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Abstract

We consider the problem of single image object motion

deblurring from a static camera. It is well-known that de-

blurring of moving objects using a traditional camera is ill-

posed, due to the loss of high spatial frequencies in the cap-

tured blurred image. A coded exposure camera [17] modu-

lates the integration pattern of light by opening and closing

the shutter within the exposure time using a binary code.

The code is chosen to make the resulting point spread func-

tion (PSF) invertible, for best deconvolution performance.

However, for a successful deconvolution algorithm, PSF

estimation is as important as PSF invertibility. We show

that PSF estimation is easier if the resulting motion blur

is smooth and the optimal code for PSF invertibility could

worsen PSF estimation, since it leads to non-smooth blur.

We show that both criterions of PSF invertibility and PSF

estimation can be simultaneously met, albeit with a slight

increase in the deconvolution noise. We propose design

rules for a code to have good PSF estimation capability and

outline two search criteria for finding the optimal code for a

given length. We present theoretical analysis comparing the

performance of the proposed code with the code optimized

solely for PSF invertibility. We also show how to easily

implement coded exposure on a consumer grade machine

vision camera with no additional hardware. Real experi-

mental results demonstrate the effectiveness of the proposed

codes for motion deblurring.

1. Introduction

Motion deblurring is an important problem for computer

vision applications and consumer photography. Motion blur

in photographs manifests due to camera motion (e.g., hand-

shake), object motion or a combination of both. In this

paper, we are concerned with deblurring images of fast

moving objects captured from a static camera. There has

been significant amount of research on estimating the point
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Figure 1. Using a carefully designed code, one can achieve both

PSF estimation and invertibility for motion deblurring via coded

exposure camera. Photo of fast moving car (top) was captured us-

ing the coded exposure camera with code 111111100110001 (bot-

tom left). Deblurring result (bottom right) using estimated motion

PSF shows the effectiveness of the proposed codes.

spread function (PSF) of an optical system and recovering

a sharp image from captured noisy blurred image. Blind

deconvolution techniques attempt to estimate the PSF from

the given blurred image itself. It is well-known that if the

Fourier spectrum of the PSF contains zeros, simple inverse

filtering will amplify noise and produce ringing artifacts

in the deblurred image. Several techniques using image

priors and noise models such as Wiener filtering [16] and

Richardson-Lucy algorithm [19, 13] have been proposed to

handle such non-invertible PSF’s. See [6] for details.

The idea of engineering the motion PSF to make it in-

vertible and simplify motion deblurring was first proposed

in [17]. The key concept was to open and close the shutter

within the exposure time to preserve high spatial frequen-

cies in the captured image, using a carefully designed bi-

nary code. The code was chosen so that the resulting PSF

does not have any zeros in its frequency transform and is

as broadband as possible. In contrast, a traditional cam-

era keeps the shutter open for the entire exposure duration

leading to a low pass PSF, which is not invertible. This was

further extended to handle out of focus blur using coded
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aperture in [23].

However, the problem of PSF estimation still remains

even if the PSF is made invertible. One needs to estimate the

motion of moving objects in order to deblur them. In [17],

PSF is estimated by manually finding the motion direction.

Then the blurred image is rectified and deblurring is per-

formed for several blur sizes, and the best visual result is

chosen as output. Our goal is to automate PSF estimation

and we are inspired by the recent work in this area using

transparency (alpha matting) [7, 2]. Specifically, we use the

motion from blur (MFB) approach presented in [2].

Although these approaches were demonstrated for esti-

mating PSF using a traditional camera, we show that mo-

tion from blur constraint also holds for coded exposure,

for those parts of blur that correspond to ones in the code

(Figure 3). In case of analyzing motion blur as alpha mat-

ting, the ‘foreground’ corresponds to blurred object. Since

the estimation of transparency or alpha matting requires lo-

cally smooth foreground/background, the optimal code for

invertibility does not work well for PSF estimation because

it leads to non-smooth blur and foreground. Furthermore,

since the MFB algorithm relies on locally smooth alpha val-

ues to compute alpha gradients, PSF estimation becomes

even more difficult. Our key idea is to find an invertible

code which also results in smooth blur for some parts of the

blur profile to help in PSF estimation.

At first glance, it might appear that both good PSF es-

timation and PSF invertibility cannot be simultaneously

achieved. In [9], a 2D code for coded aperture was designed

so as to intentionally insert zeros in the frequency spectrum

of the PSF. The locations of zeros were used to estimate

the PSF scale. However, inserting zeros in the frequency

spectrum of the PSF inherently leads to non-invertible PSF,

making deconvolution ill-posed. In addition, in presence of

noise, deciding which frequency magnitude is zero is ex-

tremely unstable. [9] uses several heuristics, image priors

and a learning based approach for locating zeros in the fre-

quency spectrum of the blurred image. In this paper, we

show that one does not need to sacrifice invertibility for PSF

estimation. Both can be simultaneously achieved by careful

code selection, but with a slight increase in the deconvo-

lution noise compared to the optimal invertible code. Our

approach does not use any training data or learning meth-

ods.

Contributions: Our contributions are as follows.

• We show that the motion from blur constraint also

holds for those parts of coded blur that correspond to

ones in the code with a constant scale factor given by

the ratio of the number of ones to the code length.

• We demonstrate that smooth blur is easier to estimate

and the optimal invertible code could worsen PSF esti-

mation as it leads to discontinuities in the blur profile.

• We outline criteria for both good PSF estimation capa-

PSF Estimation

PSF Invertibility

Traditional Camera Coded Exposure 
Raskar et al.
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Traditional 1111111111111111111111111111111
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Figure 2. A traditional camera is good for PSF estimation since it

results in smooth blur, but has poor deblurring performance. While

coded exposure makes PSF invertible, it introduces discontinuities

in blur that makes PSF estimation difficult. By carefully choosing

the code, we achieve both PSF estimation and invertibility.

bility and invertibility and propose two search methods

to quickly find the code for large code lengths.

• We show how coded exposure can be implemented on

available machine vision cameras with no additional

hardware.

Limitations: Our method is limited to low-frequency

background due to blur estimation using alpha matting,

which requires smooth background. In addition, using a sin-

gle image similar to [17] also limits the background, since

high-frequency background results in noisy alpha matte and

leads to deblurring artifacts at the layer boundaries. Us-

ing multiple images or better alpha matting techniques tai-

lored to motion blur would allow handling such cases. Our

method is also limited to linear motion model. Although

restrictive, linear motion model can handle a broad class

of spatially varying motions that can be rectified to lin-

ear motion. In addition, MFB [2] is capable of handling

broader classes of object motions, such as rotational and

non-parametric motion blur and our approach would bene-

fit from it.

1.1. Related work

Coding and modulation: Multiplexing techniques are

becoming popular for several computer vision and graphics

applications. Schechner and Nayar [20] use illumination

multiplexing using Hadamard codes to improve the signal

to noise (SNR) ratio in image capture. This was extended

in [18] to include the effect of sensor noise and satura-

tion. Coded aperture techniques use MURA codes [4, 1]

to improve capture SNR in non-visible imaging and invert-

ible codes for out-of-focus deblurring for photography [23].

Zomet and Nayar [26] replace the conventional lens of the

camera with parallel light attenuating layers whose trans-

mittances are controllable in space and time for useful ap-

plications such as split field of view and instantaneous pan

and tilt. Light field capture using frequency domain multi-

plexing was proposed in [23] and using multiplexed coded

aperture in [12]. Nayar et al. [15] proposed programmable

imaging by using a digital micro-mirror device (DMD).

PSF manipulation: Two important classes of tech-

niques involve modifying the PSF and make it (a) invert-

ible or (b) invariant. Wavefront coding methods [3] use a
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Figure 3. (Left) Motion from blur constraint holds for coded exposure for those parts of the blur which correspond to ones in the code. For

traditional camera, slope of α equals 1/k. For coded exposure, slope increases by a factor of n/s. (Middle) Synthetic example showing a

polygon shaped object moving horizontally. (Right) Corresponding blur profiles obtained from blurred synthetic images.

cubic phase plate in front of the lens to make defocus PSF

invariant to depth. This enables the use of a single decon-

volution filter to recover the sharp image without knowing

the depths in the scene. Nagahara et al. [14] move the sen-

sor in the lateral direction during image capture to make the

defocus PSF invariant to depth. However, the drawback is

that the typical plane of focus due to lens is also blurred. By

moving the camera in a parabolic fashion, Levin et al. [11]

make the motion PSF approximately invariant to the speed

of the object. Similarly, the drawback is that static parts of

the scene are also blurred. Coded exposure [17] and coded

aperture [23] techniques make the PSF invertible so that the

resulting deconvolution process becomes well-posed. How-

ever, PSF estimation is still required.

PSF estimation and deblurring: Recent interest in

computational photography has spurred significant research

in PSF estimation and deblurring algorithms. Fergus et al.

[5] use natural image statistics to estimate the PSF from

a single blurred image. Joshi et al. [8] estimate non-

parametric, spatially-varying blur functions by predicting

the sharp version of a blurry input image. Yuan et al. [24]

use both a short exposure image and a long exposure image

to estimate the motion PSF and use them simultaneously

for deblurring to handle camera shake. Recent work on de-

blurring algorithms [21, 25] have shown excellent results on

images corrupted due to camera shake.

2. Blur estimation using alpha matting

Let s(x, y) denote the image of the object if it was static

and h(x, y) be the motion PSF. Let M(x, y) be a binary

indicator function for the object1. When the object moves

in front of the background b(x, y), the captured blurred im-

age I is given by the sum of blurred foreground object and

partial background [17]

I = s ∗ h + (1 − M ∗ h)b. (1)

Comparing with the familiar matting equation I = αF +
(1 − α)B [22], we get

B = b, α = M ∗ h, F = (s ∗ h)/(M ∗ h). (2)

1We assume that the moving object is opaque and in sharp focus.

Note that the ‘foreground’ for the matting algorithm is not

the actual object s, but the blurred object which depends on

the PSF h. Although matting algorithms can handle com-

plex α (such as hair, smoke etc.) and thus discontinuous

I , they require both the foreground and background to be

locally smooth or low frequency. For a traditional camera,

PSF is a box function (h is low pass) and results in smooth

foreground F . Previous motion blur estimation algorithms

based on alpha matting have shown very good results on

images captured using a traditional camera. However, de-

blurring is ill-posed due to h being low pass.

2.1. Coded exposure camera

The key idea of coded exposure is to open and close the

shutter according to a pseudo-random binary code to pre-

serve high spatial frequencies in the captured blurred image.

Thus, the motion PSF h becomes broadband and deblurring

is well-posed. However, this results in high frequency vari-

ations in the blur profile. Thus, alpha matting is not robust

due to non-smooth ‘foreground’ and PSF estimation using

transparency is also hard due to non-smooth alpha. Our goal

is to design the code so that certain parts of the code result

in smooth blur to help matting and PSF estimation, while

overall the code is still invertible for good deblurring.

For rest of the paper, let c(x) be the code, n be the code

length, s be the total number of ones, t be the number of

transitions, and r be the maximum number of continuous

ones in the code. A traditional camera can also be charac-

terized as a coded exposure camera with s = r = n and

t = 0. Note that the coded exposure camera loses light by a

factor of n
s

. The linear system corresponding to motion blur

is given by Ax = b, where A is the motion smear matrix,

x is the unknown sharp image, and b is the blurred photo.

Similar to [17], we use fnoise = mean(AT A)−1 for evalu-

ating the increase in deconvolution noise.

2.2. Motion from blur

We first show that motion from blur constraint also holds

for coded exposure camera. The constraint is given by [2]

∇α · k = ±1, (3)
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where k = [kx, ky] denotes the blur vector2. This constraint

assumes h to be a box filter (traditional camera). For coded

exposure, h is a sum of shifted box functions of varying

sizes. Thus, this constraint still holds for each set of con-

tinuous ones in the code. If the object moves with constant

speed, the motion from blur constraint changes to

∇α · k = ±
n

s
, if c(x) = 1, (4)

since PSF h is normalized to 1 (
∫

h = 1). When the code

is zero, no light is integrated, and hence α remains constant

(∇α = 0) within that time period. Only for those parts of

code which are 1, the constraint holds as shown in Figure 3.

2.3. Codes with similar deblurring performance

Codes having the same deblurring performance could

differ significantly in their resulting blur profiles. Consider

two n = 31 codes:

C1 = 1010101011100111101110101111011,

C2 = 1111111111111000010011101000111.

Both codes have the same number of ones (s = 21), and

thus would allow the same amount of light. Figure 4 shows

the magnitude of the frequency transform for both codes af-

ter zero padding. The minimum frequency transform mag-

nitude is the same for both codes. In fact, the increase in

deconvolution noise for C1 and C2 are 19.7 and 20.09 dB

respectively (compared to 35.7 dB for traditional camera).

Thus, these two codes will result in similar deblurring per-

formance. However, they result in significantly different

blur profiles. The number of transitions, t, for C1 equals

18 compared to 8 for C2 and C2 has a long continuous

string of ones (r = 13). As shown in Figure 4, the blur

profile corresponding to C2 will be smooth at one end, with

minimum number of discontinuities compared with the blur

profile corresponding to C1. Thus, for the same deblurring

performance, one could possibly choose a code which re-

sults in smooth blur for some parts of the entire motion blur.

Since most alpha matting algorithms require local smooth-

ness within a neighborhood (e.g., 3 × 3), minimizing the

number of transitions in the code will reduce discontinu-

ities in foreground and result in better alpha map estima-

tion. Moreover, the smoothly changing alpha values within

the same region also allows better gradients computation;

thus facilitates PSF estimation.

3. PSF estimation and deblurring results

In this section, we show results and comparison for PSF

estimation and deblurring on real datasets using traditional

camera and coded exposure with codes C1 and C2. In all

2Assuming constant velocity object motion in image plane.

−2pi/3 0 2pi/3
−30

−25

−20

−15

−10

−5

0

Frequency

Magnitude of FFT of PSF (Log)

 

 

Traditional

Coded C
1

Coded C
2

5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

Blur profile α

 

 

C
1
=1010101011100111101110101111011

C
2
=1111111111111000010011101000111

Traditional

Coded C
1

Coded C
2

Figure 4. Two different codes C1 and C2 having same deblurring

performance but different blur profiles. (Left) The magnitude of

Fourier transform shows that although the minimum for C1 and

C2 are same (blue line), C1 attenuates low frequencies much more

than C2. (Right) C2 has small number of transitions and long con-

secutive string of ones. This results in smooth blur profile for C2

on one side which helps in PSF estimation. Note that since alpha

is normalized to [0, 1], the slopes of blur profiles for traditional

and coded exposure are different.

results where we compare with a traditional camera, its ex-

posure time is reduced by a factor of n
s

to ensure the same

light level. The traditional camera image thus will have re-

duced blur by the same factor.

The PSF estimation algorithm follows [2], where first al-

pha matting is performed (using Levin et al. [10]) to obtain

the alpha values. We further improve the MFB algorithm to

handle the aperture problem as described below. As shown

in [2], every pixel whose alpha gradient is non-zero, gives

information about the blur direction and magnitude. In [2],

first a set of locally consistent pixels are found and then

RANSAC is applied to estimate the blur using (3) by com-

puting the inliers.

Weighted least square (WLS) estimation: To handle

the aperture problem, blurred edges of different edge direc-

tions should be present in the image as described in [2].

However, [2] uses all inliers equally to estimate the blur.

We propose to cluster the inliers based on the α-gradient

values, since αx and αy together give information about the

edge direction. For example, if both αx and αy are larger

than zero, the pixel belongs to an edge that is facing top

right. Specifically, we divide the inliers into 8 clusters de-

pending on whether the gradient αx, αy are > τ , < −τ , or

∈ [−τ, τ ], where τ is a threshold (e.g. 0.02). We ignore the

cluster where both αx, αy are ∈ [−τ, τ ], since those pix-

els do not give any useful information in presence of noise.

Then, we simply perform a WLS estimate on inliers, where

the weights are the inverse of cluster sizes. This ensures

that edges having different directions get equal weights in

blur estimation, so that the estimation is not biased towards

a particular edge direction.

Object moving at an angle: Figure 5 shows results on

a toy motorcycle, where the motion is non-horizontal in the

image plane. The captured blurred photos and deblurred

results are shown in top and bottom rows respectively for

traditional and coded exposure cameras using C1 and C2

codes. Note that the estimated PSF using C2 is close to
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Traditional Coded C1 Coded C2k = [-28.78,5.36] k = [-54.8,5.08] k = [-42.09,10.88]

Figure 5. Motorcycle moving at an angle. (Top) Blurred photos. (Middle) Alpha maps with inliers. (Bottom) Deblurred results. PSF

estimation for traditional camera is good but deblurring is poor due to non-invertible PSF. Bad PSF estimation for code C1 leads to poor

deblurring. For C2, estimated PSF is good, as proved by the deblurring result. The ratio between the lengths of motion vectors k for coded

and traditional exposure should be n/s=31/21=1.47. It is 1.48 for C2, 1.88 for C1. Input images are rotated using the estimated motion

angle before deblurring to bring the motion horizontal. For C1, incorrectly estimated angle cannot be used to rectify the input image.

ground truth, as shown by the good deblurring result. PSF

estimation for traditional camera is also good but deblurring

is bad due to PSF being non-invertible. Figure 5 (middle

row) also shows inliers (different color for each cluster) ob-

tained from MFB algorithm. For traditional camera, inliers

span all parts of the blur as expected; while, for coded blur,

the α-motion blur constraint only holds for those parts of

the blur that correspond to 1’s in the code, as described in

Section 2.2. Note that for C2, most of the inliers are present

on one end of the blur corresponding to the long string of

1’s in C2. However, for C1, inliers are scattered all over the

blur which shows that alpha estimation and MFB algorithm

was not successful. Figure 6 also shows the ground truth

photo and the deblurring result for C1 if the PSF estimated

Ground Truth Coded C1

Figure 6. Motorcycle. (Left) Ground truth sharp image. (Right)

Deblurring result for C1 using the motion PSF estimated from C2

shows that the deblurring performances are similar for C1 and C2,

but PSF estimation fails using C1 (see Figure 5 middle image in

the bottom row.)

using C2 is used. This clearly demonstrates that the deblur-

ring performances for C1 and C2 are similar. However, C2

assists in PSF estimation, while C1 does not.

Non-uniform background: Figure 7 shows an example

of a moving sticker in front of a non-uniform background.

Again note that the estimated inliers for C2 are restricted to

those parts of the blur, which correspond to the long string

of 1’s. The deblurring results demonstrate that the motion

estimation is good for C2, but poor for C1.

Complex object shape: Figure 8 shows another exam-

ple on an complex shaped action figure. Even though the

shape is complex, our algorithm successfully estimates the

PSF using C2 since it produces partial smooth blur. Fine

features are recovered on the action figure using C2 code.

Outdoor scene: Our approach also works on challeng-

ing outdoor scene as shown in Figure 1. Since the car is

far away, it is assumed to be moving parallel to the image

plane. A n = 15 code 111111100110001 with r = 7 was

used to capture the photo. Note that the deblurring result

recovers sharp features on the car.

4. Implementation and analysis

In [17], coded exposure was implemented using an ex-

ternal ferro-electric shutter placed in front of the lens of a

SLR camera. The ferro-electric shutter from DisplayTech
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Traditional Coded C1 Coded C2

Figure 7. Non-uniform background. (Top) Blurred photos. (Mid-

dle) Alpha maps with inliers. Each color shows one of the 8 clus-

ters. (Bottom) Deblurring results. Estimated k are [-26.56, 0.67],

[-49.87, 1.13] and [-37.75, -0.33] for traditional, C1 and C2 re-

spectively. The magnitude of the estimated motion vector for C2

is 1.42 times of that of traditional exposure, close to the theoretical

factor of n/s=31/21=1.47.

costs ≈ $500 and requires an external micro-controller for

control. In addition, the external shutter leads to vignetting

in images and loses light even when it is transparent due to

polarization. Instead, we implemented coded exposure on

a consumer grade machine vision camera by on-chip flut-

tered integration with zero additional cost and avoided all

the above issues. This can be achieved with any camera

that supports IEEE DCAM Trigger mode 5. This trigger

mode supports multiple pulse-width trigger with a single

readout. We use the Dragonfly2 camera from PointGrey

(www.ptgrey.com) (Figure 1). The camera is triggered

using the parallel port of a PC. Each bit of the code corre-

sponds to 1 ms of the exposure time in our implementation.

Thus, for n = 31, total exposure time was 31 ms. To im-

plement a particular code, the camera is triggered at 0 → 1
transition and held until the next 1 → 0 transition. For ex-

ample, for code 11101000011, three triggers will be sent at

0, 4 and 9 ms and held for a duration of 3, 1 and 2 ms re-

spectively. Note that the number of triggers is not equal to

the number of 1’s in the code; rather for each continuous set

of 1’s, one trigger is sent. For indoor datasets, we captured

blurred photos of objects placed on a moving variable-speed

Traditional Coded C1 Coded C2

Figure 8. Action figure with complex shape. (Top) Input blurred

photos. (Bottom) Deblurring Results. The estimated motion vec-

tors were [-27.99, -1.00], [-49.99,-4.78] and [-41.14,0.22] for tra-

ditional, C1 and C2 respectively. Note that motion estimation us-

ing traditional camera and C2 code is good. However, only C2

achieves both PSF estimation and PSF invertibility.

toy train.

4.1. Fast binary code search

We describe two approaches to search for the optimal

code for a given code length n that satisfies the criteria for

both PSF estimation and invertibility. These criteria are

(a) minimize fnoise, (b) minimize t, (c) maximize s, and

(d) maximize r. Depending on the application, other ap-

proaches could be used. Note that the first and the last bit

of the code have to be 1, otherwise the code will reduce

to a code of smaller length. Thus, in general the search

space is of order 2n−2 for code length n. For small n, the

search space is small and all possible codes can be tested.

For larger n, if the search space is large (> 106), we ran-

domly sample 106 codes from the search space for testing.

In the first approach, we fix s = sth and set a threshold

(f th
noise) on the maximum deconvolution noise that can be

tolerated (e.g., 20 dB). We find all codes for which fnoise ≤

f th
noise. The search space is equal to

(

n−2

s−2

)

. We sort these

codes according to t and pick the first code which has the
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10

15

20

25

30

35

40

Maximum number of consecutive ones (r)

f n
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C
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Figure 9. Deblurring performance of our proposed codes and opti-

mal invertible codes [17] with respect to r for the same light level.

The proposed codes help PSF estimation and are much better than

traditional camera in terms of deconvolution noise. The increase

in noise with respect to optimal invertible codes is small.
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Coded Cbest Coded C2
Ground Truth 5 7 10 13 22 31

Traditional

r

Cbest C2

Figure 10. (Left) Visual deblurring comparison of C2 versus Cbest on real datasets. Note that the proposed code C2 gives similar deblurring

performance compared to optimal code Cbest. (Right) PSF estimation capability for n = 31 codes with increasing r (decreasing number

of 0 → 1 transitions). For small r, PSF estimation fails leading to poor deblurring results. Note that r = 5 for Cbest, and thus optimal

invertible code may not give good PSF estimation. As r increases, PSF estimation improves, but PSF invertibility degrades.

maximum r in the sorted list. A second faster approach is

to first set r, the continuous number of ones in the code. For

simplicity, let the first r bits be ones. The search space is

reduced to 2n−r−2 (the (r + 1)th bit has to be 0 and the

last bit has to be 1). Among these codes, we choose those

whose fnoise ≤ f th
noise and s = sth, and pick the one with

minimum t. If no code satisfies the criteria, r is decreased

by one and the search is repeated.

The code C2 described in Section 2.3 is found using the

second approach for n = 31 and r = 13 by testing only

231−13−2 = 65, 536 codes in 6.7 seconds on a standard

PC. For this code, s = 21 and searching the code using the

first approach requires testing
(

31−2

21−2

)

=20.03 million codes,

which is 305.6 times more than that of the second approach.

4.2. Analysis

We compare the proposed codes with the optimal code

for PSF invertibility for the same light level. The

optimal invertible code [17] simply minimizes fnoise

without considering PSF estimation (r and t). Obvi-

ously, the proposed codes will lead to more deconvo-

lution noise, but the increase in deconvolution noise is

small and visually the deblurring results are comparable.

For example, for n = 31, the optimal invertible code

Cbest = 1011110110101000110111110011111 was found

using [17]. The deconvolution noise for optimal code Cbest

is 18.52dB compared to 20.05dB for C2.

Figure 9 compares the fnoise for the proposed codes and

optimal invertible codes for r varying from 1 to n. For a

given r, we obtain our code using the approach described

in Section 4.1. We record the s value and then find the op-

timal invertible code which has the same s value (for the

same light level). The fnoise for a traditional exposure with

the same light level is also plotted in black. When r = n,

there is only one code (all ones) and all three curves meet.

In general, the optimal invertible codes have r around 3−5,

so the green and red curves meet at low r values. The plot

shows that the increase in fnoise using proposed codes is

small and the proposed codes are significantly better than

the traditional camera in terms of deconvolution noise. Fig-

ure 10 (left) shows visual deblurring comparisons on real

datasets for Cbest and C2 using the same motion PSF (es-

timated from photos captured using C2). Note that the de-

blurring results are visually similar.

PSF estimation: We analyze the PSF estimation capa-

bility of the proposed codes for different values of r for a

given n. As r increases, the code becomes similar to a tra-

ditional camera (r = n) and becomes favorable for PSF

estimation, but fnoise increases significantly. Smaller val-

ues of r (r ≈ 5) result in significant noise in the estimation

of alpha values. In Figure 10 (right), we show results using

codes having different r values. In general, we found that

codes with r ≥ n/3 work well for PSF estimation.

5. Discussions

We have focused on binary valued codes; however con-

tinuous valued codes can improve both PSF estimation and

invertibility. As shown in [23], continuous valued codes

perform better than binary codes in terms of deconvolu-

tion noise, since they could avoid the sharp transitions of

a binary code and result in smoother blur. In fact, optimiz-

ing such codes will be easier using continuous optimization

compared to the discrete search used for binary codes. To

enforce smooth blur, a penalty on the spatial gradients of

the code can be applied, similar to the regularization tech-

niques. However, their implementation is not straightfor-

ward using external shutters or trigger-based cameras. It

could be achieved by controlling the A/D gain during the
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exposure time according to the code, but would require

changes at the chip level. We have focused on spatially-

invariant PSF, but the proposed codes could also be used for

affine motion using variations of the MFB algorithm. Our

approach shares the same limitations of the alpha matting

algorithm (e.g., low-frequency background) and requires a

few brushes for matting initialization. Combining informa-

tion from multiple images captured with same or different

codes will further help in matting and PSF estimation.

Conclusions: PSF estimation is as important as PSF in-

vertibility for motion deblurring. A traditional camera re-

sults in smooth blur which is easier to estimate, but makes

the PSF non-invertible. A coded exposure camera makes

the PSF invertible but results in sharp discontinuities in the

blur and degrades PSF estimation. We showed that both

criteria of PSF estimation and invertibility can be achieved

by carefully designing the code. We proposed design rules

based on minimizing the transitions and maximizing the

number of continuous ones in the code for good PSF estima-

tion and described two schemes for searching such codes.

We analyzed the performance of the proposed codes in com-

parison with the optimal invertible codes. We also described

how coded exposure can be implemented on machine vision

sensors without any additional cost and presented real ex-

perimental results that showed the effectiveness of the pro-

posed codes for PSF estimation and invertibility.
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