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Abstract

This paper presents a new efficient technique for large-
scale structure from motion from unordered data sets. We
avoid costly computation of all pairwise matches and ge-
ometries by sampling pairs of images using the pairwise
similarity scores based on the detected occurrences of vi-
sual words leading to a significant speedup. Furthermore,
atomic 3D models reconstructed from camera triplets are
used as the seeds which form the final large-scale 3D model
when merged together. Using three views instead of two
allows us to reveal most of the outliers of pairwise geome-
tries at an early stage of the process hindering them from
derogating the quality of the resulting 3D structure at later
stages. The accuracy of the proposed technique is shown on
a set of 64 images where the result of the exhaustive tech-
nique is known. Scalability is demonstrated on a landmark
reconstruction from hundreds of images.

1. Introduction

Despite recent advancements of techniques for 3D re-
construction from unorganized image data sets [27, 3, 36,
16, 30, 31, 19], real scalability has not been yet reached.

When thinking of thousands of images, exhaustive com-
putation of pairwise matches and epipolar geometries be-
tween all image pairs becomes infeasible. We propose a
novel technique based on image pair similarity scores com-
puted from the detected occurrences of visual words [25,
29] allowing us to perform a costly pairwise image match-
ing only when it is likely to be successful. As the detec-
tion of visual words is very fast, this leads to a significant
speedup while having only a small influence on the quality
of the resulting model.

Speeding up the SfM computation has been a topic of
many papers, real-time systems reconstructing urban scenes
from video were presented in [1] and [7]. These techniques
rely on the temporal order of the frames.

Photo Tourism [30], one of the most known 3D mod-
eling systems from unordered image sets, uses exhaustive
pairwise image feature matching and global bundle adjust-
ment after connecting each new image to obtain an accurate
model of the reconstructed object. The approach becomes
very inefficient when images do not share a common view.

Recently, an advancement of this technique finding a
skeletal subset giving almost optimal reconstruction has
been presented [31]. An image graph with vertices being
images and edges weighted by the uncertainty of pairwise
relative position estimations is constructed. Its augmenta-
tion into a pair graph avoids traversing paths leading to un-
determined scale between partial reconstructions by testing
image connectivity. The skeletal set is found as a subgraph
of the image graph having as few internal nodes as possible
while keeping high number of leaves and having at most
constant times longer shortest paths. Reconstructing from
the skeletal set only and connecting the rest of the cam-
eras later yields a great speedup without a significant loss
of quality. On the other hand, the construction of the image
graph is still very slow as one needs to compute epipolar
geometries between all pair of images to evaluate its edges.

Unlike the methods suitable for landmark reconstruction
from large-scale contaminated Internet image collections,
we focus on datasets containing also evenly distributed
cameras, where one cannot reduce the number of images
dramatically without losing a substantial part of the model.
On the other hand, a simple pre-filtering step based on the
GIST descriptor [26] together with geometric verification
according to [12] would allow us to work with datasets con-
taining dense “hot spots” too. “Iconic image selection”
and “iconic scene graph construction” concepts described
in [12] are close to our technique, the main difference being
the purpose of constructed partial 3D models. 3D models
constructed in [12] may fully represent the reconstructed
object when viewed from a certain viewpoint and should
model the whole object when merged. Our 3D models are
primarily intended for the geometrical verification of tenta-
tive image feature matches.
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We use atomic 3D models reconstructed from camera
triplets that share at least 100 points as the seeds which form
the final large-scale 3D model when merged together. Us-
ing three views instead of two allows us to reveal most of
the outliers of pairwise geometries at an early stage of the
process hindering them from derogating the quality of the
resulting 3D structure at later stages. Global optimization is
replaced by faster locally suboptimal optimization of partial
reconstructions which turns into the global technique when
all parts are merged together. Cameras sharing fewer points
are glued to the largest partial reconstruction during the fi-
nal stage of the process.

Our pipeline is operating in the “easy first, difficult later”
manner where pairwise matching and other computations
are performed on demand. Therefore, it is possible to get a
result close to the optimality in a given time available. Par-
ticular threshold values present at several places of the paper
are the proposed values for obtaining a model whose quality
is comparable to the results of the state of the art techniques
using all pairwise matches. For easy data, there always exist
many subsets of all pairwise matches that are sufficient for
computing a reconstruction of a reasonable quality there but
using just a subset of pairwise matches instead of the whole
set yields a much faster reconstruction. Our method can
be viewed at as a random selection of one of these subsets
guided by the image similarity scores. Furthermore, unlike
the aforementioned techniques, our pipeline is able to work
both with calibrated perspective and calibrated omnidirec-
tional images which is broadening its usability.

2. The Pipeline

Our pipeline consists of four consecutive steps, which
are executed one after another: (1) Computing image sim-
ilarity matrix (2) reconstructing atomic 3D models from
camera triplets, (3) merging partial reconstructions, and
(4) gluing single cameras to the best partial reconstruction
(see Figure 1). The input of the pipeline is an unordered set
of images acquired by cameras with known calibration. For
perspective cameras, EXIF information can be used to ob-
tain the focal length and we can assume principal point in
the middle of the image. Omnidirectional cameras have to
be pre-calibrated according to the appropriate lens or mirror
model [20].

2.1. Computing Image Similarity Matrix

First, up to thousands of Speeded Up Robust Features
(SURF) [2] are detected and described on each of the in-
put images. Image feature descriptors are quantized into
visual words according to a vocabulary containing 130,000
words computed from urban area images [9]. Assignment
is done by Fast Library for Approximate Nearest Neighbors
(FLANN) [22] searching for approximate nearest neigh-

Figure 1. Overview of the pipeline. Input images are described by
SURF and an image similarity matrix is computed. Atomic 3D
models are reconstructed from camera triplets, merged together
into partial reconstructions, and finally single cameras are glued to
the largest partial reconstruction.

bours using a hierarchical k-means tree with branching fac-
tor 32 and 15 iterations. The parameters were obtained
by FLANN automatic algorithm configuration finding the
best settings for obtaining nearest neighbours with precision
90% in the shortest time possible. Next, term frequency–
inverse document frequency (tf-idf) vectors [29], which
weight words occurring often in a particular document and
downweight words that appear often in the database, are
computed for each image with more than 50 detected visual
words and finally, pairwise image similarity matrix SII con-
taining cosines of angles between normalized tf-idf vectors
ta, tb of images Ia, Ib is computed as

SII(a, b) = ta · tb. (1)

Images with less than 50 detected visual words are excluded
from further computation.

2.2. Reconstructing Atomic 3D Models from Cam-
era Triplets

Image similarity matrix SII is used as a heuristics telling
us which triplets of cameras are suitable for reconstruct-
ing atomic 3D models. As SII is symmetric with units
on the diagonal, we take the upper triangular part of SII ,
exclude the diagonal, and search for the maximum score.
This gives us a pair of cameras with indices i and j. Then,
we find three “third camera” candidates with indices k1,
k2, and k3 such that min(SII(i, k1), SII(j, k1)) is maxi-
mal, min(SII(i, k2), SII(j, k2)) is the second greatest and
min(SII(i, k3), SII(j, k3)) is the third greatest among all
possible choices of the third camera. Atomic 3D models are
reconstructed for each of the candidates as described below.
The resulting models are ranked by the quality score and the
model with the highest quality score is selected and passed
to the next step of the pipeline.

Denoting the index of the third camera corresponding to
the selected atomic 3D model as k, cameras with indices i,
j, and k are removed from future selections by zeroing rows
and columns i, j, and k of SII . If the quality of all three
3D models is 0, no 3D model is selected and SII(i, j) is
zeroed preventing further selection of this pair of cameras.
The whole procedure is repeated until the maximum score
in SII is lower than 0.1.
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Quality score. Each 3D point X reconstructed from a
triplet of cameras has associated three apical angles [33],
one apical angle per each camera pair τij(X), τik(X), and
τjk(X). The formula giving us the 3D model quality q is
the following:

τ(X) = min(τij(X), τik(X), τjk(X)) (2)

P1 = {X : τ(X) ≥ 5◦} q1 =
{
|P1| |P1| ≥ 10
0 otherwise

(3)

P2 = {X : τ(X) ≥ 10◦} q2 =
{
|P2| |P2| ≥ 10
0 otherwise

(4)

P3 = {X : τ(X) ≥ 15◦} q3 =
{
|P3| |P3| ≥ 10
0 otherwise

(5)

q = q1 + 4q2 + 20q3 (6)

Our q formula checks whether there is a sufficient number
of 3D points with large apical angles, as they ensure good
relative camera pose estimation [33]. Constants 4 and 20
favour atomic models with 3D points having really large
apical angles, as we seek for atomic models with distant
cameras, while threshold value 10 ensures that the qual-
ity is not overestimated when only few points have suffi-
ciently large apical angles. As P1 ⊇ P2 ⊇ P3, points with
τ(X) ∈ 〈10◦, 15◦) have five times bigger weight than those
with τ(X) ∈ 〈5◦, 10◦) and the same applies to points with
τ(X) ∈ 〈15◦,∞) against τ(X) ∈ 〈10◦, 15◦).

Atomic 3D model reconstruction. The atomic 3D model
from a triplet of cameras is reconstructed in several steps.
After each step, the reconstruction is terminated if the num-
ber of reconstructed 3D points falls under 100 and the
model quality score set to 0. All intermediate results of the
computation are stored into separate files and can be reused
if needed which speeds up the computation. The procedure
is the following:

1. Image features, namely Maximally Stable Extremal
Regions (MSER) [17] on intensity and saturation chan-
nels and Affine Invariant Interest Points (APTS) [21]
Laplacian-Affine and Hessian-Affine, are detected on
three input images (denoted as Ii, Ij , and Ik) and
the assigned Local Affine Frames (LAF) [18] are de-
scribed by Discrete Cosine Transform (DCT).

2. Tentative matches between the three image pairs (Ii Ij ,
Ii Ik, and Ij Ik) are computed using FLANN [22]
searching for approximate nearest neighbours using
4 random kd-trees, filtered to keep only the mutu-
ally best matches, and then further filtered into tenta-
tive matches among triplets by chaining matches in all
three images.

3. Homogeneous image coordinate vectors of filtered ten-
tative matches are normalized to unit direction vectors
using the known camera calibration. Pairwise relative
camera poses are obtained by softvoting for the epipole
positions [11] using 5 votes from independent Progres-
sive Sample Consensus (PROSAC) [6] runs with the
5-point algorithm [23].

4. Shared inliers of these geometries, i.e. final matches,
together with three pairwise triangulations [8] are
computed. The relative positions of the cameras and
the common scale of all three reconstructions is found
using one 3D point correspondence (with RANSAC).

5. 3D points are reconstructed from the pair with the
largest baseline for omnidirectional cameras, or by op-
timal triangulation from three views [5] for perspective
cameras.

6. Very distant points, i.e. likely outliers, are filtered out
and sparse bundle adjustment [13] modified similarly
as in [10], regarding non-perspective central cameras
as a kind of a generalized camera, refines both points
and cameras.

Detecting multiple types of image features (ad. 1.) is
favourable as they are usually located in different parts of an
image: MSER features are found on uniform regions while
APTS features fire on corners. To achieve high computation
speed, tentative matches are found using an approximate
technique with 80% precision and subsequent two-step fil-
tering of the computed tentative matches (ad. 2.) decreases
their contamination by mismatches leading to a speedup of
the epipolar geometry estimation.

As the ordered randomized sampling in PROSAC still
has the randomness of selecting matches, each epipolar ge-
ometry resulted by a single run of PROSAC may be dif-
ferent, especially when the tentative matches are strongly
contaminated by mismatches. To increase the chance of
finding the correct model, we cast the epipole positions, i.e.
relative motion directions, of the best epipolar geometries
recovered by several independent runs of PROSAC (ad. 3.).
The best model is selected as the one with the epipole posi-
tion closest to the maximum in the accumulator space. This
strategy works when the correct, or almost correct, mod-
els provide consistent motions while the incorrect models
with high support generate different ones, which is often
the case. More details can be found in [34].

It is a natural property of evaluating matches by epipolar
geometry that incorrect matches lying on epipolar lines or in
the vicinity to epipoles are often regarded as inliers. How-
ever, they can be easily filtered out by finding shared inliers
of three views as 3D points successfully verified in three
views are unlikely to be incorrect. Therefore, RANSAC
obtaining the common scale of the three reconstructions
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(ad. 4.) is a good test of the quality of pairwise geometries.
To find, which triplets of final matches generate a consis-
tent 3D point, we use a “cone test” checking the existence
of a 3D point that would project to desired positions in all
three matches after the scales were unified. During the cone
test, four pixels wide cones (two pixels to each side) formed
by four planes (up, down, left, and right) are casted around
the final matches and we test whether the intersection of the
cones is empty or not using the LP feasibility test [15].

The definitive advantage of the cone test over the stan-
dard technique checking the reprojection errors [8] lies in
the fact that inaccurately reconstructed 3D points, e.g. those
with small apical angles which have large uncertainties in
depth estimates, do not affect the error measure. If one used
the reprojection errors instead, which is equivalent to test-
ing whether or not a given reconstructed 3D point lies in
the intersection of the casted cones, some correct matches
could be rejected due to corresponding inaccurately recon-
structed 3D points. Inaccurate 3D points triangulated from
accepted matches do not cause any harm as they are later
re-triangulated (ad. 5.) and bundled (ad. 6.).

As an exhaustive test is faster than LP for three cones,
LP is used only when intersecting a higher number of cones
during merging and gluing and not in this particular case.
The exhaustive test constructs all candidates for the vertices
of the convex polyhedron comprising the intersection of the
cones as the intersections of triplets of planes. The inter-
section of the cones is empty iff none of these candidates
lies in all 12 positive halfspaces formed by the planes. To
reject atomic 3D models with low-quality pairwise geome-
tries, the quality score is set to 0 if the inlier ratio of the
cone test is under 80%.

To ensure an uniform image coverage by the projections
of reconstructed 3D points, a unit sphere surrounding the
camera center representing different unit vector directions
is tessellated into 980 triangles T using [4]. A triangle T is
non-empty if there exists a reconstructed 3D point project-
ing into it, empty otherwise. The image coverage measure-
ment cI of image I is defined as

To = {T ∈ T : T is non-empty} cI =
|To|
|T | . (7)

If more than one image from the triplet has cI < 0.01, the
quality score of the atomic 3D reconstruction is set to 0.

2.3. Merging Partial Reconstructions

First, we construct a new similarity matrix STT contain-
ing similarity scores between selected atomic 3D models.
Having two atomic 3D models each constructed from cam-
era sets Ca = {i, j, k} and Cb = {i′, j′, k′} respectively,
there are always nine pairs of cameras such that the cam-
eras are contained in different models. The similarity score

between two atomic 3D models is computed as the mean of
the similarity scores of those nine pairs as

STT (a, b) =
1
9

∑
ax∈Ca

∑
by∈Cb

SII(ax, by). (8)

The matrix is again used as the heuristics telling us which
pairs of atomic 3D models are suitable for merging. At the
beginning, we have one partial reconstruction per accepted
3D model, each of them containing three cameras and 3D
points triangulated from them. Partial reconstructions will
be connected together during the merging step forming big-
ger partial reconstructions containing the union of cameras
and 3D points of the connected reconstructions.

We take the upper triangular part of STT , exclude the di-
agonal, and search for the maximum score. This gives us
a pair of atomic 3D models with indices m and n. Next,
we try to merge the two partial reconstructions Rp and Rq

containing the models with indices m and n respectively.
After a successful merge, elements STT (p′, q′) are zeroed
for all indices of models p′ contained in partial reconstruc-
tion Rp and all indices of models q′ contained in partial
reconstruction Rq in order to prevent further merging be-
tween atomic 3D models which are both contained in the
same partial reconstructions. If the merge is not considered
to be successful, partial reconstructions are not connected
and STT (m, n) is zeroed preventing further selection of this
pair of atomic models. Notice however, that this is not a
strict decision on the mergeability of partial reconstructions
Rp and Rq as they can be connected later using a different
pair of atomic models contained in them. The whole proce-
dure is repeated until the maximum score in STT is lower
than 0.05.

Merging two atomic 3D models. The actual merge is
performed in several steps. Given two atomic 3D mod-
els with indices m and n, first, tentative 3D point matches
are found. Each 3D point X reconstructed from a triplet
of cameras with indices i, j, and k has three LAF+DCT
descriptors DX

i , DX
j , and DX

k connected with it. Having
six sets of descriptors (Di, Dj , and Dk for 3D points from
model m and Di′ , Dj′ , and Dk′ for 3D points from model
n), we find the mutually best matches between all nine pairs
of descriptors (Di Di′ , Di Dj′ , etc.) independently. As par-
ticular descriptors of a single 3D point from model m can
be matched to descriptors of different 3D points in model
n in individual matchings, unique 3D point matches need
to be constructed. The nine lists of the 3D point matches
output from the individual matchings are concatenated and
sorted by the distance of the descriptors in the feature space.
A unique matching is obtained in a greedy way by going
through the sorted list and accepting only those 3D point
matches whose 3D points are not contained in any of the
3D point matches accepted before.
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If there are less than 10 tentative 3D point matches, the
merge is not successful, otherwise we try to find a similar-
ity transform bringing model m to the coordinate system of
model n. As three 3D point matches are needed to compute
the similarity transform parameters [35], RANSAC with
samples of length three is used. A 3D point match is an
inlier if the intersection of the three cones from cameras
contained in model n and the three cones from the trans-
formed cameras contained in model m is non-empty. Local
optimization is performed by repeating the similarity trans-
form computation from all inliers.

If the inlier ratio is higher than 60%, the merge is con-
sidered successful and the whole partial reconstructions Rp

and Rq are merged according to this similarity transform
computed from atomic 3D models m and n only. Rq re-
mains fixed and the 3D points and cameras of Rp are trans-
formed, 3D point matches which were inliers are merged
into a single point with the position being the mean of the
former positions after transformation.

Sparse bundle adjustment [13] is used to refine the whole
partial reconstruction after a successful merge. The result-
ing partial reconstruction is then transformed to a normal-
ized scale to allow easy visualization and to ease the next
step of the pipeline.

2.4. Gluing Single Cameras to the Best Partial Re-
construction

The best partial reconstruction Rr is selected as the one
containing the highest number of cameras. In this step, we
are trying to find the poses of the cameras which are not
contained in Rr. Another similarity matrix STI , which con-
tains similarity scores between atomic 3D models contained
in Rr and cameras not contained in Rr, is constructed. The
similarity score between the atomic 3D model constructed
from cameras Ca and a camera with index b is computed as
the mean of similarity scores of three pairs of cameras as

STI(a, b) =
1
3

∑
ax∈Ca

SII(ax, b). (9)

We search for the maximum score in STI and obtain the
atomic 3D model with index o and the camera with index l.
During the gluing step, we compute the pose of the camera
l using 3D points contained in the atomic model o. The glu-
ing being successful, we zero the column l of STI in order
to prevent further selection of already glued single cameras,
otherwise only element STI(o, l) is zeroed. The whole pro-
cedure is repeated until the maximum score in STI is lower
than 0.025.

Gluing a single camera. When performing the actual
gluing, we find mutually best tentative matches between
three pairs of descriptors (Di Dl, Dj Dl, and Dk Dl) inde-
pendently. Unique 2D-3D matches are obtained using the

Figure 2. Example input image data. Top row: Perspective images
from data set DALIB. Bottom row: Omnidirectional images from
data set CASTLE.

same greedy approach as when performing a merge. If the
number of tentative matches is smaller than 20, the gluing
is not successful. Otherwise, RANSAC sampling triplets of
2D-3D matches is used to find the camera pose [24] having
the largest support evaluated by the cone test again. Local
optimization is achieved by repeated camera pose computa-
tion from all inliers [28] via SDP and SeDuMi [32].

If the inlier ratio is higher than 80%, the gluing is con-
sidered successful and the camera with index l is added into
the partial reconstruction Rr. Sparse bundle adjustment is
used to refine the whole partial reconstruction and the re-
construction is transformed to a normalized scale again be-
cause improper scale of the reconstruction can influence the
convergence of the SDP program.

3. Results

We present results on two data sets. The first one con-
sists of 64 images and the camera poses obtained by the
exhaustive method computing matches between all pairs of
cameras [16] are known. We consider them being near the
ground truth as their accuracy has been proven by a success-
ful dense reconstruction. For the second experiment, we use
a set of 4,472 omnidirectional images captured while walk-
ing through Prague. Our method was able to find images
sharing the views and reconstruct several landmarks present
in them.

DALIB data set. The data set DALIB consists of 64 per-
spective images capturing a paper model of a house ac-
quired by a camera with known calibration (see Figure 2).

The pipeline selected 13 atomic 3D models out of 132
candidates (SII was sampled only 44 times for the best
pair). It was sufficient to compute just 199 pairwise im-
age matches compared to 2,016 computed by the exhaustive
method. All atomic models were successfully merged into
a single partial reconstruction and the poses of 25 missing
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Figure 3. Complete reconstruction of data set DALIB. Partial re-
construction containing all 39 cameras from selected atomic 3D
models was extended with 25 missing cameras during gluing.
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Figure 4. Measured errors of the camera pose estimation of data
set DALIB. Translational error is the fraction of the diameter of a
sphere containing all cameras, rotational error is in radians. Note
that all cameras but camera number 14 were estimated with trans-
lational error smaller than 0.7%.

Name Similarity Atomic 3D Merge Gluing

DALIB 2 min 37 min 2 min 2 min
CASTLE 6 hrs 257 hrs 18 hrs 19 hrs

Table 1. Time spent in different steps of the pipeline while recon-
structing data sets DALIB and CASTLE.

Method Features Matching Geometry

MATLAB+MEX 10 min 65 min 15 min
Photo Tourism → 8 min ←

Table 2. Time spent in different steps of our exhaustive method
and Photo Tourism [30] for data set DALIB. Photo Tourism time
is the total time spent by the method as one cannot measure the
times of the individual steps.

cameras were obtained during gluing resulting in the model
shown in Figure 3. The time spent in different steps of the
pipeline having a MATLAB+MEX implementation running
on a standard Core2Duo PC can be found in Table 1. The
total computation time was less than 45 minutes. Sparse
bundle adjustment takes less than a second in average to run
for an atomic 3D model and at most several seconds when

Figure 5. Visualization of the selected atomic 3D models and their
merging of data set DALIB. Cameras computed by our method
(denoted as •) contained in the same atomic 3D model are con-
nected by a coloured line, cameras glued to a given model are
sharing its colour. Merging is shown by dashed grey lines. Cam-
eras obtained by the exhaustive method are denoted as +.

Figure 6. The partitioning of the resulting 3D point cloud among
13 selected atomic 3D models of data set DALIB. Colour coding
is the same as for Figure 5.

applying for refining larger partial reconstructions because
there are not so many constraints as we do not match all
image pairs.

Computation time of the exhaustive method using a sim-
ilar MATLAB+MEX implementation on the same hard-
ware was around 90 minutes, most of the time being spent
on computing pairwise image feature matches (see Ta-
ble 2). When reconstructing the same data set using Photo
Tourism [30] which also uses exhaustive pairwise image
feature matching, the computation time went down to 8
minutes but the resulting camera poses were less accu-
rate than those obtained by our method due to the lack
of SIFT [14] image features on the paper model. Photo
Tourism is faster mainly because of implementation reasons
as it contains a more optimized C/C++ code.
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Figure 7. Partial reconstruction #486 of data set CASTLE. Right
part of the St.Vitus Cathedral and other buildings surrounding the
square were reconstructed from 90 cameras, another 49 cameras
were connected during gluing.

After finding the similarity transform between the cam-
era poses computed by our method and those computed by
the exhaustive one, we were able to measure the error of
the camera pose estimation. It has shown that there is no
significant loss of quality (see Figure 4). Both sets of cam-
eras can be seen in Figure 5 together with the visualization
of atomic 3D models and their merging. Figure 6 shows
the partitioning of the resulting 3D point cloud among 13
selected atomic 3D models.

CASTLE data set. Our second data set CASTLE consists
of 4,472 omnidirectional images captured by a 180◦ fish-
eye lens camera with known calibration.

The images were acquired in several sequences while
walking in the center of Prague and around the Prague Cas-
tle but they were input into the pipeline as an unordered
set. The pipeline selected 652 atomic 3D reconstructions
out of 100,410 candidates and only 58,961 pairwise image
matches were computed while the number of all possible
image pairs is 9,997,156. Several partial reconstructions
containing remarkable landmarks were obtained (see Fig-
ures 7, 8, and 9). The total computation time was around
12.5 days. As Photo Tourism works with perspective im-
ages only, we could not compare its performance with the
performance of the proposed method on this data set di-
rectly but if we linearly extrapolated the computation time
of Photo Tourism using the number of all possible image
pairs, it would be around 27.5 days.

Minor merging and gluing errors caused by repetitive
image structures and matching clouds can be found in some
of the resulting partial reconstructions. As our current “win-
ner takes all” approach is unable to recover from such er-

Figure 8. Partial reconstruction #407 of data set CASTLE. Part of
the Old Town Square with the clock tower was reconstructed from
69 cameras, another 39 cameras were connected during gluing.

Figure 9. Partial reconstruction #471 of data set CASTLE. En-
trance to the Prague Castle was reconstructed from 60 cameras,
another 49 cameras were connected during gluing.

rors, our future work lies in introducing alternative ways of
merging and a method evaluating their quality in order to
bound incorrect ones.

4. Conclusions

We have presented a new efficient technique for large-
scale structure from motion from unordered data sets. Pair-
wise image similarity scores are used to reduce the number
of computed image feature matchings drastically, yielding
a significant speedup compared to techniques based on ex-
haustive pairwise matching. Using atomic 3D models in-
stead of reconstructions from camera pairs as the seeds, the
quality of the triangulated 3D points is higher as they are
verified in three views. Merging, which connects the atomic
3D models into partial reconstructions, both extends and
improves accuracy of the model because the number of im-
age projections of merged points is increased. Finally, poses
of the cameras not contained in the given partial reconstruc-
tion are estimated using 2D-3D matches during gluing.
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The method is fully scalable storing all results of the
computation on a hard drive instead of in RAM. Perfor-
mance could be improved by using a fast SSD drive instead
of a standard SATA drive.
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