed Transform (OWT),

enforces consistency between the strength of the boundaries

of K0 and the underlying E(x, y, θ) signal and removes ar-

tifacts of the standard watershed algorithm.

2.2. Ultrametric Contour Map

Contours have the advantage that it is fairly straight-

forward to represent uncertainty in the presence of a true

underlying contour, i.e. by associating a binary random

variable to it. It is not immediately obvious how to rep-
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Figure 2. Oriented Watershed Transform. Left: Input boundary signal E(x, y) = maxθ E(x, y, θ). Middle Left: Watershed arcs

computed from E(x, y). Note that thin regions give rise to artifacts. Middle: Watershed arcs with an approximating straight line segment

subdivision overlaid. We compute this subdivision in a scale-invariant manner by recursively breaking an arc at the point maximally distant

from the straight line segment connecting its endpoints. Subdivision terminates when the distance from the line segment to every point

on the arc is less than a fixed fraction of the segment length. Middle Right: Oriented boundary strength E(x, y, θ) for four orientations
θ. In practice, we sample eight orientations. Right: Watershed arcs reweighted according to E at the orientation of their associated line

segments. Artifacts, such as the horizontal contours breaking the long skinny segment, are suppressed as their orientations do not agree

with the underlying E(x, y, θ) signal.

resent uncertainty about a segmentation. One possibility,

which we exploit here, is the Ultrametric Contour Map

(UCM) [2] which defines a duality between closed, non-

self-intersecting weighted contours and a hierarchy of re-

gions. Making this shift in representation from a single seg-

mentation to a nested collection of segmentations turns out

to be very powerful.

The hierarchy is constructed by a greedy graph-based re-

gion merging algorithm. An initial graph is defined, where

the nodes are the regions in P0, the links join adjacent re-

gions and are weighted by a measure of similarity between

regions. The algorithmproceeds by sorting the links by sim-

ilarity and iterativelymerging themost similar regions. This

process produces a tree of regions, where the leaves are the

elements of P0, the root is the entire image domain, and the

regions are ordered by the inclusion relation.

We define similarity between two adjacent regions as the

average strength of their common boundary in K0, initial-

ized by the OWT. Since this value cannot decrease during

the merging process, the above algorithm is guaranteed to

produce an ultrametric distance on P0 × P0 [2]. As a con-

sequence, the constructed region tree has the structure of an

indexed hierarchy and can be described by a dendrogram,

where the height of each segment is the value of the simi-

larity at which it first appears and the distance between two

regions is the height of the smallest segment in the hier-

archy containing them. Furthermore, the whole hierarchy

can be represented as an Ultrametric Contour Map (UCM),

the real-valued image obtained by weighting each boundary

between two regions by its scale of disappearance.

Figure 3 presents an example of our method. The UCM

is a weighted contour image that, by construction, has the

remarkable property of producing a set of closed curves for

any threshold. Conversely, it is a convenient representation

of the region tree since the segmentation at a scale k can be

easily retrieved by thresholding the UCM at level k. Since

our notion of scale is the average contour strength, the UCM

values reflect the contrast between neighboring regions.

2.3. Contour Detector Choice

While the OWT-UCM algorithm can use any source of

contours, e.g. the Canny edge detector before thresholding,

for the input E(x, y, θ) signal, for best results, we employ

the gPb detector introduced in our previous work [23].

The gPb detector combines multiscale brightness, color,

and texture gradients, with an oriented spectral signal com-

puted from these cues. In particular, we define a weighted

combination of multiscale local cues

mPb(x, y, θ) =
∑

s

∑

i

αi,sGi,σ(s)(x, y, θ) (1)

where s indexes scales, i indexes feature channels (bright-

ness, color, texture), and Gi,σ(s)(x, y, θ) measures the dif-

ference in channel i between two halves of a disc of radius
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Figure 3. Overview of our approach. Left: Original image. Middle Left: Maximal response of contour detector gPb over orientations.

Middle Right: Weighted contours resulting from the Oriented Watershed Transform - Ultrametric Contour Map (OWT-UCM) algorithm

using gPb as input. Right: Segmentation obtained by thresholding the UCM at level 0.4, with segments represented by their mean color.

σ(s) centered at (x, y) and divided by a diameter at angle θ.

From mPb, we define an affinity matrix W between

pixels using the intervening contour cue [18]. Writing

Dii =
∑

j Wij , we solve for the generalized eigenvectors

{v1, ..., vn} of the system (D−W )v = λDv corresponding

to the n smallest eigenvalues. Treating each eigenvector vk

as an image, we convolve with Gaussian directional deriva-

tives to obtain oriented contour signals sPbvk
(x, y, θ), and

combine into

sPb(x, y, θ) =

n∑

k=1

1√
λk

· sPbvk
(x, y, θ) (2)

The final gPb detector is a weighted sum of local and

spectral signals, which is subsequently rescaled using a sig-

moid:

gPb(x, y, θ) =
∑

s

∑

i

βi,sGi,σ(s)(x, y, θ)+γ·sPb(x, y, θ)

(3)

We report experiments using both gPb as well as the

baseline Canny detector, and refer to the resulting segmen-

tation algorithms as gPb-owt-ucm and Canny-owt-ucm, re-

spectively. Figure 4 illustrates results of gPb-owt-ucm on

images from the Berkeley Segmentation Dataset [17].

3. Empirical Evaluation

To provide a basis of comparison for the performance

of the OWT-UCM algorithm, we make use of the Felzen-

szwalb and Huttenlocher (Felz-Hutt) [15], Mean Shift [10],

andMultiscale Normalized Cuts (NCuts) [11] segmentation

methods. We evaluate each method using multiple bench-

mark criteria. In this section, we present the details of our

extensive evaluation framework.

3.1. Benchmarks

The Berkeley Segmentation Dataset (BSDS) [17] con-

sists of 300 natural images, manually segmented by a num-

ber of different subjects. The ground-truth data for this large

collection shows the diversity, yet high consistency, of hu-

man segmentation. We examine metrics for evaluating both

boundaries and regions against human ground-truth.

3.1.1 Precision-Recall on Boundaries

The boundary-based evaluation methodology developed by

Martin et al. [27] on the BSDS has become a standard,

as demonstrated by its widespread use [37, 16, 12, 2, 48,

22, 36, 23]. This framework considers two aspects of de-

tection performance. Precision measures the fraction of

true positives in the contours produced by a detector. Re-

call measures the fraction of ground-truth boundaries de-

tected. For detectors that provide real-valued outputs, one

obtains a curve parameterized by detection threshold, quan-

tifying performance across operating regimes. The global

F-measure, defined as the harmonic mean of precision and

recall, provides a useful summary score for the algorithm.

In our experiments, we report three different quantities

for an algorithm: theOptimal Dataset Scale (ODS) or best

F-measure on the dataset for a fixed scale, theOptimal Im-

age Scale (OIS) or aggregate F-measure on the dataset for

the best scale in each image, and the Average Precision

(AP) on the full recall range (equivalently, the area under

the precision-recall curve), shown in Table 1 for the BSDS.

This benchmarking methodology possesses the appeal-

ing property that it allows the comparison of region-based

segmentation and contour detection methods in the same

framework, as illustrated in Figure 1. Any segmentation al-
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Figure 4. Hierarchical segmentation results. From left to right: Original image, Ultrametric Contour Map (UCM) produced by gPb-

owt-ucm, and segmentations obtained by thresholding at the optimal dataset scale (ODS) and optimal image scale (OIS).

gorithm automatically provides contours in the form of the

boundaries of the regions in the segmentation.

However, for segmentation algorithms, a methodology

that directly evaluates the quality of the segments is also

desirable. Some types of errors, e.g. a missing pixel in

the boundary between two regions, may not be reflected in

the boundary benchmark, but can have substantial conse-

quences for segmentation quality, e.g. incorrectly merging

two large regions. It can also be argued that the bound-

ary benchmark favors contour detectors over segmentation

methods, since the former are not burdened with the con-

straint of producing closed curves. We therefore also con-

sider various region-based metrics.

3.1.2 Variation of Information [28]

This metric was introduced for the purpose of clustering

comparison. It measures the distance between two segmen-

tations in terms of their average conditional entropy given

by

V I(C, C′) = H(C) + H(C ′) − 2I(C, C′) (4)

whereH and I represent respectively the entropies and mu-

tual information between two clusterings of data C and C′.

In our case, the two clusterings are test and ground-truth

segmentations. Although V I possesses some interesting

theoretical properties [28], its perceptual meaning and ap-

plicability in the presence of several ground-truth segmen-

tations remains unclear.
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Method ODS OIS AP

human 0.79 0.79 −
gPb-owt-ucm 0.71 0.74 0.77

Mean Shift 0.63 0.66 0.62
NCuts 0.62 0.66 0.59
Canny-owt-ucm 0.58 0.63 0.59
Felz-Hutt 0.58 0.62 0.54
gPb 0.70 0.72 0.75
Canny 0.58 0.62 0.60

Table 1. Boundary benchmarks on the BSDS. We benchmark

boundaries produced by five different segmentation methods (up-

per table) and two contour detectors (lower table). Shown are the

F-measures when choosing an optimal scale for the entire dataset

(ODS) or per image (OIS), as well as the average precision (AP).

Figure 1 shows the full precision-recall curves for the boundaries

produced by these algorithms.
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Figure 5. Evaluating regions on the BSDS. Contour detector in-

fluence on segmentation quality is evident when benchmarking the

regions of the resulting hierarchical segmentation. Left: Proba-

bilistic Rand Index. Right: Variation of Information.

3.1.3 Rand Index [35]

Originally, the Rand Index [35] was introduced for general

clustering evaluation. It operates by comparing the compat-

ibility of assignments between pairs of elements in the clus-

ters. In our case, the Rand Index between test and ground-

truth segmentationsS andG is given by the sum of the num-

ber of pairs of pixels that have the same label in S andG and

those that have different labels in both segmentations, di-

vided by the total number of pairs of pixels. Variants of the

Rand Index have been proposed [45, 47] for dealing with

the case of multiple ground-truth segmentations. Given a

set of ground-truth segmentations {Gk}, the Probabilistic

Rand Index is defined as

PRI(S, {Gk}) =
1

T

∑

i<j

[cijpij + (1 − cij)(1 − pij)] (5)

where cij is the event that pixels i and j have the same label

and pij its probability. When the sample mean is used to es-

timate pij , (5) amounts to averaging the Rand Index among

different ground-truth segmentations. However, the PRI

has been reported to suffer from a small dynamic range

Method ODS OIS Best PRI VI

human 0.73 0.73 − 0.87 1.16
gPb-owt-ucm 0.58 0.64 0.74 0.81 1.68

Mean Shift 0.54 0.58 0.64 0.78 1.83
Felz-Hutt 0.51 0.58 0.68 0.77 2.15
Canny-owt-ucm 0.48 0.56 0.67 0.77 2.11
NCuts 0.44 0.53 0.66 0.75 2.18

Table 2. Region benchmarks on the BSDS. For each segmen-

tation method, the leftmost three columns report the score of the

covering of ground-truth segments according to optimal dataset

scale (ODS), optimal image scale (OIS), or Best covering criteria.

The rightmost two columns compare the segmentation methods

against ground-truth using the probabilistic Rand Index (PRI) and

Variation of Information (VI) benchmarks, respectively.

[45, 47], and its values across images and algorithms are

often very similar. In [45], this drawback is addressed by

normalization with an empirical estimation of its expected

value.

3.1.4 Segmentation Covering

The overlap between two regions R and R′, defined as:

O(R, R′) =
|R ∩ R′|
|R ∪ R′| (6)

has been used for the evaluation of the pixel-wise classifi-

cation task in recognition [25, 14].

We define the covering of a segmentation S by a seg-

mentation S′ as

C(S′ → S) =
1

N

∑

R∈S

|R| · max
R′∈S′

O(R, R′), (7)

where N denotes the total number of pixels in the image.

Similarly, the covering of a machine segmentation S by

a family of ground truth segmentations {Gi} is defined by,

first covering S separately with each human map {Gi} in

turn, and then averaging over the different humans, so that

to achieve perfect covering the machine segmentation must

explain all of the human data.

We can then define two quality descriptors for regions:

the covering of S by {Gi} and the covering of {Gi} by

S. Due to space constraints, we only include results for the

latter. For a family of machine segmentations {Si}, corre-
sponding to different scales of a hierarchical algorithm or

different sets of parameters, we report theOptimal Dataset

Scale (ODS), Optimal Image Scale (OIS), and the Best

possible covering of the ground-truth by segments in {Si}.
Figure 5 and Table 2 present region benchmarks on the

BSDS. While the relative ranking of segmentation algo-

rithms remains fairly consistent across different benchmark

criteria, the boundary benchmark (Table 1) appears most

capable of discriminating performance.
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MSRC ODS OIS Best

gPb-owt-ucm 0.66 0.75 0.78

Canny-owt-ucm 0.57 0.68 0.72

PASCAL08 ODS OIS Best

gPb-owt-ucm 0.45 0.58 0.61

Canny-owt-ucm 0.40 0.53 0.55

Table 3. Region benchmarks on MSRC and PASCAL08.

Shown are scores for the segment covering criteria used in Table 2.

3.2. Additional Datasets

We concentrated experiments on the BSDS because it is

the most complete dataset available for our purposes, has

been used in several publications, and has the advantage of

providing several human-labeled segmentations per image.

Table 3 reports the comparison between Canny-owt-ucm

and gPb-owt-ucm on two other publicly available datasets:

• MSRC [43] The MSRC object recognition database is

composed of 591 natural images with objects belong-

ing to 21 classes. We evaluate performance using the

ground-truth object instance labeling of [25], which is

cleaner and more precise than the original data.

• PASCAL 2008 [14] We use the train and validation

sets of the segmentation task on the PASCAL chal-

lenge 2008, composed of 1023 images. This is one of

the most difficult and varied datasets for recognition.

We evaluate performance with respect to the object in-

stance labels provided. Note that only objects belong-

ing to the 20 categories of the challenge are labeled,

and 76% of all pixels are unlabeled.

4. Interactive Segmentation

Until now, we have only discussed fully automatic im-

age segmentation. Human assisted segmentation is relevant

for many applications, and recent approaches rely on the

graph-cuts formalism [7, 40, 21] or other energy minimiza-

tion procedure [4] to extract single foreground regions.

It turns out that the segmentation trees generated by the

OWT-UCM algorithm provide a natural starting point for

user-assisted refinement. Following the procedure of [3],

we can extend a partial labeling of regions to a full one by

assigning to each unlabeled region the label of its closest

(in terms of the ultrametric distance) labeled region. This

procedure, illustrated in Figure 6, allows a user to obtain

high quality results with minimal annotation.

5. Conclusion

Our segmentation algorithm, gPb-owt-ucm, offers the

best performance on every dataset and for every benchmark

Figure 6. Interactive segmentation. Left: Original image. Mid-

dle: UCM produced by gPb-owt-ucm (grayscale) with additional

user annotations (color dots and lines). Right: The region hier-

archy defined by the UCM allows us to automatically propagate

annotations to unlabeled segments, resulting in the desired label-

ing of the image with minimal user effort.

criterion we tested. In addition, this algorithm is straight-

forward, fast, has no parameters to tune, and supports in-

teractive user refinement. Our generic grouping machinery

has found use in optical flow [8] and object recognition [19]

applications. We have made code available online1.
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