
Learning a Distance Metric from Multi-instance Multi-label Data

Rong Jin1 Shijun Wang2 Zhi-Hua Zhou3

1Dept. of Computer Science & Engineering, Michigan State University, East Lansing, MI 48824
2Dept. of Radiology & Imaging Sciences, National Institutes of Health, Bethesda, MD 20892

3National Key Lab for Novel Software Technology, Nanjing University, Nanjing 210093, China

rongjin@cse.msu.edu wangshi@cc.nih.gov zhouzh@lamda.nju.edu.cn

Abstract

Multi-instance multi-label learning (MIML) refers to the
learning problems where each example is represented by a
bag/collection of instances and is labeled by multiple labels.
An example application of MIML is visual object recog-
nition in which each image is represented by multiple key
points (i.e., instances) and is assigned to multiple object
categories. In this paper, we study the problem of learn-
ing a distance metric from multi-instance multi-label data.
It is significantly more challenging than the conventional
setup of distance metric learning because it is difficult to
associate instances in a bag with its assigned class labels.
We propose an iterative algorithm for MIML distance met-
ric learning: it first estimates the association between in-
stances in a bag and its assigned class labels, and learns a
distance metric from the estimated association by a discrim-
inative analysis; the learned metric will be used to update
the association between instances and class labels, which is
further used to improve the learning of distance metric. We
evaluate the proposed algorithm by the task of automated
image annotation, a well known MIML problem. Our em-
pirical study shows an encouraging result when combining
the proposed algorithm with citation-kNN, a state-of-the-
art algorithm for multi-instance learning.

1. Introduction

Distance metric learning aims to learn a distance met-

ric from the training data that tries to maintain the class

information of examples by their distances, i.e., examples

sharing the same class are close to each other while exam-

ples from different classes are separated by a large distance.

During the past few years, a large number of studies are de-

voted to distance metric learning [17]. Most of them assume

that every training instance is labeled by a single class label.

Multi-instance multi-label learning (MIML) [23] is a recent

framework for learning ambiguous data which finds appli-

cation in a wide range of real-world tasks [18, 19, 20, 23].

Unlike conventional setup of supervised learning where

each instance is labeled by a single-class label, MIML refers

to the learning problems where each example is represented

by a bag/collection of instances and is assigned to multiple

classes. In this paper, we consider the problem of learn-

ing a distance metric from multi-instance multi-label data.

The main challenge arises from the fact that the class la-

bels are assigned to each bag, not each instance. As a re-

sult, it is unclear, which instance in a bag is associated with

which class label assigned to the bag. This unknown asso-

ciation between instances and class labels makes it difficult

to directly apply the existing algorithms for distance metric

learning. In this paper, we present an iterative algorithm for

multi-instance multi-label distance metric learning. It alters

between two steps, i.e.,

• estimating the association between instances in bags

and the class labels assigned to bags, and

• learning a distance metric from the estimated associa-

tion between instances and class labels.

Our empirical study with automatic image annotation, a

typical MIML problem [18], shows encouraging results of

classification when combining the proposed distance met-

ric learning algorithm with the citation-kNN algorithm, a

famous algorithm for multi-instance learning.

The rest of the paper is organized as follows. Section

2 briefly reviews metric learning and multi-instance multi-

label learning. Sections 3 and 4 formulate the MIML metric

learning problem and present an iterative algorithm for the

related optimization problem. Experimental results are dis-

cussed in Section 5. Section 6 concludes this paper.

2. Related Work

The objective of metric learning is to learn an optimal

mapping, either linear or nonlinear, in the original feature

space or the reproducing kernel Hilbert space, from train-
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ing data. Existing approaches can be classified into the

categories of unsupervised metric learning and supervised

metric learning, depending on whether or not label or side-

information is used to learn the optimal metric. Principal

component analysis, locally linear embedding (LLE) [9],

ISOMAP [11], etc. are typical unsupervised metric learn-

ing methods. Most of the algorithms for supervised metric

learning are designed to learn either from the class label in-

formation or from the side information that is usually cast in

the form of pairwise constraints (i.e., must-link constraints

and cannot-link constraints) . In the seminar work of Xing

et al. [15], the authors proposed to learn a distance met-

ric from pairwise constraints. The optimal metric is found

to minimize the distances between data points in must-link

constraints and simultaneously maximize the distances be-

tween data points in cannot-link constraints. After that, a

number of methods and criteria are proposed from super-

vised metric learning. For example, Weinberger et al. [14]

proposed the maximum-margin nearest neighbor (LMNN)

classifier that learns an optimal metric for kNN classifiers

in a maximum margin framework. Relevance component

analysis [10] is another popular approach for supervised

metric learning. Data points in the same classes are grouped

into the so-called chunklets, and the distance metric is com-

puted based on the covariance matrix of each chunklet. For

more information about metric learning, we refer the read-

ers to a recent survey [17].

Multi-instance learning (MIL) was first formulated by

Dietterich et al. [4] in the study of drug activity prediction.

Maron and Lozano-Pérez [8] proposed the DD algorithm

which tries to search for a point in the feature space with

the maximum diverse density. This algorithm was further

extended by introducing expectation maximization (EM) al-

gorithm for estimating which instance(s) in a bag is respon-

sible for the assigned class label [21]. As a natural exten-

sion of the classical k nearest neighbor (k-NN) classifier,

citation-kNN was proposed by Wang and Zucker [13], in

which a Hausdorff distance is used to measure the distance

between bags, and both ‘citers’ and ‘references’ are con-

sidered in calculating neighbors. Later, kernel methods for

MIL were developed [1, 3, 7], as well as ensemble meth-

ods [12, 16, 22].

Multi-instance multi-label learning (MIML) generalizes

MIL by allowing each bag to be assigned to multiple class

labels. It was first proposed in [23], and was shown to be

useful for tasks involving ambiguous data objects such as

image classification and text categorization in which objects

are naturally described by multiple instances and associated

with multiple class labels simultaneously. In [23], two clas-

sical supervised learning algorithms, AdaBoost and SVM,

were adapted to MIML. A more efficient SVM algorithm

for MIML was proposed in [20].

As pointed out before, the key challenge of MIML dis-

tance metric learning arises from the unknown association

between the instances in bags and the class labels assigned

to the bags, which prevents the direct application of the ex-

isting algorithms for supervised metric learning. We also

want to point out that decomposing a multi-label task into a

set of binary tasks usually results in a suboptimal solution

due to the neglect of the correlation among classes [6]. To

our best knowledge, this is the first study devoted to learn-

ing a distance metric from multi-instance multi-label data.

3. Metric Learning from MIML Data
We first introduce the basic of multi-instance multi-label

learning, followed by the definition of distance between

bags and the design of the objective function for MIML dis-

tance metric learning.

3.1. Multi-Instance Multi-Label Learning

Let m and n denote the number of class labels and

the number of training examples, respectively. We de-

note by D = {(Xi, yi), i = 1, . . . , n} the labeled ex-

amples that are used for training distance metrics. Each

Xi = (x1
i , . . . , x

ni
i ) is a bag of ni instances, and every in-

stance xj
i ∈ R

d is a vector of d dimensions. Every class

assignment yi ∈ {0, 1}m is a binary vector, with yk
i = 1

indicating bag Xi is assigned to class ck and yk
i = 0 oth-

erwise. Assume (a) Bag X is assigned to class c ⇐⇒ at

least one instance in X belongs to c, and (b) Bag X is not

assigned to class c ⇐⇒ no instance in X belongs to c.

3.2. Distance Between Bags

Given two instances x1 and x2, the Mahalanobis distance

is define as d(x1, x2) = |x1−x2|2A = (x1−x2)�A(x1−x2)
where A ∈ Sd×d

+ is the distance metric to be learned (Sd×d
+

is the space of all d × d positive-semi definite matrices).

To develop a metric learning algorithm for MIML data, we

define the distance between two bags Xi and Xj as the min-

imum distance among the instances in the two bags, i.e.,

D(Xi, Xj) = min
1≤k≤ni,1≤l≤nj

|xk
i − xl

j |2A . (1)

The above definition indicates that the relationship be-

tween two bags is dictated by the shortest distance between

instances in the two bags. This is reasonable since we as-

sume that most instances in a bag are irrelevant to the target

classes. The following proposition provides an alternative

form of the bag distance in (1), which is useful for deriving

the optimization algorithm later on.

Proposition 1. The bag distance defined in (1) is equivalent
to the following expression

D(Xi, Xj) = min
qi∈Δni

,qj∈Δnj

ni∑
k=1

nj∑
l=1

qk
i ql

j |xk
i − xl

j |2A (2)
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where Δn = {q ∈ R
n
+|

∑n
k=1 qk = 1} and R

n
+ is a vector

space whose items are positive numbers or zero.

Given the distance between bags defined in (1), a

straightforward approach is to extend the conventional ap-

proaches for distance metric learning to MIML data. For in-

stance, searching for the distance metric A that minimizes

the distance between bags in the same classes, and max-

imizes the distance between bags from different classes.

This is however insufficient when each bag is assigned to

multiple classes simultaneously, because two bags could

share some common classes and in the meantime differ in

the assignment of other classes. To address this challenge,

we propose to combine data clustering with metric learn-

ing. In particular, we introduce multiple centers for each

class. For each class cl (l = 1, . . . , m), we introduce

K centers, denoted by Zl = {zi
l} (i = 1, . . . , K) where

zi
l ∈ R

d is a center for class cl. We further introduce nota-

tion Z = (Z1, . . . , Zm) to include the centers of all classes.

Since the centers of a class cl are represented by bag Zl, we

can measure the distance between a bag Xi and a class cj

by the distance between bags Xi and Zj , i.e.,

d(Xi, cj) = D(Xi, Zj) = min
1≤k≤ni,1≤l≤K

|xk
i − zl

j |2A . (3)

Similarly, we define the distance between two classes ci

and cj by the distance between the two corresponding bags

Zi and Zj , i.e., D(Zi, Zj) = min
1≤k,l≤K

|zk
i − zl

j |22.

3.3. Objective Function

With the defined distance measure between two bags,

we now examine the principle of constructing an objective

function for MIML distance metric learning. In particular,

we consider the following principle to learn optimal dis-

tance metrics from MIML data: (I) minimizing the distance

between each bag and its assigned classes, and (II) maxi-

mizing the distance between classes. We thus follow the

idea of Rayleigh ratio, which is widely used in discriminant

analysis, to construct the objective function as the ratio be-

tween the two factors, i.e.,

min
tr(A)=r,A�0,Z

∑n
i=1

∑m
j=1 yj

i D(Xi, Zj)∑m
i,j=1 D(Zi, Zj)(1 − δ(i, j))

(4)

where r ∈ N is an integer constant. Note that the constraint

tr(A) = r is introduced to avoid the scaling invariance of

the objective function, and will only affect the learned dis-

tance metric by a constant factor. To facilitate our compu-

tation, we further restrict A to be constructed by a set of

orthonormal vectors {wi}r
i=1, i.e., A =

∑r
i=1 wiw

�
i where

w�
i wj = δ(i, j). The resulting optimization problem be-

comes

min
A∈Λr,Z

∑n
i=1

∑m
j=1 yj

i D(Xi, Zj)∑m
i,j=1 D(Zi, Zj)(1 − δ(i, j))

(5)

where Λr = {A = WW�|W�W = Ir,W ∈ R
d×r}.

4. Optimization Strategy
In this section, we discuss the strategy for solving the

optimization problem in (5). We first simplify the distance

function in (2), followed by the algorithm for optimization.

4.1. Simplifying Distance Function

First, we have the following proposition to rewrite the

distance function in (2).

Proposition 2. The distance function in (2) is equivalent to

D(Xi, Xj) = min
Q∈Π(ni,nj)

ni∑
k=1

nj∑
l=1

Qk,l|xk
i − xl

j |2A , (6)

where

Π(n,m) = {Q ∈ [0, 1]n×m : tr(Q1) = 1, rank(Q) = 1} .

The proof of the above proposition can be found in a

longer version of the paper. Optimization under the con-

straint of rank is usually NP-hard. Given the result in Propo-

sition 2 and in order to make it computationally tractable,

we then simplify the definition of bag distance by dropping

the rank constraint, which results in the following simplified

definition

D(Xi, Xj) = min
Q∈R

ni×nj
+

tr(Q1)=1

ni∑
k=1

nj∑
l=1

Qi,j |xk
i − xl

j |2A . (7)

Using the distance function (7), we can rewrite the op-

timization problem in (5). We introduce Q(i,j) for measur-

ing the distance between a bag Xi and a class label cj , and

P (i,j) for measuring the distance between two class labels

ci and cj . The resulting optimization problem becomes

min
A∈Λr,Q,P,Z

∑n
i=1

∑m
j=1 yj

i

∑ni

k=1

∑K
l=1 Q

(i,j)
k,l |xk

i − zl
j |2A∑m

i,j=1(1 − δ(i, j))
∑K

k,l=1 P
(i,j)
k,l |zk

i − zl
j |2A

(8)

s. t. Q(i,j) ∈ R
ni×nj

+ , Q(i,j)1 = 1, i, j = 1, . . . , n

P (i,j) ∈ R
K×K
+ , P (i,j)1 = 1, i, j = 1, . . . , K

4.2. Alternating Optimization

We present an alternating optimization algorithm for (8).

In particular, we divide the variables into three groups A,

{Q,P}, and Z. We optimize each group of variables with

the other groups of variables fixed. It is noticeable that

our optimization problem is more challenging than com-

mon non-convex optimization problems since each step of

alternating optimization requires solving a non-convex op-

timization problem.
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Optimizing {Q,P} with A and Z fixed It is straightfor-

ward to verify that for each bag Xi and each of its assigned

class cj (i.e., yj
i = 1), we have the following optimal solu-

tion for Q(i,j):

Q
(i,j)
k,l =

{
1 (k, l) = arg min

1≤k′≤ni,1≤l′≤K
|xk′

i − zl′
j |A

0 otherwise

Similar, for any two class labels ci and cj , we have the fol-

lowing optimal solution for P (i,j):

P
(i,j)
k,l =

{
1 (k, l) = arg min

1≤k′,l′≤K
|zk′

i − zl′
j |A

0 otherwise

Optimizing A with {Q,P} and Z fixed The correspond-

ing optimization problem is

min
A∈Λr

∑n
i=1

∑m
j=1 yj

i

∑ni

k=1

∑K
l=1 Q

(i,j)
k,l |xk

i − zl
j |2A∑m

i,j=1(1 − δ(i, j))
∑K

k,l=1 P
(i,j)
k,l |zk

i − zl
j |2A

(9)

Note that the above problem is not a convex optimization

since (a) the objective function is a linear fraction func-

tion and therefore is non-convex, and (b) domain Λr is non-

convex. Here, we present an efficient approach to solve (9)

by using the Rayleigh ratio. We define

U =
n∑

i=1

m∑
j=1

yj
i

ni∑
k=1

K∑
l=1

Q
(i,j)
k,l (xk

i − zl
j)(x

k
i − zl

j)
�

V =
m∑

i,j=1

(1− δ(i, j))
K∑

k,l=1

P
(i,j)
k,l (zk

i − zl
j)(z

k
i − zl

j)
� .

The following theorem shows the optimal solution to (9).

Theorem 1. The problem in (9) is equivalent to

min
W∈Rd×r,W�W=Ir

tr(W�UW )
tr(W�V W )

(10)

The optimal solution to W = (w1, . . . , wr) is the first r
principal eigenvectors of the generalized eigenvector prob-
lem V wi = λUwi.

Optimizing Z with A and {Q,P} fixed The correspond-

ing optimization problem becomes

min
Z

∑n
i=1

∑m
j=1 yj

i

∑ni

k=1

∑K
l=1 Q

(i,j)
k,l |xk

i − zl
j |2A∑m

i,j=1(1 − δ(i, j))
∑K

k,l=1 P
(i,j)
k,l |zk

i − zl
j |2A

(11)

Again, the above problem is non-convex. In order to effi-

ciently solve (11), we first have the following proposition.

Proposition 3. Problem in (11) is equivalent to the follow-
ing optimization problem

min
λ≥0

λ s. t. ∃Z f(λ,Z) = 0 (12)

where f(λ,Z) = φ(Z) − λϕ(Z), and φ(Z) and ϕ(Z) are
defined as

φ(Z) =
n∑

i=1

m∑
j=1

yj
i

ni∑
k=1

K∑
l=1

Q
(i,j)
k,l |xk

i − zl
j |2A

ϕ(Z) =
m∑

i,j=1

(1 − δ(i, j))
K∑

k=1

K∑
l=1

P
(i,j)
k,l |zk

i − zl
j |2A

Given the optimization problem in (12), a straightfor-

ward approach is to convert (12) into a sequence of fea-

sibility problems. More specifically, we consider a bi-

section approach for finding the optimal value for λ. We

maintain the largest and the smallest values for λ, denoted

by λmax and λmin. In each iteration of bi-search, we set

λ = (λmax + λmin)/2, and try to solve the feasibility

problem ∃Zf(λ,Z) = 0. This is equivalent to show (a)

maxZ f(λ,Z) ≥ 0 and (b) minZ f(λ,Z) ≤ 0. If the fea-

sibility problem is satisfied, we have λmax = λ; otherwise

λmin = λ. Details of this algorithm can be found in a longer

version of the paper.

Below we discuss a computationally more efficient ap-

proach for (12) when each class cj is represented by a sin-

gle center zj . Given that each class has a single center, we

simplify (12) as

min
Z

∑n
i=1

∑m
j=1 yj

i

∑ni

k=1 Q
(i,j)
k |xk

i − zj |2A∑m
i,j=1 |zi − zj |2A

(13)

We define x̂k
i = W�xk

i and ẑj = W�zj and write (13) as

min
Ẑ

∑n
i=1

∑m
j=1 yj

i

∑ni

k=1 Q
(i,j)
k |x̂k

i − ẑj |2∑m
i,j=1 |ẑi − ẑj |2 (14)

Let Ẑ ′ be the current solution for Ẑ, and our goal is to re-

duce the objective in (14) with a new solution Ẑ. We thus

consider an relaxed problem of (14) as

min
Ẑ

∑n

i=1

∑m

j=1
yj

i

∑ni

k=1
Q

(i,j)
k |xk

i − ẑj |2 (15)

s. t.
∑m

i,j=1
|ẑi − ẑj |2 ≥ t

where t =
∑m

i,j=1 |ẑ′i − ẑ′j |2.

Proposition 4. Let Z ′ be the existing solution for Z, and
Z̃ be the solution that optimize (16). Let L(Z) denote the
objective function in (12), i.e., L(Z) = φ(Z)/ϕ(Z). We
have L(Z̃) ≤ L(Z ′).
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The above proposition indicates that the new solution ob-

tained by optimizing (16) will guarantee to reduce the ob-

jective function in (12). Below we describe a coordinate

descent approach for solving (16).

By fixing ẑj , j �= l except ẑl, we have the following op-

timization problem for ẑl:

min
ẑl

a|ẑl|2 − 2ẑ�l v + h s. t. |ẑl|2 − 2ẑ�l u ≥ s (16)

where

u =
1

m − 1

∑
j �=l

ẑj

s =
1

2(m − 1)

⎛
⎝t −

∑
j �=l

∑
k �=l

|ẑj − ẑk|2 − 2
∑
j �=l

|ẑj |2
⎞
⎠

v =
∑n

i=1

∑ni

k=1
yl

iQ
(i,l)
k x̂k

i

h =
∑n

i=1

∑ni

k=1
yl

iQ
(i,l)
k |x̂k

i |2

a =
∑n

i=1

∑ni

k=1
yl

iQ
(i,l)
k

It is important to note that (16) is a non-convex optimization

problem since the constraint |ẑl|2 − 2ẑ�l u ≥ s is a non-

convex constraint. We can solve the optimization problem

in (16) via the S-procedure [2].

Theorem 2. The optimal solution to (16) is

ẑl =
v − λu

a − λ
(17)

where

λ =

⎧⎨
⎩ a − min

(
|v−au|√

s+|u|2 , a

)
s + |u|2 ≤ 0

0 otherwise

The proof of the above theorem can be found in a longer

version of the paper.

5. Experiments
5.1. Data and Settings

To validate our method, we evaluate it on the task of au-

tomated image annotation. We use the same image data set

which had been used by Duygulu et al. in [5]. It includes

4, 500 train images and 500 test images selected from the

COREL image data set. Each image was segmented into no

more than 10 regions by Normalized Cut, and each region

was represented by 36 visual features. A K-means clus-

tering algorithm was applied to quantize the image regions

into 500 blobs. A total of 371 keywords was assigned to

5, 000 images. In our experiment, we only consider the first

20 most popular keywords since most of keywords are only

used for annotating a few images. This selection results in

a total 3, 947 training images and 444 test images.

The focus of this study is to evaluate the efficacy of

the proposed algorithm for learning a distance metric from

multi-instance multi-label data. To this end, we first learn a

distance metric from the training images, and the learned

distance metric is then used by the citation-kNN algo-

rithm [13] to annotate the test images. We extends the clas-

sical kNN classifier, which is originally designed for multi-

instance learning, to MIML learning. This is achieved by

measuring the distance between two bags Xi and Xj with a

Hausdorff distance that is defined as

H(Xi, Xj) = min
1≤k≤ni

max
1≤l≤nj

|xk
i − xl

j |A , (18)

where A is the metric learned by the proposed algorithm. To

determine the class labels for a given test example, citation-

kNN considers both references and citers. Given a test bag

X , we define its references as the R nearest bags in the

training set, and its citers as the training bags for which X
is its C nearest neighbors. The class labels of X is decided

by a majority vote of the R reference bags and the C citing

bags. Using the citation-kNN, we measure the quality of

the learned distance metric by the annotation accuracy of

citation-kNN. Finally, for the proposed algorithm, we set

the number of centers for each class to be one, i.e., K =
1, and the number of iterations to be ten, mainly for the

computational efficiency.

To measure the MIML learning performance, we adopt

three different metrics used in [23]. Assume we have nt test

bags. Given a test bag Xi that is labeled by yi ∈ {0, 1}m,

we denote by f(X, l) the score of class cl for X computed

by the citation-kNN algorithm, with f(X, l) > 0 indicat-

ing that X should be assigned to cl. We further denote by

rankf (X, l) the rank of class cl for bag X . Using these

notations, the three metrics are defined as follows:

• One-error measures the performance by considering

the top-ranked proper label of the test bag according to

oneerror =
1
nt

∑nt

i=1
I

(
yli

i = 0
)

,

where li = arg maxl∈[1,m] f (Xi, l). For single-label

problems, it reduces to the ordinary classification error.

• Coverage measures the performance by considering

the lowest-ranked proper label of the test bag accord-

ing to

coverage =
1
nt

∑nt

i=1
max
l:yl

i=1
rankf (x, l) − 1

The smaller the coverage, the better the performance.

• Average precision measures the performance by con-

sidering all proper labels of the test bag according to

avgprec =
1
nt

∑nt

i=1

1∑m
l=1 yl

i

∑
l:yl

i=1

bf (Xi, l)
rankf (Xi, l)
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Table 1. Annotation performance of citation-kNN on the COREL image dataset. ↓: the lower the metric, the better the performance; ↑: the

larger the metric, the better the performance. ML denotes MIML distance metric learning.

One-error (↓) Coverage (↓) Avg. Precision (↑)

without ML with ML without ML with ML without ML with ML
R=5,C=5 0.696 0.583 6.869 6.191 0.436 0.504

R=10,C=10 0.676 0.565 6.441 5.847 0.459 0.524

R=15,C=15 0.640 0.586 6.110 5.574 0.483 0.527

R=20,C=20 0.633 0.570 6.000 5.507 0.490 0.535
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Figure 1. Average precision (left) and recall (right) of each key-

word for citation-kNN with and without using metric learning.

where bf (Xi, l) measures the number of assigned class

labels that are ranked before cl, i.e.,

bf (Xi, l) =
∑

l′:yl′
i =1

I(rankf

(
Xi, l

′) ≤ rankf (Xi, l))

5.2. Results

Table 1 summarizes the performance of citation-kNN on

test set with four different configurations generated by vary-

ing R and C. By comparing the results obtained using the

learned metric to those without using the learned metric,

we can find that the learned metric is indeed able to signifi-

cantly improve the performance of citation-kNN. This sug-

gests that the proposed algorithm is effective in identifying

appropriate distance metrics for training examples.

To examine the effect of metric learning on the predic-

tion of different keywords, in Figure 1 we show the average

precision and recall for each word in the test set. In this

study, we set R = C = 10 for citation-kNN. From Fig-

ure 1 we observe that for average precision, by using the

learned distance metric, the performance of citation-kNN is

improved by 16 out of 20 keywords; for average recall, the

performance is improved for 14 out of 20 keywords. We

thus verify that the proposed algorithm is able to learn ap-

propriate distance metrics from MIML data.

Figure 2 shows some example test images and the near-

est images identified by citation-kNN with/without MIML

distance metric learning. We clearly observe that by us-

ing metric learning, the nearest neighbors are semantically

more relevant to the test images than without using met-

ric learning, which further validates the efficacy of the pro-

Figure 2. Comparisons of nearest images identified by citation-

kNN with/without metric learning. The first column shows some

test images; the second/third columns show the nearest reference

image in training set identified by citation-kNN without/with met-

ric learning, respectively.

posed algorithm.

6. Conclusion

In this paper, we study the problem of learning a dis-

tance metric from multi-instance multi-labele data. It is sig-

nificantly more challenging than the conventional setup of
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distance metric learning because of the difficulty in asso-

ciating instances in a bag with the class labels assigned to

the bag. To address this challenge, we propose an itera-

tive algorithm by alternating between the step of estimating

instance-label association and the step of learning distance

metrics from the estimated association. Empirical study on

automated image annotation shows an encouraging result

when combining the proposed method with citation-kNN,

a state-of-the-art algorithm for multi-instance learning. Be-

sides citation-kNN, the proposed algorithm for learning dis-

tance metrics from MIML data can be combined with the

other MIML classifiers in which a distance measure is used

as part of classification scheme. We plan to investigate the

integration of the proposed algorithms with the other ap-

proaches for MIML learning.
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