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Abstract

Feature selection plays a fundamental role in many pat-
tern recognition problems. However, most efforts have been
focused on the supervised scenario, while unsupervised fea-
ture selection remains as a rarely touched research topic.
In this paper, we propose Manifold-Based Maximum Mar-
gin Feature Selection (M3FS) to select the most discrimi-
native features for clustering. M3FS targets to find those
features that would result in the maximal separation of dif-
ferent clusters and incorporates manifold information by
enforcing smoothness constraint on the clustering function.
Specifically, we define scale factor for each feature to mea-
sure its relevance to clustering, and irrelevant features are
identified by assigning zero weights. Feature selection is
then achieved by the sparsity constraints on scale factors.
Computationally, M3FS is formulated as an integer pro-
gramming problem and we propose a cutting plane algo-
rithm to efficiently solve it. Experimental results on both
toy and real-world data sets demonstrate its effectiveness.

1. Introduction

Real-world data sets are often high-dimensional and con-
tain many spurious features. For example, in face recogni-
tion, an image of size m × n is often represented as a vec-
tor in R

mn, which can be very high-dimensional for typical
values of m and n. Similarly, biological databases such as
microarray data can have thousands or even tens of thou-
sands of genes as features. Such a large number of features
can easily lead to the curse of dimensionality and severe
over-fitting. Hence, dimensionality reduction, in the form
of either feature extraction or feature selection, plays a fun-
damental role in many pattern recognition problems.
In this paper, we will focus on feature selection, which

selects a relevant subset of features. Excellent reviews on
this topic can be found in [8, 10]. Note that not only can
feature selection improve the generalization performance of

the resultant classifier, the use of fewer features is also less
computationally expensive and thus implies faster testing.
Moreover, it can eliminate the need to collect a large num-
ber of irrelevant and redundant features, and thus reduces
the cost. Finally, with the discovery of fewer features, the
resultant model can be more easily understood by human.
In feature selection, the features may be scored either

individually or as a subset. In general, there are three ap-
proaches to score them: filters, wrappers, and embedded
methods [8]. Filters score the features as a pre-processing
step, independently of the classifier. Wrappers score the
features according to their prediction performance when
used with the classifier. Both filters and wrappers rely on
search strategies to guide the search for the “best” feature
subset. While a large number of search strategies can be
used, often one is limited to the computationally simple
greedy (forward or backward) strategies. Finally, embed-
ded methods combine feature selection with the classifier.
While the design of embedded methods is tightly coupled
with the specific classifier, they are often considered as
more efficient than filters and wrappers [8].
While supervised feature selection has been extensively

studied for decades, feature selection in the unsupervised
learning setting has received relatively little attention. This
is partly due to the fact that unsupervised feature selection
is much more difficult because of the lack of label informa-
tion to guide the search for relevant features. While most
unsupervised feature selection methods are based on the fil-
ter approach [6, 12, 14], some wrappers [16] and embed-
ded approaches that treat clustering and feature selection si-
multaneously have also been proposed [4, 7, 12]. However,
these are often based on generative models (such as Gaus-
sian mixtures) [4, 7, 12, 16]. As is well-known, generative
models may lead to inferior performance when the model
assumption does not match the observed data.
Instead of relying on model-based clustering, we will

propose in this paper an embedded method that is based on
discriminative clustering. This is motivated by the common
belief that discriminative models are often better than gen-
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erative models in supervised learning. Among the discrim-
inative methods, large margin methods, such as the support
vector machines, are particularly successful. Indeed, in-
spired by the superiority of large margin methods in super-
vised learning, there is growing interest in extending them
to unsupervised learning. For example, Xu et al. [21] pro-
posed a novel approach called maximum margin clustering
(MMC), which performs clustering by simultaneously find-
ing the large margin separating hyperplane between clus-
ters. Experimental results showed that this large margin
clustering method (and its variant [19]) have been very suc-
cessful in many clustering problems.

Moreover, in many computer vision and pattern recogni-
tion applications (such as face recognition and hand-written
digit recognition), it has been observed that the data exam-
ples often lie on a manifold. Hence, another novelty of the
proposed approach is that manifold information can also be
incorporated into the feature selection process. Note that the
Laplacian score [9], which can be used as a filter approach
for unsupervised feature selection, also utilizes manifold in-
formation. However, for the Laplacian score, a feature will
be considered as good if two samples that are close to each
other on the data manifold are also close to each other ac-
cording to that feature. On the other hand, the proposed
method uses the manifold information by directly consid-
ering the resultant decision function and ensures that it is
smooth on the manifold. As will be seen in Section 4, since
ours is an embedded method that explicitly considers the
clustering objective, it performs much better than the filter
method of Laplacian score.

In this paper, we propose Manifold-Based Maximum
Margin Feature Selection (M3FS) to select the most dis-
criminative features for clustering. M3FS targets to find
those features that would result in the maximal separation
of different clusters and incorporates manifold information
by enforcing smoothness constraint on the clustering func-
tion. Specifically, we define a scale factor for each feature to
measure its relevance to clustering, and irrelevant features
are identified by assigning zero weights. Feature selection
is then achieved by the sparsity constraints on the scale fac-
tors. Computationally, M3FS is formulated as an integer
programming problem and we propose a cutting plane al-
gorithm to efficiently solve it. Experimental results on both
toy and real-world data sets demonstrate its effectiveness.

The rest of this paper is organized as follows. In Sec-
tion 2, we present a brief introduction to maximum margin
clustering. Section 3 presents the details of theM3FS algo-
rithm, together with theoretical analysis on both the accu-
racy and time complexity of the algorithm, and extension to
the multi-class clustering setting. Experimental results on
both toy and real-world data sets are provided in Section 4,
followed by some concluding remarks in Section 5.

2. Maximum Margin Clustering
Maximum margin clustering (MMC) is a recently pro-

posed clustering algorithm that extends support vector ma-
chines (SVM) to unsupervised learning setting. Since the
class labels are unknown in unsupervised learning, MMC
tries to find a cluster labeling of the patterns, together with a
hyperplane classifier, such that the resultant margin is max-
imized among all possible labelings [21].
For simplicity of exposition, assume that there are only

two clusters. Given a set of examplesX = [x1, · · · ,xn] ∈
R

d×n, MMC targets to find the best label combination
y = [y1, . . . , yn] ∈ R

n ∈ {−1, +1}n such that an SVM
trained on this {(xi, yi), . . . , (xn, yn)} yields the largest
margin. Computationally, it can be formulated as the fol-
lowing problem

min
y∈{±1}n

min
w,b,ξ

1

2
wTw+

C

n

n∑
i=1

ξi (1)

s.t. ∀i ∈ {1, . . . , n} :

yi(w
T xi+b) ≥ 1−ξi, ξi ≥ 0,

−l ≤
n∑

i=1

yi ≤ l.

where
∑n

i=1 ξi is divided by n to better capture how C
scales with the data set size. The last constraint in (1) is of-
ten known as the class balance constraint. It is introduced
to avoid the trivially “optimal” solution that assigns all pat-
terns to the same class and thus achieves “infinite” margin.
Here, l > 0 is a constant controlling the class imbalance.

3. Maximum Margin Feature Selection with
Manifold Regularization
In this section, we present the manifold-based maximum

margin feature selection algorithm. We will first consider
the two-cluster case. Extension to the multi-class case will
be discussed in Section 3.5.

3.1. Two-Class Manifold-Based Maximum Margin
Feature Selection

Manifold-based maximum margin feature selection
(M3FS) is an embedded approach that performs clustering
and feature selection simultaneously. It tries to find a subset
of the d given features such that the resultant clusters will
be maximally separated. As mentioned in Section 1, while
previous efforts on unsupervised feature selection are often
based on generative models which require strong model as-
sumption,M3FS adopts maximum margin clustering which
can often outperform conventional clustering methods.
Moreover, in many computer vision and pattern recogni-

tion applications, it has been observed that the data exam-
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ples often lie on a manifold. Hence, our goal is to also uti-
lize this manifold information in the feature selection pro-
cess. As is well-known, the data manifold can be repre-
sented by a graph G. In the following, let W ∈ R

n×n be
the similarity (or adjacency) matrix of G,D ∈ R

n×n be the
diagonal degree matrix whose ith entry is the sum of the ith
row ofW, and L = I−D− 1

2 WD− 1
2 (where I is the n×n

identity matrix) be the normalized graph Laplacian [3].
To achieve the first goal, we extendMMC by associating

each feature k (k = 1, 2, . . . , d) with a learnable scale factor
σk, which is used to measure its “relevance” to clustering.
When learning is completed, the irrelevant features can then
be identified as those having zero scale factors [20]. Hence,
the resultant decision function is f(x) = wT (σ ◦ x) + b =
(w ◦ σ)T x + b, where σ = [σ1, σ2, . . . , σd]

T and ◦ is the
element-wise product. As for the second goal, we enforce
that the decision function f(x) is smooth on the whole data
manifold. This smoothness can be achieved by adding the
manifold regularizer [1]

n∑
i,j=1

Wij

(
f(xi)√

Dii

− f(xj)√
Djj

)2

=
[
XT (w ◦ σ) + b1

]T
L
[
XT (w ◦ σ) + b1

]
to the objective function. Here, 1 ∈ R

n is the n-
dimensional vector of all ones. Combining these two to-
gether,M3FS can thus be formulated as the following opti-
mization problem:

min
y,w,b,ξ,σ

1

2

d∑
k=1

σkw2
k+

C

n

n∑
i=1

ξi+λ
[
XT(w◦σ)+b1

]T
L

· [XT(w◦σ)+b1
]

(2)
s.t. ∀i ∈ {1, . . . , n} : ξi ≥ 0,

yi

(
d∑

k=1

σkwkxik+b

)
≥1−ξi, (3)

∀k∈{1, . . . , d} : 0≤σk≤1;y∈{−1, +1}n

d∑
k=1

σk = m, (4)

−l ≤
n∑

i=1

(
d∑

k=1

σkwkxik +b

)
≤ l (5)

where λ is a user-defined regularization parameter, and m
is the number of features to be selected. Note that we have
also relaxed the constraint σk ∈ {0, 1} on σ to 0 ≤ σk ≤ 1.
The �1 regularizer (4) on σ enforces sparsity. Moreover, a
slightly relaxed class balance constraint is used in (5) [17].
Since σk and wk are coupled together in the decision

function, the objective in (2) and the constraints (3), (5)
are non-convex. Therefore, we apply the change of vari-

ables [24]: ∀k ∈ {1, . . . , d} : vk = σkwk. Let v =
[v1, v2, . . . , vd]

T , we have the following proposition:

Proposition 1 M3FS can be equivalently formulated as

min
v,b,ξ,σ

1

2

d∑
k=1

v2
k

σk
+

C

n

n∑
i=1

ξi+λ(XTv+b1)TL(XTv+b1) (6)

s.t. ∀i ∈ {1, . . . , n} :
∣∣vTxi+b

∣∣ ≥ 1−ξi, ξi ≥ 0

∀k ∈ {1, . . . , d} : 0 ≤ σk ≤ 1,
d∑

k=1

σk = m, −l ≤
n∑

i=1

(
vT xi+b

) ≤ l

where y is calculated as yi = sgn(vT xi + b).

3.2. Cutting Plane Algorithm
The M3FS formulation in (6) has n slack variables ξi’s,

one for each data sample xi. We reformulate (6) as follows
to reduce the number of slack variables,

min
v,b,ξ,σ

1

2

d∑
k=1

v2
k

σk
+Cξ+λ(XTv+b1)TL(XTv+b1) (7)

s.t. ∀c∈{0, 1}n :
1

n

n∑
i=1

ci

∣∣vTxi+b
∣∣≥ 1

n

n∑
i=1

ci−ξ, (8)

∀k∈{1, . . . , d} : 0 ≤ σk ≤ 1,
d∑

k=1

σk = m, ξ ≥ 0, −l ≤
n∑

i=1

(
vT xi+b

) ≤ l

Proposition 2 Any solution (v∗, b∗, ξ∗, σ∗) to problem (7)
is also a solution to problem (6), and vice versa, with ξ∗ =
1
n

∑n
i=1 ξ∗i .

The number of slack variables is now reduced by n− 1. On
the other hand, the number of constraints in (7) is increased
from n to 2n. To handle this exponential number of con-
straints, we employ an adaptation of the cutting plane algo-
rithm [11]. It starts with an empty constraint subset Ω, and
computes the optimal solution to problem (7) subject to the
constraints in Ω. The algorithm then finds the most violated
constraint in (8) and adds it to Ω. In this way, we construct
a series of successively tightening approximations to prob-
lem (7). The algorithm stops when no constraint in (8) is
violated by more than ε. The whole cutting plane algorithm
forM3FS is presented in Algorithm 1.

3.2.1 Optimization via the CCCP

For the optimization problem in (7), the objective is convex
(quadratic) and all the constraints except the first one are
linear. Moreover, note that although the constraint in (8) is
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Algorithm 1 Cutting plane algorithm for M3FS
Input: X, C, l, λ and ε, set constraint subset Ω = ∅.
repeat
Solve problem (7) for (v, b, σ, ξ) under the current
working constraint set Ω.
Select the most violated constraint c; set Ω = Ω∪{c}.

until the newly selected constraint c is violated by no
more than ε.

non-convex, it can be expressed as a difference of the two
convex functions 1

n

∑n
i=1 ci

∣∣vT xi + b
∣∣ and 1

n

∑n
i=1 ci−ξ.

Hence, we can solve problem (7) with the constrained
concave-convex procedure (CCCP), which is designed to
solve these optimization problems with a concave-convex
objective function and concave-convex constraints [18].
Specifically, given an initial estimate (v(0), b(0)), the CCCP
computes (v(t+1), b(t+1)) from (v(t), b(t)) by replacing
1
n

∑n
i=1 ci

∣∣vT xi + b
∣∣ in the first constraint with its first-

order Taylor expansion at (v(t), b(t)), leading to

min
v,b,ξ,σ

1

2

d∑
k=1

v2
k

σk
+Cξ+λ(XTv+b1)TL(XTv+b1) (9)

s.t. ∀c∈Ω:
1

n

n∑
i=1

ciz
(t)
i

(
vTxi+b

)≥ 1

n

n∑
i=1

ci−ξ,

∀k∈{1, . . . , d} : 0 ≤ σk ≤ 1,
d∑

k=1

σk = m, ξ ≥ 0

−l ≤
n∑

i=1

(
vTxi+b

) ≤ l

where z
(t)
i = sgn

(
v(t)T xi + b

)
. Define tk as the up-

per bound of v2
k

σk
, s as the upper bound of (XT v +

b1)T L(XT v + b1), and note that L is symmetric positive
semi-definite, the above problem can be reformulated as the
following second order cone programming (SOCP) [2].

min
v,b,ξ,σ,t,s

1

2

d∑
k=1

tk+Cξ+λs (10)

s.t.∀c∈Ω:
1

n

n∑
i=1

ciz
(t)
i

(
vTxi+b

)≥ 1

n

n∑
i=1

ci−ξ,

∀k∈{1, . . . , d} : 0 ≤ σk ≤ 1

∀k∈{1, . . . , d} :

∣∣∣∣
∣∣∣∣
[

2vk

tk−σk

]∣∣∣∣
∣∣∣∣ ≤ tk+σk∣∣∣∣

∣∣∣∣
[

2L
1
2 (XTv+b1)

s−1

]∣∣∣∣
∣∣∣∣ ≤ s+1, ξ ≥ 0

d∑
k=1

σk = m, −l ≤
n∑

i=1

(
vTxi+b

) ≤ l

The above SOCP problem can be solved in polynomial
time [13]. Following the CCCP, the obtained solution
(v, b, σ, ξ, t, s) from this SOCP problem is then used as
(v(t+1), b(t+1), σ, ξ, t, s), and the iteration continues until
convergence. The algorithm for solving problem (7) subject
to the constraint subsetΩ is summarized in Algorithm 2. As
for its termination criterion, we check if the difference in
objective values from two successive iterations is less than
α% (which is set to 0.01 in the experiments).

Algorithm 2 Solve problem (7) subject to constraint subset
Ω via the constrained concave-convex procedure.
Initialize (v(0), b(0)).
repeat
Obtain (v, b, σ, ξ, t) as the solution to problem (10).
Set v(t+1) = v, b(t+1) = b and t = t + 1.

until the stopping criterion is satisfied.

3.2.2 Identifying the Most Violated Constraint

The most violated constraint is the one that results in the
largest ξ. Since each constraint in (8) is represented by a
vector c, we have the following proposition:

Proposition 3 The most violated constraint c in (8) can be
computed as:

ci =

{
1 if

∣∣vT xi+b
∣∣ < 1,

0 otherwise.
(11)

The cutting plane algorithm iteratively selects the most vio-
lated constraint under the current hyperplane parameter and
then adds it to the working constraint set Ω, until no con-
straint is violated by more than ε, i.e.,

∀c∈{0, 1}n :
1

n

n∑
i=1

ci

∣∣vT xi+b
∣∣≥ 1

n

n∑
i=1

ci−(ξ+ε) (12)

Moreover, note that in the objective function of problem (7),
there is a single slack variable ξ measuring the clustering
loss. Hence, we can simply select the stopping criterion in
Algorithm 1 as being all the samples satisfying inequality
(12). Then, the approximation accuracy ε of this approxi-
mate solution is directly related to the clustering loss.

3.3. Accuracy of the Cutting Plane Algorithm
The following proposition characterizes the accuracy of

the solution computed by the cutting plane algorithm.
Proposition 4 For any ε > 0, the cutting plane algorithm
for M3FS returns a point (v, b, σ, ξ) for which (v, b, σ, ξ +
ε) is feasible in problem (7).
Based on this proposition, ε indicates how close one wants
to be to the error rate of the best separating hyperplane. This
justifies its use as the stopping criterion in Algorithm 1.
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3.4. Time Complexity Analysis

In this section, we provide theoretical analysis on
the time complexity of the cutting plane algorithm for
manifold-basedmaximummargin feature selection. We will
first obtain the time involved in each iteration of the algo-
rithm. Next, we will show that the total number of con-
straints added into the working set Ω, i.e., the total number
of iterations involved in the cutting plane algorithm, is up-
per bounded. Specifically, we have the following two lem-
mas,

Lemma 1 Each iteration of the cutting plane algorithm
for manifold-basedmaximummargin feature selection takes
O(d3.5+nd+d2.5|Ω|) time for a working constraint set size
|Ω|.

Lemma 2 The cutting plane algorithm terminates after
adding at most CR

ε2 constraints, where R is a constant in-
dependent of n and d.

Lemma 2 bounds the number of iterations in our cutting
plane algorithm by a constant CR

ε2 , which is independent of
n and d. Moreover, each iteration of the algorithm takes
O(d3.5 + nd + d2.5|Ω|) time. Therefore, the cutting plane
algorithm for manifold-based maximum margin feature se-
lection has a time complexity of

∑CR/ε2

|Ω|=1 O(d3.5 + nd +

d2.5|Ω|) = O(d3.5+nd
ε2 + d2.5

ε4 ). Hence, we have the follow-
ing proposition.

Proposition 5 The cutting plane algorithm for manifold-
basedmaximummargin feature selection takesO(d3.5+nd

ε2 +
d2.5

ε4 ) time.

3.5. Multi-Class M3FS

For the multi-class scenario, we will start with an intro-
duction to the multi-class support vector machine formula-
tion proposed in [5]. Given a point set X = {x1, · · · ,xn}
and their labels y = (y1, . . . , yn) ∈ {1, . . . , M}n, the SVM
defines a weight vector wp for each class p ∈ {1, . . . , M}
and classifies sample x by p∗ = arg maxp∈{1,...,M}wT

p x.
The weight vectors are obtained as follows:

min
w1,...,wM ,ξ

1

2

M∑
p=1

||wp||2+
C

n

n∑
i=1

ξi (13)

s.t. ∀i ∈ {1, . . . , n}, r ∈ {1, . . . , M} :

wT
yi

xi+δyi,r−wT
r xi≥1−ξi; ξi ≥ 0.

Similar with the two-class scenario, we define a scale fac-
tor for each feature and obtain the following unsupervised
multi-class manifold-based maximum margin feature selec-

tion formulation

min
y,σ,v,ξ

1

2

d∑
k=1

M∑
p=1

v2
pk

σk
+

C

n

n∑
i=1

ξi+λ

M∑
p=1

vT
p XLXT vp (14)

s.t. ∀i ∈ {1, . . . , n}, r ∈ {1, . . . , M} :
d∑

k=1

(vyik−vrk)xik +δyi,r≥1−ξi, ξi ≥ 0

∀k ∈ {1, . . . , d} : 0 ≤ σk ≤ 1;

d∑
k=1

σk = m

∀p, q∈{1, . . . , M} :−l≤
n∑

i=1

d∑
k=1

(vpk−vqk)xik≤ l,

Here, the subscript p in wpk denotes the pth class, k denotes
the kth feature, and we have applied the change of variables
∀p ∈ {1, . . . , M}, k ∈ {1, . . . , d} : vpk = σkwpk to en-
sure that the objective function and the last constraint are
convex. Similar to two-class clustering, we have also added
class balance constraints (where l > 0) in the formulation
to control class imbalance. Again, the above formulation
is an integer program, and is much more complex than the
QP problem in multi-class SVM. Fortunately, we have the
following proposition.

Proposition 6 Problem (14) is equivalent to

min
σ,v,ξ

1

2

d∑
k=1

M∑
p=1

v2
pk

σk
+

C

n

n∑
i=1

ξi+λ

M∑
p=1

vT
p XLXT vp (15)

s.t. ∀i ∈ {1, . . . , n}, r ∈ {1, . . . , M} :
d∑

k=1

(
M∑

p=1

zipvpk−vrk

)
xik +zir≥1−ξi, ξi ≥ 0

∀k ∈ {1, . . . , d} : 0 ≤ σk ≤ 1;

d∑
k=1

σk = m

∀p, q∈{1, . . . , M} :−l≤
n∑

i=1

d∑
k=1

(vpk−vqk)xik≤ l,

where zip is defined as ∀i ∈ {1, . . . , n}, p ∈ {1, . . . , M} :

zip =
M∏

q=1,q �=p

I[
∑

d
k=1vpkxik>

∑
d
k=1vqkxik],

with I(·) being the indicator function and the label for sam-
ple xi is determined as yi = argmaxp

∑d
k=1 vpkxik =∑M

p=1 pzip.

To reduce the number of slack variables, we make use of
the following proposition:
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Proposition 7 Problem (15) can be equivalently formu-
lated as problem (16), with ξ∗ = 1

n

∑n
i=1 ξ∗i .

min
σ,v,ξ

1

2

d∑
k=1

M∑
p=1

v2
pk

σk
+Cξ+λ

M∑
p=1

vT
p XLXT vp (16)

s.t. ∀ci∈{e0, e1, . . . , ek}, i∈{1, . . . , n} :

1

n

n∑
i=1

d∑
k=1

M∑
p=1

(cT
i ezip−cip)vpkxik +

1

n

n∑
i=1

M∑
p=1

cipzip

≥ 1

n

n∑
i=1

cT
i e−ξ,

∀k ∈ {1, . . . , d} : 0 ≤ σk ≤ 1,
d∑

k=1

σk = m, ξ ≥ 0

∀p, q∈{1, . . . , M} :−l≤
n∑

i=1

d∑
k=1

(vpk−vqk)xik≤ l,

where we define ep as the M × 1 vector with only the pth
element being 1 and others 0, e0 as theM × 1 zero vector
and e as the vector of ones.

A single slack variable ξ is shared across all the non-convex
constraints in (16) and, again, the cutting plane algorithm
can be used to handle the exponential number of constraints.
For the inner optimization, we use the CCCP to com-

pute v(t+1) from v(t) by solving the following optimization
problem

min
σ,v,ξ

1

2

d∑
k=1

M∑
p=1

v2
pk

σk
+Cξ+λ

M∑
p=1

vT
p XLXT vp (17)

s.t. ∀[c1, . . . , cn]∈Ω, i∈{1, . . . , n} :

1

n

n∑
i=1

d∑
k=1

M∑
p=1

(cT
i ez

(t)
ip −cip)vpkxik+

1

n

n∑
i=1

M∑
p=1

cipz
(t)
ip

≥ 1

n

n∑
i=1

cT
i e−ξ; ξ ≥ 0

∀k ∈ {1, . . . , d} : 0 ≤ σk ≤ 1;

d∑
k=1

σk = m

∀p, q∈{1, . . . , M} :−l≤
n∑

i=1

d∑
k=1

(vpk−vqk)xik≤ l,

where z
(t)
ip =

∏M
q=1,q �=p I

[
∑

d
k=1v

(t)
pk

xik>
∑

d
k=1v

(t)
qk

xik]
. Again,

this can be formulated as an SOCP and solved efficiently.
Finally, as for the most violated constraint, it is the one that
results in the largest ξ and can be obtained by the following
proposition.

Proposition 8 The most violated constraint c =
[c1, . . . , cn] can be obtained as

ci =

{
er∗ if

[∑d
k=1vp∗kxik−

∑d
k=1vr∗kxik

]
<1,

0 otherwise,

where p∗ = arg maxp

∑d
k=1 vpkxik and r∗ =

argmaxr �=p∗

∑d
k=1 vrkxik .

4. Experiments
In this section, we validate the effectiveness ofmanifold-

based maximum margin feature selection (M3FS) on both
toy and real-world data sets.

4.1. Setup
We use 5 data sets which are intended to cover a wide

range of properties: ionosphere, digits, letter and satel-
lite (these are from the UCI data repository1), and mnist2.
The two-class data sets are created following the same set-
ting as in [22]. We also create several multi-class data sets
from the digits, letter and mnist data. All these are sum-
marized in Table 1. For representing the manifold used

Data Size Feature Class
digits1v7 361 64 2
digits2v7 356 64 2
ionosphere 354 64 2
letterAvB 1555 16 2
satellite 2236 36 2
digits0689 713 64 4
digits1279 718 64 4
letterABCD 3096 16 4
mnist01234 28911 196 5
Table 1. Descriptions of the data sets.

in M3FS, we use a fully-connected graph connecting all
the samples, and set the pairwise similarity matrix W as
wij = exp (−‖xi − xj‖2/2ρ2), where ρ is the variance in
the Gaussian function. Besides M3FS, for comparison, we
also run the following algorithms which perform clustering
with feature selection:

• Feature selection based on Gaussian mixture model
(FSGMM) [12]: This is an embedded approach for un-
supervised feature selection and, as its name implies,
the clustering algorithm is based on the Gaussian mix-
ture model. Its implementation is the same as in [12].

• Laplacian score [9]: This is a filter method
for supervised/unsupervised feature selec-
tion which also uses manifold information.
The implementation code is downloaded from

1http://archive.ics.uci.edu/ml/
2http://yann.lecun.com/exdb/mnist/
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http://www.cs.uiuc.edu/homes/dengcai2. Since it
is a filter, it is not particularly tied to any clustering
algorithm. In the following, we experiment with both
MMC and K-Means, and the corresponding methods
are denoted LapMMC and LapKM, respectively.

Moreover, we also experiment with maximum margin clus-
tering without doing feature selection. The implementation
is the same as in [23], and this will be denoted asMMC-all.
In the experiments, we first take a set of labeled data, re-

move all the labels and run the clustering algorithms; then
we label each of the resulting clusters with the majority
class according to the original labels. Moreover, we always
set the number of clusters to be the true number of classes
M for all the methods. These clustering algorithms (with or
without feature selection) will be evaluated by the following
two performance measures:
Clustering Accuracy (Acc). The first performance mea-
sure is the Clustering Accuracy, which discovers the one-
to-one relationship between clusters and classes and mea-
sures the extent to which each cluster contained data points
from the corresponding class. Specifically, Acc measures
the number of correct classifications.
Rand Index (RI) [15]. Let C = {C1, C2, . . . , CM} be the
set of final clustering results such that Ck represents the kth
cluster, and L = {L1,L2, . . . ,LM} denotes the set of true
data classes such that Lk represents the kth class. We define
the following four variables: a: the number of data pairs in
X that are in the same set in both C and L; b: the number
of data pairs in X that are in different sets in both C and L;
c: the number of data pairs in X that are in the same set in
C but different sets in L; d: the number of data pairs in X

that are in different sets in C but the same set in L. Then the
Rand Index R that measures the similarity between C and
L can be computed as R = a+b

a+b+c+d . Intuitively, one can
think of a + b as the number of agreements between C and
L and c + d as the number of disagreements between C and
L. Clearly,R has a value between 0 and 1, with 0 indicating
that C and L do not agree on any pair of data points, and 1
indicating that C and L are exactly the same.

4.2. Ability to Detect Relevant Features

In this section, we first illustrate the ability of M3FS in
selecting relevant features by using the iris data set from
UCI machine learning repository. The iris data contain 3
classes of 50 instances each, and each instance is charac-
terized by 4 features. We add 10 noisy features (generated
from the normal distribution N (0, 1)) to the iris data, and
thus obtain a data set of 150 14-dimensional instances.
The saliencies of all the 14 features as calculated by the

various methods are shown in Figure 1. For simplicity of
illustration, we order the features such that the first four are
the original features, while the last ten are the noisy ones.

As can be seen, M3FS successfully selects the 4 relevant
features and assigns zero saliency to all the noisy features.
On the other hand, both the Laplacian score and FSGMM
assign non-zero saliencies to the noisy features.
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Figure 1. Feature saliencies on the iris data set with 10 noisy fea-
tures added.

4.3. Clustering Performance
In this section, we report the clustering performance of

the various algorithms on the data sets in Table 1. The clus-
tering accuracy and Rand Index results are shown in Ta-
ble 2. We also demonstrate the effect when manifold in-
formation is not used by setting λ = 0. As can be seen,
even when no manifold information is used, both the clus-
tering accuracy and Rand Index ofM3FS are comparable to
those attained by maximum margin clustering using all fea-
tures and is often better than the other unsupervised feature
selection algorithms. The addition of manifold regulariza-
tion significantly improves the performance of M3FS and
enables it to be even better thanMMC-all.

4.4. Generalization Ability of M3FS
Manifold-based maximum margin feature selection

adopts the maximummargin principle of SVM, which could
allow good generalization on unseen data. In this exper-
iment, we validate the generalization ability of M3FS on
unseen data samples. We first learn the M3FS model on a
data subset randomly drawn from the whole data set. Then
we use the learned model to cluster the whole data set. As
can be seen in Table 3, the clustering performance of the
model learned on the data subset is comparable with that of
the model learned on the whole data set. Thus, for a large
data set, we can simply perform the feature selection and
clustering process on a small subset of the data and then use
the learned model to cluster the remaining data points.

5. Conclusions
In this paper, we propose a novel unsupervised feature

selection method namedManifold-BasedMaximumMargin
Feature Selection (M3FS). M3FS targets to identify those
features that would result in the maximal separation of dif-
ferent clusters. As many computer vision and pattern recog-
nition problems have intrinsic manifold structure, we add
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Data m LapKM LapMMC FSGMM MMC-all M3FS M3FS (λ=0)
digits1v7 10 79.50 0.569 70.08 0.580 88.64 0.798 100.0 1.00 100.0 1.00 100.0 1.00

digits2v7 10 88.20 0.723 84.27 0.734 80.62 0.687 100.0 1.00 100.0 1.00 100.0 1.00

ionosphere 10 69.52 0.575 64.10 0.539 70.94 0.587 72.36 0.599 85.57 0.755 70.66 0.584
letterAvB 10 92.80 0.866 94.21 0.891 90.29 0.825 93.12 0.873 96.33 0.929 94.41 0.894
satellite 16 95.35 0.911 97.45 0.950 95.53 0.915 98.48 0.971 98.75 0.975 98.75 0.975

digits0689 20 54.84 0.735 93.41 0.600 75.32 0.863 96.63 0.968 97.19 0.973 95.65 0.960
digits1279 20 74.65 0.811 89.97 0.583 79.53 0.834 94.01 0.943 96.66 0.968 92.48 0.931
letterABCD 10 66.09 0.773 62.08 0.731 65.67 0.777 70.77 0.804 85.53 0.867 70.51 0.815
mnist01234 50 - - - - 71.32 0.811 89.98 0.901 90.85 0.919 90.85 0.919

Table 2. Clustering accuracy (%) and Rand Index comparisons on the various data sets. For each method, the number on the left denotes
the clustering accuracy, and the number on the right stands for the Rand Index. The symbol ‘-’ means that the corresponding algorithm
cannot handle the data set in reasonable time.

Data from whole set from data subset
Acc RI subset size Acc RI

letterAvB 96.33 0.929 500 95.60 0.912
satellite 98.75 0.975 500 98.57 0.972

letterABCD 85.53 0.867 500 83.98 0.852
mnist01234 90.85 0.919 1000 89.11 0.902
Table 3. Generalization ability on unseen samples when theM3FS
model is learned only from a data subset.

Laplacian regularizer in the objective to enforce smoothness
on the clustering function. Moreover, we also extend the
M3FS algorithm to the multi-class setting. Finally, experi-
mental results on both toy and real-world data sets demon-
strate the effectiveness of the proposed approach.
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