
 

 
 

 
Abstract 

 
Scalable image retrieval systems usually involve 

hierarchical quantization of local image descriptors, which 
produces a visual vocabulary for inverted indexing of 
images. Although hierarchical quantization has the merit of 
retrieval efficiency, the resulting visual vocabulary 
representation usually faces two crucial problems: (1) 
hierarchical quantization errors and biases in the 
generation of “visual words"; (2) the model cannot adapt 
to database variance. In this paper, we describe an 
unsupervised optimization strategy in generating the 
hierarchy structure of visual vocabulary, which produces a 
more effective and adaptive retrieval model for large-scale 
search. We adopt a novel Density-based Metric Learning 
(DML) algorithm, which corrects word quantization bias 
without supervision in hierarchy optimization, based on 
which we present a hierarchical rejection chain for 
efficient online search based on the vocabulary hierarchy. 
We also discovered that by hierarchy optimization, efficient 
and effective transfer of a retrieval model across different 
databases is feasible. We deployed a large-scale image 
retrieval system using a vocabulary tree model to validate 
our advances. Experiments on UKBench and street-side 
urban scene databases demonstrated the effectiveness of 
our hierarchy optimization approach in comparison with 
state-of-the-art methods. 
 

1. Introduction 
    Retrieving objects and scenes in natural images poses 
significant technical challenges because of the complex 
variations in real world environments, such as backgrounds, 
viewpoints, illuminations, scales, and orientations. Recent 
advance in local feature descriptors [1][2] facilitates the 
Bag-of-Visual-Words (BoW) image representation in 
image retrieval [3], video search [6], scene recognition 
[4][5] and object categorization [2][14][19]. In such case, a 
visual vocabulary is built to transfer local features into 
“visual words” for database inverted indexing, and to 
represent an image as a BoW vector to convert the image 
search task into the classical document retrieval scenario. 

Based on visual vocabulary representation, we can refer to 
document analysis methods, such as TF-IDF [7], pLSA [8] 
and LDA [9], to improve retrieval performance. 
    Building visual vocabulary to translate image local 
patches [1][2] to “visual words” is the most crucial step in 
patch-based retrieval. Many large-scale retrieval 
applications usually involve gigantic databases. To ensure 
efficient online search in these cases, hierarchical 
quantization is usually adopted to generate visual words. 
The dominant methods [3][5][6][10] of generating “visual 
words” for efficient online search are hierarchical 
quantization approaches, such as Vocabulary Tree (VT)[3], 
Approximate K-Means (AKM)[10], K-D Tree[1], and their 
variants [11][12][13][20][22]. Typically, these approaches 
quantize image descriptors using a hierarchical subspace 
division (such as hierarchical k-means clustering) to 
produce visual words. As the basic component in the visual 
vocabulary, each quantized visual word contains the 
descriptors that are closer to its feature center than to others 
in the feature space.  
    Since the visual vocabulary generates the visual words 
by hierarchically dividing the feature space, it closely 
associates image retrieval performance with its hierarchical 
structure. Such a hierarchical structure contains the genesis 
of many crucial problems in patch-based visual retrieval, 
such as quantization errors [13], term weighting efficiency 
[3], middle-level effectiveness [3], and model flexibility. 
However, in-depth optimization of this hierarchical 
construction process is left without consideration in former 
papers [3][13][12] [11][20]. Recent research has already 
revealed the negative effect of hierarchical quantization 
bias in visual words generation. For instance, Philbin et al. 
[22] adopted visual words fuzzy matching to alleviate the 
negative impacts of hierarchical quantization in AKM. 
Nister et al. [3] combined the middle-level nodes of VT into 
a unified BoW vector for ranking similarities. Yang [12] 
investigated the efficiency of vocabulary size, term 
weighting, and stop-word removal issues in PASCAL and 
TRECVID. However, to the best of our knowledge, how to 
optimize the hierarchical vocabulary structure during the 
quantization process have not yet been considered in the 
literature. Current methods usually refer to refining the 
visual words in the lowest-level to improve retrieval 
[1][2][4][5][6], without regard to a feasible way to directly 
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optimize the vocabulary hierarchy during construction. In 
texton codebook generation, Jurie et al. [13] adopted 
scalable acceptance-radius clustering to refine k-means 
clustering bias in texton generation. Jegou et al. [21] 
investigated a two-layer clustering scheme together with a 
CDM distance measurement to learn a similarity metric in 
building visual vocabulary. However, the effectiveness of 
these methods in deeper hierarchies and scalable databases 
is restricted, especially for the large-scale applications with 
millions of descriptors. Learning-based word selection is 
another solution [11][20] in a supervised scenario: Wang et 
al. [11] proposed a codeword selection strategy by boosting 
among leaf nodes. Leung et al. [20] investigated mutual 
information, odds ratio and linear SVM to optimize the 
original codebook. However, due to the training example 
restriction, a supervised learning strategy is unsuitable for 
the large-scale retrieval tasks. Further problems come from 
their generality, in which the learned visual vocabularies 
and similarity measurements cannot be directly reapplied to 
a new database or maintained in an incremental database. 

It is well-known that the textual words have no 
well-defined natural hierarchy. In contrast, the visual words 
are strongly related to the hierarchy of vocabulary. In 
hierarchical quantization, not only the lowest-level words 
but also the middle-level nodes are generated. In other 
words, not only the visual words representations but also 
their higher-level abstractions (can be analogized as 
phrases in text) are obtained. Consequently, a natural 
question is: Can we optimize and explore the vocabulary 
hierarchy to produce better visual words and ranking 
mechanism? 

 A first attempt to exploit middle-level nodes in 
similarity ranking come from Grauman et al. [23], which 
adopted pyramid matching to measure the similarity of high 
dimensional data with a Mercer kernel for image 
categorization. However, work in [23] quantized space by 
fixed division, which restricted its flexibility to adapt to 
data variances. Nister et al. [3] combined vocabulary 
middle-levels to produce better rankings. However, 
improvements were not significant due to the original 
un-optimized vocabulary hierarchy.  

In this work, we present an unsupervised hierarchy 
optimization approach for vocabulary construction. We 
aim to optimize and exploit vocabulary hierarchy to 
achieve fast speed, excellent precision, and good flexibility 
in a unified framework. We deploy our improvements on 
the vocabulary tree model [3], which is a representative 
retrieval model with hierarchical quantization in visual 
vocabulary generation. Our approach could also be applied 
to other retrieval models such as the k-means clustering 
phase in AKM, or as a modification phase in scalable 
acceptance-radius clustering [13]. 

In particular, we first introduce a Density-based Metric 
Learning (DML) to unsupervisedly refine the similarity 
metric in the hierarchical clustering. DML makes the 

middle levels really powerful and meaningful in retrieval. 
Second, based on optimized vocabulary, we treat the 
quantization hierarchy in a “vertical-order” candidate 
rejection chain [14] to improve similarity ranking. Third, 
we propose a “VT Shift" algorithm to enable our retrieval 
model to be transferable across different databases by 
adapting the optimized vocabulary hierarchy for database 
variances. In a large-scale application scenario, our VT 
Shift algorithm can maintain good performance for 
database variance without model re-generation cost. 

The rest of this paper is organized as follows: Section 2 
discusses our insights into how the quantization hierarchy 
affects the retrieval performance. Section 3 presents our 
DML algorithm for hierarchy optimization. Section 4 
investigates a “VT Shift" algorithm to transfer the 
optimized retrieval model across different databases. 
Experimental comparisons with state-of-the-art methods 
[3][5][10] are presented in Section 5. 

2. A Close Look at Hierarchical Quantization  
Compared with single-level quantization, using 

hierarchical quantization to generate and access the visual 
vocabulary can greatly accelerate retrieval, which is crucial 
in large-scale applications [3][5]. To produce a BoW vector 
for an image using the VT model (w branches, m words), 
the time cost is O(w×logw(m)), whereas using a single-level 
word division the time cost is O(m). However, there are 
drawbacks to gain such acceleration. Here we discuss two 
issues in hierarchy structure: 

2.1. How Hierarchy Affects Retrieval 
Similarity Metric Bias: To produce good visual words, 

the denser regions in feature distribution should correspond 
to more generic image patches (Fig.10 left), and the sparser 
regions should be more discriminative (Validated in Fig.1). 
In TF-IDF term weighting [3][7], a visual word obtains less 
weight when it appears in more images and vice versa. 
However, earlier papers [13][16] have shown that the 
k-means process will asymmetrically divide feature space, 
which moves clusters to denser regions because of its 
“mean-shift”-like update rule. Moreover, we have found  

 

Figure 1: Feature-word frequency distribution (in log-log plot) of 
the finest level in hierarchical quantization. The fewer features a 
cluster has, the smaller the portion of images it contains, and hence 
it is more discriminative in the BoW vector. 
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out that the hierarchical quantization process in vocabulary 
generation iteratively magnifies such asymmetric division. 
More hierarchy levels lead to more asymmetric metrics in 
clustering, which causes the words’ distributions biased to 
the denser regions and over-fit to the feature density. As a 
result, the discriminative patches (the sparser regions that 
rarely appear in images) would be coarsely quantized 
(given lower IDF and contribute less to ranking), while the 
general patches (the denser regions that frequently appear 
in many images) would be finely quantized (gain an 
inappropriately higher IDF in ranking). This is exactly the 
reason that IDF shows limited improvement in [6][12], 
which is caused by the similarity metric biases that are 
magnified by hierarchical clustering. 

Furthermore, the nearest neighbor search within leaf 
nodes is inaccurate because of its locality nature in the 
vocabulary structure. By hierarchical quantization, the 
nearest neighbor search in leaf nodes becomes more 
inaccurate as the increase of nearest neighbor scale.  

Tab.1 presents our validation of this assessment. We 
investigated the quantization errors in a 3-branch, 5-level 
vocabulary tree. In Tab.1, NN means the nearest neighbor 
search scope and GNP 1-5 means the numbers of branches 
we paralleled in GNP [5] search extension. We selected 3K 
images from our urban street scene database (introduced in 
Sec.5) to form a VT, with 0.5M features (average 2K 
features in each visual word). We compared the matching 
ratio between the global-scale NN and leaf-scale NN, in 
which the global-scale is the overall feature space while the 
leaf-scale is inside leaf nodes. We extended the leaf-scale to 
include more local neighbors using Greedy N-best Path 
(GNP) [5]. The quantization error was evaluated by the 
matching ratio (%) to see to what extent the VT 
quantization would cause mismatch of feature points. From 
Tab.1, the match ratios between the inside-leaf and the 
global-scale search results are extremely low when the 
GNP number is small. 

TF-IDF Efficiency :  It is well-known that the 
distribution of textual words in documents follows the 
Zipf’s Law [17], in which the most frequent words 
comprise dominant portions of word occurrences. On the 
contrary, the visual word distribution did not follow Zipf’s 
Law [17] (Fig.9) because of the inappropriate hierarchical 
generation. Furthermore, as the hierarchy level increases, 
the word distribution becomes more and more uniform 
(Fig.9). Consequently, we can explain the phenomenon 
observed in an earlier paper [12] that IDF is less effective 
for large word volumes. Moreover, we can also infer that, 
in the current suboptimal visual vocabulary, the “stop  

 

Table 1: Hierarchical Quantization Error Test 
NN\GNP 1 3 5 10 15 20 

50 41.46% 73.34% 85.00% 94.53% 97.11% 98.18% 
200 57.46% 66.21% 79.00% 92.02% 95.00% 97.48% 

1000 11.54% 38.27% 51.57% 67.48% 85.16% 94.91% 
2000 6.38% 25.68% 40.59% 58.54% 79.21% 92.42% 

words” removal technique won't be very helpful: In many 
cases, there are no very frequent visual words in images 
like “a” or “the” in documents. Our inference has been 
validated by the "stop words" removal experiments in [12]. 

2.2. Generality of Visual Vocabulary 
Facing a new database for retrieval, a common strategy is 

to recluster the entire local feature dataset and regenerate 
all BoW vectors for new images. However, in large-scale 
databases, the computational cost of hierarchical 
reclustering is high (plan-level reclustering is even higher). 
It is a natural shortcut to reuse an existing visual vocabulary 
to the new database. However, it is very hard to construct a 
generalized visual codebook to be suitable for all scenarios, 
especially when the new database has a different data 
volume (e.g. 1K images vs. 1M images) and different 
image properties (e.g. natural scene images vs. city street 
images). If we directly reindex a new database with an old 
model, such differences will cause imbalance and 
mismatches in the middle level, resulting to the over-fitting 
of the original visual vocabulary. To address this problem, 
in Section 4 we present a VT adaption algorithm, which 
transfers a hierarchically optimized vocabulary model to fit 
to new data distributions. 

3. Optimization of Visual Vocabulary Hierarchy  
In this section, we present our Density-based Metric 

Learning (DML) algorithm to unsupervisedly optimize 
vocabulary tree generation. We achieve better retrieval 
precision (Section 5) using the DML-based tree, because: 
(1) Its "visual words" distribution follows Zipf’s Law [17] 
more closely; and (2) It reduces the overall quantization 
error, the meaningful words (sparse clusters) are quantized 
more finely while the meaningless words (denser clusters) 
are quantized coarsely. Moreover, we present an 
“If...Else..." hierarchical rejection strategy to deal with 
hierarchical quantization error in the VT-based retrieval. It 
combines the idea of the boosting chain classifier [14] with 
the nature of the tree hierarchy in an unsupervised manner 
to improve retrieval.  

3.1. DML to Optimize Vocabulary Hierarchy 
The Main Idea: As discussed in Section 2, the 

vocabulary hierarchy iteratively magnifies the asymmetric 
feature space quantization of k-means clustering. It results 
to suboptimal visual words and suboptimal IDF in earlier 
papers [11][12]. DML addresses this issue by constructing 
a Density Field, which evaluates the distribution tightness 
of local features, to guide quantization procedure in local 
feature space. By extending denser clusters and shrinking 
sparser clusters, the similarity metric in k-means is 
modified to correct the biased hierarchical quantization. 
Subsequently, a refined hierarchical division is achieved by 
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DML-based hierarchical k-means, which offers more 
“meaningful” visual words: 
    The Algorithm: First, the Density Field in the SIFT 
feature space is estimated using the density of each SIFT 
point as a discrete approximation. The density of a SIFT 
point is defined as kernel density estimation in Eq.1: 

                        D(𝑖𝑖) = 1
𝑛𝑛
� 𝑒𝑒−||𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗 ||𝐿𝐿2𝑛𝑛

𝑗𝑗=1                      (1) 

where D(i) is the point-density of the ith SIFT point, n is the 
total number of SIFT points in this dataset, and xj is the jth 
SIFT point. We adopt L2 distance to evaluate the distance 
between two SIFT points. 

To decrease the computational cost, we approximate the 
density of each SIFT point using only its local neighbors as: 

                     𝐷𝐷�(𝑖𝑖,𝑚𝑚) = 1
𝑚𝑚
� 𝑒𝑒−||𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗 ||𝐿𝐿2𝑚𝑚

𝑘𝑘=1                  (2) 

where D�(𝑥𝑥,𝑚𝑚) is the point-density of the ith SIFT feature in 
its m-neighborhood. We only need to calculate local 
neighbors of SIFT by estimating the point density by the 
neighborhood approximation: (1) cluster database into k 
clusters: O(k×h×l), with h iterations on l points, and (2) 
nearest neighbor search in each cluster: O(l/k). By choosing 
a large k (e.g. 2000), our DML would be very efficient. By 
using a heap structure, it can be further accelerated. Then, 
the similarity metric in hierarchical k-means is refined by 
density-based adaption: 
         𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷𝑖𝑖𝑚𝑚(𝐶𝐶, 𝑖𝑖) = 𝐴𝐴𝐴𝐴𝑒𝑒𝐷𝐷𝑒𝑒𝑛𝑛(𝐶𝐶) × 𝐷𝐷𝑖𝑖𝐷𝐷(𝐶𝐶𝑐𝑐𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑐𝑐 , 𝑖𝑖)      (3) 
Similarity(c,i is the similarity in DML-based k-means 
between the cth cluster and the ith point; AveDen(c) is the 
average density of SIFT points in the cth cluster, and 
Dis(Ccenter,i) is the distance between the center SIFT point 
in c and the ith SIFT point. 

The Explanation: From the viewpoint of information 
theory, the generation of the visual words will cause 
information loss in the hierarchical quantization process. 
Our proposed DML method decreases the overall 
quantization errors by shortening the quantization steps for 
the sparser regions, therefore represents the “meaningful” 
points more precisely (shown in Fig.1). Our method can be 
also analogized to asymmetry quantization in signal 
processing. To see how the DML-based method reduces the 
overall quantization error, we view the information loss in 
quantization using its weighted quantization errors, in 
which the weight means the informative degree of the 
quantized word, evaluated by its IDF value. We denote the 
quantization error of the word i as QA(i) (QA(i)>0): 

               𝑄𝑄𝐴𝐴(𝑖𝑖) ≝ ∑ ∑ (𝐹𝐹𝑖𝑖𝑗𝑗𝑘𝑘
2 − 𝐹𝐹�𝑖𝑖𝑘𝑘

2)128
𝑘𝑘=1

𝑚𝑚𝑖𝑖
𝑗𝑗=1                  (4) 

Fji
k is the kth feature dimension in the jth SIFT point of the ith 

cluster; 𝐹𝐹�𝑖𝑖𝑘𝑘 is the kth feature dimension of the ith cluster 
center; mi is the number of SIFT in cluster i; wi is the IDF 
weight of the ith cluster; n is the number of visual words. 

To evaluate the weighted quantization errors between the 
DML method and the original method, we compare their 

weighted signal-noise ratios as follows:  

                     𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐿𝐿
𝐷𝐷𝑆𝑆𝑆𝑆𝑂𝑂𝑐𝑐𝑂𝑂

=
𝑃𝑃𝐷𝐷𝑖𝑖𝑂𝑂𝑛𝑛𝑆𝑆𝑆𝑆
𝐷𝐷𝐷𝐷𝐿𝐿

𝑃𝑃𝑆𝑆𝑁𝑁𝑖𝑖𝐷𝐷𝑒𝑒
𝐷𝐷𝐷𝐷𝐿𝐿  /

𝑃𝑃𝐷𝐷𝑖𝑖𝑂𝑂𝑛𝑛𝑆𝑆𝑆𝑆
𝑂𝑂𝑐𝑐𝑂𝑂

𝑃𝑃𝑆𝑆𝑁𝑁𝑖𝑖𝐷𝐷𝑒𝑒
𝑂𝑂𝑐𝑐𝑂𝑂 =                    (5) 

∫𝑥𝑥2𝑝𝑝𝑥𝑥 (𝑥𝑥)𝑑𝑑𝑥𝑥

∫�∆𝑛𝑛𝐷𝐷𝐷𝐷𝐿𝐿 (𝑥𝑥)�
2
𝑝𝑝𝑥𝑥 (𝑥𝑥)𝑑𝑑𝑥𝑥

/ ∫𝑥𝑥2𝑝𝑝𝑥𝑥 (𝑥𝑥)𝑑𝑑𝑥𝑥

∫�∆𝑛𝑛𝑂𝑂𝑐𝑐𝑂𝑂 (𝑥𝑥)�
2
𝑝𝑝𝑥𝑥 (𝑥𝑥)𝑑𝑑𝑥𝑥

=
∫�∆𝑛𝑛𝑂𝑂𝑐𝑐𝑂𝑂 (𝑥𝑥)�

2
𝑝𝑝𝑥𝑥 (𝑥𝑥)𝑑𝑑𝑥𝑥

∫�∆𝑛𝑛𝐷𝐷𝐷𝐷𝐿𝐿 (𝑥𝑥)�
2
𝑝𝑝𝑥𝑥 (𝑥𝑥)𝑑𝑑𝑥𝑥

  

wi is the IDF of the ith cluster as its word weight; px (x) and 
∆𝑛𝑛(𝑥𝑥) are the sampling probability and squared input-output 
difference of x respectively. In the discrete case, Eq.5 can 
be replaced by Eq.6, in which we denote the DML case by 
superscript ' (such as n', j' and wi'): 

              𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐿𝐿
𝐷𝐷𝑆𝑆𝑆𝑆𝑂𝑂𝑐𝑐𝑂𝑂

=
∑ (𝑤𝑤𝑖𝑖
𝑛𝑛
𝑖𝑖=1 ×∑ ∑ (𝐹𝐹𝑖𝑖𝑗𝑗

𝑘𝑘128
𝑘𝑘=1

𝑚𝑚𝑖𝑖
𝑗𝑗=1 −𝐹𝐹�𝑖𝑖

𝑘𝑘)2)

∑ (𝑤𝑤𝑖𝑖′×𝑛𝑛 ′
𝑖𝑖′=1 ∑ ∑ (𝐹𝐹𝑖𝑖′ 𝑗𝑗 ′

𝑘𝑘 −𝐹𝐹�𝑖𝑖′
𝑘𝑘)2)128

𝑘𝑘=1
𝑚𝑚𝑖𝑖′
𝑗𝑗 ′ =1

                 (6) 

Constrained by:           ∑ 𝑤𝑤𝑖𝑖𝑛𝑛
𝑖𝑖=1 = ∑ 𝑤𝑤𝑖𝑖′𝑛𝑛′

𝑖𝑖′=1                            (7) 
The SIFT space is quantized into equal-numbered words, 
hence n=n'. Putting Eq.4 into Eq.6, we derive: 

𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐿𝐿
𝐷𝐷𝑆𝑆𝑆𝑆𝑂𝑂𝑐𝑐𝑂𝑂

=
∑ (𝑤𝑤𝑖𝑖×∑ ∑ (𝐹𝐹𝑖𝑖𝑗𝑗

𝑘𝑘2
−𝐹𝐹�𝑖𝑖

𝑘𝑘2
)128

𝑘𝑘=1
𝑚𝑚𝑖𝑖
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1 )

∑ (𝑤𝑤𝑖𝑖′×∑ ∑ (𝐹𝐹𝑖𝑖′ 𝑗𝑗 ′
𝑘𝑘 2

−𝐹𝐹�𝑖𝑖′
𝑘𝑘2

)128
𝑘𝑘=1

𝑚𝑚𝑖𝑖′
𝑗𝑗 ′=1

𝑛𝑛
𝑖𝑖′=1 )

= ∑ (𝑤𝑤𝑖𝑖
𝑛𝑛
𝑖𝑖=1 ×𝑄𝑄𝐴𝐴(𝑖𝑖))

∑ (𝑤𝑤𝑖𝑖′
𝑛𝑛 ′
𝑖𝑖′=1 ×𝑄𝑄𝐴𝐴(𝑖𝑖′))

    (8) 

QA(i) is the quantization error in cluster i with mi points: 

  𝑄𝑄𝐴𝐴(𝑖𝑖) = ∑ �∑ 𝐹𝐹𝑖𝑖𝑗𝑗𝑘𝑘
2𝑚𝑚𝑖𝑖

𝑗𝑗=1 −𝑚𝑚𝑖𝑖𝐹𝐹�𝑖𝑖𝑘𝑘
2�128

𝑘𝑘=1 = ∑ ∑ (𝐹𝐹𝑖𝑖𝑗𝑗𝑘𝑘128
𝑘𝑘=1

𝑚𝑚𝑖𝑖
𝑗𝑗=1 − 𝐹𝐹�𝑖𝑖𝑘𝑘)2   (9) 

Since a denser region appears in a larger portion of 
images and hence would be assigned a very low IDF 
(shown in Fig.1), it can be neglected in Eq.9, because its 
IDF is close to zero from the logarithmic nature of the IDF 
calculations. On the contrary, in the sparser regions, the 
quantization is much finer than in the original method. Such 
a region has a much larger IDF and contributes more to the 
weighted quantization error.  

Based on Eq.9, QA(i) depends on: (1) Point count mi; and 
(2) Distance between each point j and its word center. By 
DML construction, in sparser regions both (1) and (2) are 
smaller than in the original k-means, which lead to a 
smaller quantization error QA(i). In other words, our 
method quantizes the “meaningful” regions with finer steps, 
and quantizes the “meaningless” regions with coarser steps. 
Based on the DML, we multiply a larger w with a smaller 
QA in Eq.8, while the larger QA indicates almost zero IDF.  

Evaluating the overall quantization error, it is 
straightforward that ∑ (𝑤𝑤𝑖𝑖

𝑛𝑛
𝑖𝑖=1 × 𝑄𝑄𝐴𝐴(𝑖𝑖)) ≥ ∑ (𝑤𝑤𝑖𝑖′

𝑛𝑛′
𝑖𝑖 ′=1 × 𝑄𝑄𝐴𝐴(𝑖𝑖′)) and 

 𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐿𝐿 ≥ 𝐷𝐷𝑆𝑆𝑆𝑆𝑂𝑂𝑐𝑐𝑂𝑂 . In other words, regardless of the 
quantization errors in meaningless words such as “a” and 
“the” (such words can be disregarded in similarity ranking 
as “stop words”), there are smaller weighted quantization 
errors in the DML-based vocabulary model. 

3.2. Employing Hierarchy in Retrieval 
With an optimized vocabulary hierarchy in hand, we 

further investigate how to best use it in improving retrieval 
performance. Using internal levels in vocabulary hierarchy 
will increase the computational cost associated with 
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querying the inverted file (using either k-means, VT [3] or 
AKM [10]). As pointed out by Nister et al. [3], using 
internal nodes greatly increases the computational cost 
when querying the inverted file. This is due to the fact that 
the computational cost associated with this operation 
strongly depends on the rate of non-zeros elements in BOW 
vectors. To address this issue, we present a unsupervised 
hierarchical rejection strategy to further accelerate 
hierarchy-integrated retrieval, which achieves better 
performances comparing with the hierarchical combination 
of [3] and GNP[5] (Section 5).   

First, by expanding the TF-IDF term weighting 
procedure to the hierarchical levels in the DML-based tree, 
middle-level nodes are introduced into the similarity 
ranking. In [3], at each hierarchical level, the IDF of the 
middle node is calculated and recorded for middle-level 
matching. If SIFT points are matched at a deeper level, they 
would be also matched at the higher hierarchy. Compared 
with GNP [5], it would improve efficient computational 
efficiency, while maintaining comparable performance 
(Fig.11 and Fig.12) after DML. Second, we have 
discovered that the integration of visual words in the 
vocabulary hierarchy is a natural analogue to boosting 
chain classification [14][18], which brings us a totally new 
insight about how to exploit the vocabulary hierarchy. We 
resort to unsupervised ranking and rejection level-by-level.  

In a hierarchical tree structure, considering each level as 
a candidate selector, generally speaking, the upper levels 
have higher recall, while the lower levels have higher 
precision. This is straightforward because the higher level 
represents an abstraction of category information and is 
more uniform, with coarser similarity comparison. On the 
contrary, in the lowest level, the features are very limited 
and specific, leading to the highest precision. 

As presented in Fig.2, each level is treated as a candidate 
image pool, which stores the qualified candidate images 
that have passed the upper level voting. Within this 
candidate image pool, we calculate their similarity to the 
query image based on the Bag-of-Visual-Words vector 
generated in the vocabulary of this level. We rank these 
similarities and reject the least similar candidate images 
from the candidate pool, then pass the surviving images to 

 
 
 
 
 
 

 
 

 
Figure 2: Hierarchical Candidate Rejection Chain 

Algorithm 1: Hierarchical Candidate Rejection Chain 
Input: Query Image with m SIFT features, DML-constructed 
vocabulary tree with L levels, candidate image set I: i1-in selected 
from a coarse level, ascending rejection threshold K: k1-kl  
For vocabulary hierarchy level i from 1 to L { 

If…Else… Test: { 
Go through BoW vocabulary of this level using query 
features; get its middle-level BoW query vector; compare it 
with BoW vectors of candidate images at the same level I’.  

        Discard top ki dissimilar images in I, update I’ as I} 
Stop Test:{ 

If the number of candidate images in I’ is less than 50 
Or this is the lowest level in the vocabulary hierarchy, rank 
the remaining images in I’ as the final ranking results}} 

Output: The final ranked list of remaining candidate images. 

the next-level candidate pool. This vertically-ordered 
candidate rejection chain is initialized based on the coarsest 
level candidate image selection (using a coarse BoW vector 
representation to generate the 200 most similar candidate 
images), and ended based on the finest level candidate 
image selection (the finest BoW for output final ranking).  

4. Transfer the Optimized Vocabulary Hierarchy 
Facing a new database, the traditional solution is to 

rebuild the visual vocabulary and search model, which is 
time-consuming in large-scale applications. An alternative 
is to use the search model to inversed index new images, 
without updating the search model and visual vocabulary at 
all. It will cause accumulated errors in the long term. Yeh et 
al. [24] proposed a VT adaption for database incremental 
indexing, in which new data points are directly sent into the 
VT model to grow and adjust tree nodes. However, [24] did 
not consider how to transfer the vocabulary model to a 
totally different dataset. In our research, we discovered that 
the vocabulary hierarchy can help us to transfer a model 
between different datasets. Furthermore, the optimized 
vocabulary hierarchy produced by DML-based learning 
can achieve much better results than [24]. We present a 
novel tree adaptation algorithm: VT Shift, which enables 
adaptation of a vocabulary hierarchy among databases. 

First, SIFT features of new database are sent through the 
original vocabulary hierarchy, and the term weightings of 
words are updated. The feature frequency of each leaf node 
reveals its rationale for existence and the necessity of 
further expansion or removal. Leaf nodes that are either 
over-weighted or over-lightened would be adaptively 
reassigned based on the following three operations: 

1. Leaf Delete: If the feature frequency of a leaf is lower 
than a minimum threshold, its features are reassigned back 
to its parent. Subsequently, this parent uses its sub-tree 
(with this parent as root node) to assign the above features 
to their nearest leaves (other than the deleted leaf). 

2. Parent Withdraw: If a leaf is the only child of its 
Parent, and its frequency is lower enough, we withdraw this 
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Algorithm 2: Vocabulary hierarchy adaptation based on VT Shift 
Input: SIFT set of new dataset, empty Operation Queue (OQ). 
For each feature in the new dataset{ 

Recalculate term weightings of words in the new dataset 
Increase the hierarchical feature frequency Fre of each node, 
that is in the indexing path of current feature} 

Go through each leaf node ni of the vocabulary hierarchy{ 
If Frei ≤ £min or Frei  ≥ £max, push ni into the OQ.} 

While the OQ is not empty{ 
     Get the first element nj 
     If Frei ≤ £min { 
        If there are siblings nj

sibling of nj {Leaf Delete, push all nj
sibling 

into OQ.} 
        Else {Parent Withdraw, push nj’s parent into OQ.}} 

If Frei ≥ £max { 
        Leaf Split, push new leaves into Operation Queue.}} 

Delete nj.} 
Output: Refined vocabulary tree after adaption. 

leaf and downgrade its parent to a new leaf. 
3. Leaf Split: If the feature frequency of a leaf is higher 
than the maximum threshold, we re-grow this node as a 
sub-tree with the same branch factor in construction. 

5. Experimental Results  
System Framework: Our system consists of both an 

offline part and an online part. In the offline part, SIFT 
features [1] are extracted from the image dataset as local 
descriptors to build the vocabulary tree. A document list is 
built for each word to record which scene contains the word, 
thus forming an inverted index file for words. In the online 
part, SIFT are extracted from the query image and mapped 
to a BoW vector, based on which the relevance score for 
every document is calculated for ranking.  

Experimental Dataset: In our experiments, two datasets 
were investigated: Scity and UKBench. Scity consists of 
24,500 street-side photos, captured automatically along 
Seattle streets by a car, as shown in Figure 4. We resized 
these photos to 400×300 pixels and extracted 300 features 
from each photo on average. Every six successive photos 
were defined as a scene. UKBench dataset contains 10,000 
images of CD covers and indoor objects. 

In both datasets, each category was divided into both a 
query set (to test performance) and a training set (to create 
VT): In the Scity dataset, the last image of each scene was 

 
Figure 3: System Architecture of VT-based Recognition.  

 
Figure 4: Examples from Scity Dataset 

utilized for the query test, the first 5 was used to construct 
the ground truth set. In the UKBench dataset, in each 
category, the first 1 image was added to the query set, the 
rest were used to construct the ground truth set. 

We used the Success Rate at N (SR@N) to evaluate 
performance. This evaluation measure is commonly used in 
evaluating Question Answering (QA) systems. SR@N 
represents the probability of finding a correct answer within 
the top N results. Given n queries, SR@N is:  

                     𝐷𝐷𝑆𝑆@𝑆𝑆 =
∑ 𝜃𝜃(𝑆𝑆−𝑝𝑝𝑁𝑁𝐷𝐷(𝑆𝑆𝑞𝑞))𝑛𝑛
𝑞𝑞=1

𝑛𝑛
                         (10) 

𝑆𝑆𝑞𝑞 is the answer of query q, 𝑝𝑝(𝑆𝑆𝑞𝑞) is its position, 𝜃𝜃() is a 
Heaviside function: 𝜃𝜃(𝑥𝑥) =1, if x≥0, otherwise 𝜃𝜃(𝑥𝑥)=0. 
When n=4, SR@N is the identical criterion in [3]. 
    We build a 2-branch, 12-level VT for both Scity and 
UKBench. In both trees, if a node had less than 2,000 
features, we stopped its k-mean division, whether it had 
achieved the deepest level or not. In tree adaptation, the 
maximum threshold £max was set as 20,000; the minimum 
threshold £min was set as 500. 

Hierarchy Optimization Results: Fig.5 and 6 present 
the SR@N in UKBench before and after DML, for both of 
which four comparisons were conducted: 1 Traditional leaf 
comparison, in which only the leaf nodes were used for 
BoW-based ranking; 2 Leaf Comparison + IDF weighting; 
3 Hierarchical chain, in which we adopt the hierarchical 
rejection chain for multi-evidence search; 4. Hierarchical 
chain + IDF, which combines BoW vector at hierarchical 
level and their IDF as weights in similarity ranking. 

 
Figure 5: Performance Comparison on UKBench Original Tree 

 
Figure 6: Performance Comparison on UKBench DML Tree 
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Figure 7: Performance Comparison on Scity Original Tree 

 
Figure 8: Performance Comparison on Scity DML Tree 

    It is obvious that, before DML learning, the real powers 
of the hierarchical rejection chain and hierarchical IDF 
cannot be expressed. But the combined performance 
enhancements of both methods after DML learning were 
significant-almost 20% over the leaf-level baseline. 
Compared Fig.5 with Fig.6, the DML-based VT performs 
much better than the original VT, with 20% higher over its 
best results. The same result holds in Scity (Fig.7 and 8).     
    Indeed, this phenomenon can be expressed by Fig.9, 
after DML-based construction: the word distribution in 
each hierarchical level follows Zipf’s Law better, which 
means that the vocabulary is more discriminative and  
 

 
 
 
 
 
 
 
 

Figure 9:  Word distribution (2-branch, 12-level) comparison in 
Scity. Words are ranked by frequency. (Log-Log Plot) 

  
 
 
 
 
 
 
Figure 10: (Left) Cluster diameter (maximum L2 distance within 
it) distribution in the 12th level ranked by feature frequency. After 
DML, the diameter distribution is more uniform, hence the feature 
space division is more uniform; (Right) weighted quantization 
error distribution ranked by image counts of cluster. The weighted 
quantization errors with more images are lower, and vice versa. 

 
Figure 11-12: Performance Comparison between Hierarchical 

Recognition Chain (1-way) and GNP. (GNP number: 1-11) 

suitable for using IDF (The textual word distribution has 
been proven to suitable for using TF/IDF in ranking). 
    Actually, without DML-based optimization, the 
hierarchical k-means process would be biased to the denser 
regions, incorrectly dividing them deeper and tighter rather 
than sparse regions. This bias is hierarchically accumulated 
and wrongly assigns denser regions high IDF in 
recognition. This is why the use of IDF is not better in the 
original VT [6] [12] but is better in the DML-based VT. 
Fig.10 further explains this enhancement in UKBench. An 
intuitive motivation for DML-based tree construction is to 
refine the original distance metric in k-mean clustering, 
which is achieved by generating more clusters in dense 
regions and fewer clusters in sparse regions. Since the VT 
hierarchy magnifies unbalanced space division, revising 
such bias by the DML correction would be beneficial. 

We further investigate the efficiency of the hierarchical 
recognition chain. Fig.11 and 12 compare our method with 
GNP [5]. We also evaluate how the chain level affects the 
recognition performance in UKBench. The method in 
Nister et al. [3] that combines middle-levels into a unified 
BoW vector were compared (Fig.13). Our method achieves 
better results than the hierarchy combination [3]. It is worth 
mentioning that our DML strategy could be also adopted in 
refining AKM [10] search precision, which would also 
improve performance by optimize the cluster process 
within each hierarchical level construction. 

  VT Shift Results: We evaluated our proposed VT Shift 

 
Figure 13: Performance of hierarchical chain at different 
hierarchy levels. Comparing with [3], we achieve better 
performance. When n>14, over-quantization is observed. 
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Figure 14: VT Shift performance from Scity to UKBench 

 
Figure 15: VT Shift performance from UKBench to Scity 

algorithm by the following experiments: Fig.14 and 15 
present the VT Shift performance between UKBench and 
Scity with different volumes (9K vs. 20K) and applications 
(scene vs. object). It is obvious that direct application of a 
vocabulary across datasets of very different constitution 
and purpose would cause significant performance 
degradation. However, the VT Shift algorithm can well 
address the tree adaptation problem. Another discovery 
(Tab.2) is that VT Shift in a DML tree performs much better 
than in the original tree. This demonstrates an advantage of 
the DML construction in model reapplication. 

As in Fig.14 and 15, while straightforward VT 
reapplication across different datasets gives the expected 
performance degradation, the performance of VT Shift is 
much better, close to the vocabulary regeneration. The 
computational cost of VT Shift depends on the diversity of 
the two datasets. In general, it is much faster than re-build a 
new vocabulary, since the IDF updating is much faster than 
reclustering. In an extreme case, if features of a new dataset 
were crowded into a single leaf, VT Shift will recluster the 
entire database. In other cases, the number of features to be 
adapted is limited, and they are distributed between 
different leaves. Hence the overall complexity is limited. 

6. Conclusion 
Our main contribution is the hierarchy optimization of 

visual vocabulary to improve and transfer the retrieval 
model. We present a density-based metric learning (DML) 
algorithm for unsupervised optimization of vocabulary 
hierarchy construction, based on which we introduce a 
hierarchical rejection chain to achieve efficient online 
search. Compared with state-of-the-arts [3][5][10], our 
performance enhancement is 6-10% in UKBench database 
and 10-20% in Scity database. In addition, transferring 
optimized vocabulary model between different databases 
provides new inspirations in using former retrieval models. 

Table 2: Performance Analysis of VT Shift 
Reclustering (UKBench) vs. VT Shift (Scity-UKBench) 

Tree/SR@N 1 2 3 4 5 Time Cost 
Org 0.196 0.287 0.379 0.433 0.497 8394.9s 

DML 0.419 0.466 0.534 0.611 0.669 8279.5s 
Shift Org 0.194 0.257 0.330 0.376 0.438 1937.4s 

Shift DML 0.348 0.422 0.475 0.537 0.563 1988.2s 
Reclustering (Scity) vs. VT Shift (UKBench-Scity) 

Tree/SR@N 1 2 3 4 5 Time Cost 
Org 0.152 0.269 0.339 0.404 0.433 6034.2s 

DML 0.292 0.367 0.421 0.484 0.509 6129.4s 
Shift Org 0.095 0.173 0.227 0.289 0.311 1434.7s 

Shift DML 0.206 0.329 0.403 0.453 0.481 1125.3s 
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