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Abstract

We introduce a new technique that can reduce any
higher-order Markov random field with binary labels into
a first-order one that has the same minima as the original.
Moreover, we combine the reduction with the fusion-move
and QPBO algorithms to optimize higher-order multi-label
problems. While many vision problems today are formu-
lated as energy minimization problems, they have mostly
been limited to using first-order energies, which consist of
unary and pairwise clique potentials, with a few exceptions
that consider triples. This is because of the lack of efficient
algorithms to optimize energies with higher-order interac-
tions. Our algorithm challenges this restriction that limits
the representational power of the models, so that higher-
order energies can be used to capture the rich statistics of
natural scenes. To demonstrate the algorithm, we minimize
a third-order energy, which allows clique potentials with up
to four pixels, in an image restoration problem. The prob-
lem uses the Fields of Experts model, a learned spatial prior
of natural images that has been used to test two belief prop-
agation algorithms capable of optimizing higher-order en-
ergies. The results show that the algorithm exceeds the BP
algorithms in both optimization performance and speed.

1. Introduction

Many problems in computer vision such as segmenta-
tion, stereo, and image restoration are formulated as op-
timization problems involving inference of the maximum
a posteriori (MAP) solution of a Markov Random Field
(MRF). Such optimization schemes have become quite pop-
ular, largely owing to the success of optimization techniques
such as graph cuts[5, 10, 14], belief propagation[7, 21], and
tree-reweighted message passing[13]. However, because of
the lack of efficient algorithms to optimize energies with
higher-order interactions, most are represented in terms of
unary and pairwise clique potentials, with a few exceptions

Table 1. Graph cut applicability
Order Binary labels Multiple labels

First Mincut[14], QPBO[9] → binary (α-exp. [5]), [10]

Second → 1st order [14, 8] → binary (fusion [29])

Higher → 1st order (this paper) → binary (fusion, this paper)

that consider triples[6, 14, 29]. This limitation severely re-
stricts the representational power of the models: the rich
statistics of natural scenes cannot be captured by such lim-
ited potentials[21]. Higher order cliques can model more
complex interactions and reflect the natural statistics better.

This has long been realized[11, 22, 25], but with the re-
cent success of the new energy optimization methods, there
is a renewed emphasis on the effort to find an efficient way
to optimize MRFs of higher order. For instance, belief
propagation variants[17, 23] have been introduced to do in-
ference based on higher-order clique potentials. In graph
cut, Kolmogorov and Zabih[14] found a reduction that can
reduce second-order binary-label potentials into pairwise
ones, followed by an algebraic simplification by Freedman
and Drineas[8] (Table 1.) Kohli et al.[12] extend the class
of energies for which the optimal α-expansion and αβ-swap
moves can be computed in polynomial time. Most recently,
there are at least three papers just in this CVPR, includ-
ing this one, addressing the problem of minimizing higher-
order Markov random fields: Komodakis and Paragios[16]
employ a master-slave decomposition framework to solve a
dual relaxation to the MRF problem; Rother et al.[27] use a
soft-pattern-based representation of higher-order functions
that may for some energies lead to very compact first-order
functions with small number of non-submodular terms, as
well as addressing the problem of transforming general
multi-label functions into quadratic ones.

In our approach, higher-order energies are optimized by
“move-making,” in which higher-order energies of binary
variables are reduced to first-order ones and minimized iter-
atively. For our approach, two recent advances in graph cut
are essential. First, there is a recent generalization called
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“fusion move”[18, 19] of the α-expansion algorithm[5].
The energy is minimized in α-expansion by starting from an
initial labeling and iteratively making a series of moves that
decrease the energy. In each iteration, the move is selected
by solving a binary-label optimization problem with an s-
t mincut algorithm, which can globally optimize a class of
first-order binary-label energy potentials called submodular
functions[14]. The move at each pixel can be i) changing
the label to α or ii) keeping the current label. The fusion
move generalizes this by allowing a “proposal” and the cur-
rent labeling to be merged by arbitrarily choosing one of the
two at each pixel to generate a new map of labels.

Second, a recent innovation allows optimization of first-
order non-submodular functions. This method by Boros,
Hammer, and their co-workers [2, 4, 9] is variously called
QPBO[15] or roof-duality[26]. If the function is submodu-
lar, QPBO is guaranteed to find the global minimum. Even
if it is not submodular, QPBO returns a solution assigning
either 0, 1, or −1 to each pixel, with the guarantee that at
pixels where 0 or 1 is assigned, the value is what it would
be with a globally minimum labeling. Pixels that are as-
signed −1 have “unlabeled” values. This has a crucial im-
pact on the move-making algorithms since the choice of the
move at each iteration depends on binary-label optimiza-
tion. In particular, QPBO has an “autarky” property[15]
that lets us ensure that energy does not increase in move-
making: we just leave the label unchanged at those pixels
that are given the value −1 by the QPBO algorithm. In the
context of optimizing higher-order potentials, it means that
some limitations that prevented the use of these algorithms
for higher-order functions can possibly be overcome.

As we mentioned, second-order potentials on binary
variables can be reduced into pairwise ones[14]. However,
the requirement that the result of reduction must be sub-
modular made its actual use quite rare, if not nonexistent.
Thanks to the QPBO technique, now we can think of reduc-
ing higher-order potentials into pairwise ones with a hope
that at least part of the solution can be found. Although
it is not a solution to every problem, the QPBO technique
often allows solving a non-submodular problem approxi-
mately by giving a large enough part of the globally opti-
mal move to iteratively improve the solution. Woodword et
al.[29] recently used this strategy very successfully.

So far, the second-order case has remained the only case
that could be solved using this group of techniques, because
the reduction we mention above is only applicable in that
case (Table 1). To be sure, a totally different reduction tech-
nique that can reduce energies of any order has been known
for a long time[24]; however, to our knowledge it has never
been used successfully in practice for orders higher than
two. This seems to be because, even though it can reduce
any function into pairwise clique potential, the result is al-
ways non-submodular. We discuss this in §2.2 and §2.3.

In this paper, we introduce a new reduction technique
along the line of the Kolmogorov-Zabih reduction that can
reduce any higher-order optimization problem on binary
variables into an equivalent first-order problem. Then we
use it with fusion move and QPBO in move-making algo-
rithms to optimize higher-order multi-label energies.

We demonstrate its effectiveness by testing it on a third-
order potential, an image restoration problem that has been
used to test two BP algorithms[17, 23] capable of optimiz-
ing higher-order energies. We show that the fusion-move al-
gorithm using our reduction outperforms the BP algorithms
in both quality and speed.

In the next section, we describe briefly the two known
reductions and discuss their limitations. In section 3, we
introduce the new reduction. We describe the higher-order
fusion-move algorithm using the reduction in section 4 and
its experimental validation in section 5.

2. Known Reductions
There are a couple of known methods to reduce a higher-

order function of binary variables to first-order one so that
the minima of the reduced function can be translated eas-
ily to those for the original function. Here, we outline the
known reduction methods and then discuss their limitations.

We denote the set {0, 1} by B and the set of all real num-
bers by R. We consider functions in binary variables, i.e.,
a map f : Bn → R, where n is the number of variables.
Such functions are called pseudo-Boolean functions. Any
pseudo-Boolean function can be uniquely represented as a
polynomial of the form

f (x1, . . . , xn) =
∑
S⊂V

cS

∏
i∈S

xi, (1)

where V = {1, . . . , n} and cS ∈ R [3].

2.1. Reduction by Minimum Selection

Kolmogorov and Zabih[14] first proposed this reduction
in the context of graph-cut optimization. Later, Freedman
and Drineas[8] recast it into an algebraic formula.

Consider a cubic pseudo-Boolean function of x, y, z ∈ B

f (x, y, z) = axyz. (2)

The reduction is based on the following:

xyz = max
w∈B

w(x + y + z − 2). (3)

Suppose R ∋ a < 0. Then

axyz = min
w∈B

aw(x + y + z − 2). (4)

Thus, whenever axyz appears in a minimization problem
with a < 0, it can be replaced by aw(x + y + z − 2).
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What if a > 0? Then we flip the variables (i.e., replace x
by 1 − x, y by 1 − y, and z by 1 − z) of (3) and consider

(1− x)(1− y)(1− z) = max
w∈B

w(1− x+ 1− y+ 1− z− 2). (5)

This is simplified to

xyz =min
w∈B

w(x + y + z − 1)

+ (xy + yz + zx) − (x + y + z) + 1.
(6)

Therefore, if axyz appears in a minimization problem with
a > 0, it can be replaced by

a{w(x + y + z − 1) + (xy + yz + zx) − (x + y + z) + 1}. (7)

Thus, either case, the cubic term can be replaced by
quadratic terms.

This reduction only works with cubic terms. For quartic
term axyzt, the same trick works if a < 0:

xyzt = max
w∈B

w(x + y + z + t − 3), (8)

axyzt = min
w∈B

aw(x + y + z + t − 3). (9)

However, if a > 0,

(1− x)(1− y)(1− z)(1− t) = max
w∈B

w(−x− y− z− t+ 1) (10)

becomes

xyzt = max
w∈B

w(−x − y − z − t + 1) + (xyz + xyt

+ xzt + yzt) − (xy + yz + zx + xt + yt + zt)
+ (x + y + z + t) − 1. (11)

Unlike the cubic case, the maximization problem is not
turned into a minimization. Similarly, this does not work
with any term of even degree. This poses a severe restric-
tion for which function this reduction can be used in the
case of degrees higher than 3.

Note that this has nothing to do with the submodularity
of the function. The reduction is valid in the cubic case
whether the function is submodular or not.

2.2. Reduction by Substitution

However, it has long since been known that the opti-
mization of pseudo-Boolean function of any degree can al-
ways be reduced to an equivalent problem for quadratic
pseudo-Boolean function. The method was proposed by
Rosenberg[24] more than 30 years ago; it has since been
recalled by Boros and Hammer[3] and, more recently, by
Ali et al.[1].

In this reduction, the product xy of two variables x, y in
the function is replaced by a new variable z, which is forced
to have the same value as xy at any minimum of the function

by adding penalty terms that would have a very large value
if they don’t have the same value.

More concretely, assume that x, y, z ∈ B and define

D(x, y, z) = xy − 2xz − 2yz + 3z. (12)

Then it is easy to check, by trying all eight possibilities, that
D(x, y, z) = 0 if xy = z and D(x, y, z) > 0 if xy , z. Consider
an example pseudo-Boolean function

f (x, y,w) = xyw + xy + y. (13)

The reduction replaces xy by z and add MD(x, y, z):

f̃ (x, y,w, z) = zw + z + y + MD(x, y, z), (14)

which has one more variable and is of one less degree than
the original function f . Here, M is chosen to be a large posi-
tive number so that, whenever xy , z and thus D(x, y, z) > 0,
it is impossible for f̃ to take the minimum.

By repeating the above reduction, any higher-order func-
tion can be reduced to a quadratic function with additional
variables; for any minimum-energy value-assignment for
the new function, the same assignment of values to the
original variables gives the minimum energy to the original
function.

2.3. The Problem with Reduction by Substitution

Reduction by substitution has not been used very often
in practice, because it is difficult to make it work. Although
Ali et al.[1] used it with the help of QPBO, they only exper-
imented with second-order potentials.

Note that, according to (12),

MD(x, y, z) = Mxy − 2Mxz − 2Myz + 3Mz (15)

in (14). The first term Mxy is a quadratic term with a very
large positive coefficient. This makes in all cases the re-
sult of reduction non-submodular, according to the follow-
ing theorem:

Theorem. Let E(x1, . . . , xn) =
∑

i, j ai jxix j +
∑

i aixi + const.
and let xi ∈ B. Then E is submodular if and only if ai j ≤ 0
for all i, j. [8]

Thus, the term Mxy in (15) makes the function non-
submodular. Though in the case of QPBO submodularity
is not the only factor, it seems such an energy cannot be
minimized very well even with the QPBO. In our exper-
iments (§5.3) on a third-order energy with this reduction,
the QPBO algorithm assigned −1 to most variables, leaving
the move-making almost completely stalled.

3. The New Reduction
Our main contribution in this paper is a new reduction of

higher-order pseudo-Boolean functions into quadratic ones.
It is an expansion of the reduction by minimum selection
we described in §2.1.
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3.1. Quartic Case

Let us look at the quartic case. We would like to gener-
alize the formulae (3) and (6). Looking at them, one notices
that the whole equation is symmetric in the three variables
x, y, and z. Similarly, it stands to reason that if there exists
a generalization with xyzt on the LHS, the RHS should also
be symmetric in the four variables, i.e.:

xyzt = min
w

w(1st order sym.) + (2nd order sym.). (16)

Now, it is known that any symmetric polynomial can be
written as a polynomial expression in the elementary sym-
metric polynomials. There is only one elementary symmet-
ric polynomial of each degree; the ones we need are:

s1 = x + y + z + t, s2 = xy + yz + zx + tx + ty + tz. (17)

Also, when the variables only take values in B, the square of
a variable is the same as itself. Thus, we have s1

2 = s1+2s2,
meaning that any symmetric polynomial of second degree
or less can be written as a linear combination of s1, s2, and
1. Thus the formula should be of the form:

xyzt = min
w∈B

w(as1 + b) + cs2 + ds1 + e. (18)

We exhaustively searched for integers a, b, c, d, and e that
makes the RHS positive only when x = y = z = t = 1 and 0
otherwise, to find

xyzt = min
w∈B

w(−2s1 + 3) + s2 (19)

Similarly, we also looked for quintic formula. Failing this,
we increased the number of auxiliary variables and found

xyztu = min
(v,w)∈B2

{v(−2r1 + 3) + w(−r1 + 3)} + r2, (20)

where r1 and r2 are the first- and second-degree elementary
symmetric polynomials in x, y, z, t, and u. We went on and
found similar formulae for degrees six and seven. Then we
guessed the general formula given in the following.

3.2. General Case

Now, we introduce similar reductions for general degree.
Consider a term ax1 . . . xd of degree d.

Again, it is simple if a < 0:

Case: a < 0

ax1 . . . xd = min
w∈B

aw{x1 + · · · + xd − (d − 1)}, (21)

as suggested by Freedman and Drineas[8].

Case: a > 0 No similar reduction has been known in the
case a > 0. Now, we give a new formula for such a case.
This time, we need more than one auxiliary variables if the
degree is larger than 4. Specifically, to reduce a term of de-
gree d, we need the following number of auxiliary variables.

nd =

⌊
d − 1

2

⌋
(22)

Let us denote w = (w1, . . . ,wnd ) ∈ Bnd and

S1 =

d∑
i=1

xi, S2 =

d−1∑
i=1

d∑
j=i+1

xix j. (23)

Then, the reduction is as follows.

Even degree

ax1 . . . xd = min
w

a

 nd∑
i=1

wi(−2S1 + 4i − 1)

 + aS2. (24)

Odd degree

ax1 . . . xd = min
w

a

nd−1∑
i=1

wi(−2S1 + 4i − 1)

+ wnd (−S1 + 2nd − 1)

 + aS2.

(25)

A proof of the correctness of the formulae is given in the
Appendix. Note that the cubic case of (25) is different from
(6) and simpler.

As we mentioned above, it is known that any pseudo-
Boolean function can be written uniquely as a polynomial
of binary variables. Since each term in the polynomial can
be reduced to a quadratic polynomial using (21), (24), or
(25) depending on the sign of the coefficient and the degree
of the term, the whole function can be reduced to a quadratic
polynomial that is equivalent to the original function in the
sense that, if any assignment of values to the variables in the
reduced polynomial achieves its minimum, the assignment
restricted to the original variables achieves a minimum of
the original function.

The number of additional variables per clique in the
worst case is exponential in d. This is because there are not
only the highest degree term but also lower-degree terms,
each of which needs its own new variables. For instance,
with a clique of size 5, there can be up to 1 quintic, 5
quartic, and 10 cubic terms, and 17 new variables could
be needed. We would guess that six or seven variables in
a clique would be about the maximum for vision problems
with many such cliques, at least for the time being. Still, it
is a significant improvement; even triple cliques can make
a big difference relative to pairs, as [29] recently demon-
strated. Also, many lower-degree terms would be shared by
neighboring cliques.
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4. Higher-Order Multi-Label Optimization
In this section, we describe a fusion move algorithm us-

ing the reduction in the previous section to optimize higher-
order MRF energies with more than two labels. Let V be
the set of pixels and L the set of labels. We consider the fol-
lowing energy on a labeling I ∈ LV assigning a label Iv ∈ L
to each pixel v ∈ V:

E(I) =
∑
C∈C

fC(IC), (26)

where C is the set of cliques and fC(IC) denotes the local
energy depending on the labels IC ∈ LC assigned by the
labeling I to the pixels in clique C.

The algorithm maintains the current labeling I. In each
iteration, the algorithm fuses I and a proposed labeling
P ∈ LV by minimizing a pseudo-Boolean energy. For in-
stance, in the α-expansion algorithm, the proposal is a con-
stant labeling with label α everywhere. Here, it can be any
labeling and how it is prepared is problem specific, as is
how I is initialized at the beginning.

The pseudo-Boolean energy minimized every iteration
is as follows. We consider a binary labeling X ∈ BV . It
consists of a binary variable Xv ∈ B for each pixel v ∈ V
that indicates the choice of the value that Iv will have at the
end of the iteration. That is, Xv = 0 if Iv is to remain the
same and Xv = 1 if Iv is to change to the proposed label Pv.

Let us denote by F I,P
C ( β) ∈ LC the labeling on clique C

that I will have if the value of X on C is XC = β ∈ BC:(
F I,P

C ( β)
)

v
= (1 − βv)Iv + βvPv. (v ∈ C) (27)

With this notation, we define a pseudo-Boolean function

E (X) =
∑
C∈C

∑
β∈BC

fC
(
F I,P

C ( β)
)
θ
β
C(XC), (28)

where θ βC(XC) is a polynomial of degree |C| defined by

θ
β
C(XC) =

∏
v∈C
{ βvXv + (1 − βv)(1 − Xv)} , (29)

which is 1 if XC = β and 0 otherwise.
The polynomial E (X) is then reduced into a quadratic

one using the technique described in the previous section,
after which we use the QPBO algorithm to minimize it. We
obtain an assignment of 0, 1, or −1 to each pixel v and up-
date Iv to Pv if 1 is assigned, leaving it unchanged otherwise.
We iterate the process until some convergence criterion is
met.

5. Experiments
The higher-order BP variants by Lan et al.[17] and

Potetz[23] were both tested using a particular higher-order
image restoration problem. We also use this problem to
compare with them the effectiveness of our fusion algorithm
using the reduction of higher-order cliques.

5.1. Image Denoising with Fields of Experts

The image restoration formulation uses the recent image
statistic model called Fields of Experts (FoE)[25], which
captures complex natural image statistics beyond pairwise
interactions by providing a way to learn an image model
from natural scenes. FoE has been shown to be highly ef-
fective, performing well at image denoising and image in-
painting using a gradient descent algorithm. The FoE model
represents the prior probability of an image I as the product
of several Student’s t-distributions:

p(I) ∝
∏

C

K∏
i=1

(
1 +

1
2

(Ji · IC)2
)−αi

, (30)

where C runs over the set of all n × n patches in the image,
and Ji is an n×n filter. The parameters Ji and αi are learned
from a database of natural images. Both in [17] and [23],
2 × 2 patches were used to show that 2 × 2 FoE improves
over pairwise models significantly.

We are given the noisy image N and find the maximum
a posteriori solution given the prior model (30). The prior
gives rise to a third-order MRF, with clique potentials that
depend on up to four pixels. Since the purpose of the exper-
iments is not the image restoration per se, but a compari-
son of the optimization algorithms, we use exactly the same
simple model as in the two predecessors. It is an inference
problem with a simple likelihood term: image denoising
with a known additive noise. We assume that the images
have been contaminated with an i. i. d. Gaussian noise that
has a known standard deviation σ. The likelihood of noisy
image N given the true image I is assumed to satisfy

p(N|I) ∝
∏
v∈V

exp
(
− (Nv − Iv)2

2σ2

)
. (31)

5.2. Optimization Algorithm

We use the algorithm described in section 4, initializing I
by N and iterating until the energy change over 20 iterations
drops below a convergence threshold θc. For proposal P,
we use the following two in alternating iterations: i) a uni-
form random image created each iteration, and ii) a blurred
image, which is made every 30 iterations by blurring the
current image I with a Gaussian kernel (σ = 0.5625). For
comparison, we also test the α-expansion proposal, i.e., a
constant image that gives the same value α everywhere.

We consider the set C of cliques consisting of the set of
singleton cliques C1 = {{v} | v ∈ V} and the set C4 of 2 × 2
patches. Then the local energy is defined by

f{v}(I{v}) =
(Nv − Iv)2

2σ2 , ({v} ∈ C1) (32)

fC(IC) =
K∑

i=1

αi log
(
1 +

1
2

(Ji · IC)2
)
. (C ∈ C4) (33)
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(a) (b) (c) (d) (e)

Figure 1. Qualitative difference of denoising using cliques of different orders. (a) Original image, (b) Noise-added image (σ = 20), (c)(d)
images denoised using first-order Potts model and α-expansion with two smoothing factors, (e) denoised using third-order FoE model.

Table 2. PSNR and Energy, average over 10 images using the same
FoE model and different optimization.

Noise level Lan et al.[17] Potetz[23] Our result

σ = 10 30.36 / 40236 31.54 / 36765 31.44 / 35896

σ = 20 27.05 / 33053 27.25 / 31801 27.43 / 30858

For the QPBO algorithm, we used the C++ code made pub-
licly available by Vladimir Kolmogorov.

5.3. Results

First, Figure 1 shows the qualitative difference between
the denoising results using first-order and third-order ener-
gies. Some more denoising examples are shown in Figure 2.

For quantitative comparison, we measured the mean en-
ergy and the mean peak signal-to-noise ratio (PSNR) for de-
noising results over the same set of 10 images that were also
used in both [17] and [23]. The images are from the Berke-
ley segmentation database[20], grayscaled and reduced in
size, as well as added the Gaussian noise with σ = 10, 20.
The test images and the FoE model was kindly provided by
Stefan Roth, one of the authors of [17, 25]. We minimized
with θc = 8 (σ = 10) and θc = 100 (σ = 20). The PSNR
and energy numbers are listed in Table 2. The energy results
show that our fusion move algorithm using the quadratic en-
ergy reduced from the third-order energy outperforms the
both BP variants optimizing the same energy. The PSNR is
also comparable to [23] and better than [17]. Our algorithm
takes 8 to 12 minutes (250 ∼ 280 iterations) to converge on
a 2.33GHz Xeon E5345 processor. By comparison, accord-
ing to [23], it took 30 to 60 minutes on a 2.2GHz Opteron
275, while the algorithm in [17] takes 8 hours on a 3GHz
Xeon. Thus, our algorithm outperforms the two predeces-
sors in quality and speed, though BP is considered to be
substantially more parallelizable than graph cuts.

Figure 3 shows the behavior of some numbers during the
optimization when σ = 20. It suggests that for higher-order
energies, α-expansion does not work very well. The energy
never reached the same level as the result using the blur
& random proposal. In the case of σ = 10, α-expansion
did go down to about the same energy level, but took sig-
nificantly longer. In the experiments using the blur & ran-
dom proposal, the average percentage of the pixels labeled
by the QPBO algorithm over two consecutive steps starts
around 50% and almost steadily goes up to about 80% when
σ = 20, and from 80% to almost 100% when σ = 10.
Using the α-expansion proposal, the number is always less
than 20%. When we use the “reduction by substitution”
method explained in §2.2, the percentage stays at almost
0%, with averages 0.00018% and 0.091% over 100 itera-
tions for σ = 20 and 10, with almost no energy reduction.

6. Conclusions
In this paper, we have introduced a new reduction of

any pseudo-Boolean function into an equivalent quadratic
one, as well as its combination with the fusion-move and
QPBO algorithms for optimization of higher-order multi-
label problems. We have validated the technique by min-
imizing a third-order potential for image denoising. The
results show that the algorithm exceeds the preceding BP
algorithms in both optimization capability and speed.

Although we focused on the use of this reduction in
move-making algorithms, it can of course be used directly
for binary-label problems. It can also be used to optimize
the binary-label function converted from a multi-label one
using the techniques in [28]. It can also be used with other
algorithms that minimizes quadratic pseudo-Boolean opti-
mization problems, such as BP and TRW.

We plan to make our research code for the reduction pub-
licly available at our webpage.
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Figure 2. More image restoration results. (Left column) Original images. The size is 240 × 160 pixels. (Middle column) Noisy images
(σ = 20). PSNR=22.63 and 22.09 from top to bottom. (Right column) Restored images. PSNR=30.92 and 28.29 from top to bottom.
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Figure 3. Some plots during the restoration of the example image in Figure 1.
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Appendix: Correctness Proof of the Formulae
Let us suppose that k of the d variables x1, . . . , xd, are 1,

and the rest are 0. Then, it follows from (23) that

S1 = k, S2 =
k(k − 1)

2
. (34)

Let us also define

md =

⌊
d − 2

2

⌋
, A = min

w

md∑
i=1

wi(−2S1 + 4i − 1) + S2. (35)

Since the variables wi can take values independently,

A =
md∑
i=1

min(0,−2k + 4i − 1) +
k(k − 1)

2
(36)

If we define l = ⌊k/2⌋, checking the cases where k is even
and odd, we have −2k+4i−1 < 0 if and only if i ≤ l. Thus

A =
min(l,md)∑

i=1

(−2k + 4i − 1) +
k(k − 1)

2
(37)

In particular, if k ≤ d − 2, it follows l ≤ md, which in turn
means that the sum in (37) is up to l, and checking the cases
where k is even and odd, we obtain A = 0.

Now, first we consider the even degree case (24), of
which the RHS is aA. Thus, both sides are 0 if k ≤ d − 2. If
k = d − 1, A = 0 similarly follows from l = md. If k = d, it
follows from md = l − 1, k = 2l, and (37) that

A =
l−1∑
i=1

(−4l + 4i − 1) + l(2l − 1) = 1, (38)

which completes the proof of (24).
As for the odd degree case (25), we have md = nd − 1

and that the RHS is a (A +min(0,−S1 + 2nd − 1)). Since
d = 2nd+1, it follows −S1+2nd−1 ≥ 0 if k ≤ d−2, showing
that the both sides of (25) are 0. If k = d−1, −S1+2nd−1 =
−k+ k− 1 = −1. It also follows from md = l− 1, k = 2l, and
(37) that A = 1, showing that the both sides of (25) are 0.
Finally, if k = d, we have −S1+2nd−1 = −k+k−1−1 = −2
and, from md = l − 1, k = 2l + 1, and (37),

A =
l−1∑
i=1

(−4l + 4i − 3) + l(2l + 1) = 3, (39)

which shows that both sides of (25) are a. �
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