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Abstract

Many problems in computer vision can be modeled us-

ing conditional Markov random fields (CRF). Since find-

ing the maximum a posteriori (MAP) solution in such mod-

els is NP-hard, much attention in recent years has been

placed on finding good approximate solutions. In partic-

ular, graph-cut based algorithms, such as α-expansion, are

tremendously successful at solving problems with regular

potentials. However, for arbitrary energy functions, mes-

sage passing algorithms, such as max-product belief prop-

agation, are still the only resort.

In this paper we describe a general framework for find-

ing approximate MAP solutions of arbitrary energy func-

tions. Our algorithm (called Alphabet SOUP for Sequential

Optimization for Unrestricted Potentials) performs a search

over variable assignments by iteratively solving subprob-

lems over a reduced state-space. We provide a theoreti-

cal guarantee on the quality of the solution when the inner

loop of our algorithm is solved exactly. We show that this

approach greatly improves the efficiency of inference and

achieves lower energy solutions for a broad range of vision

problems.

1. Introduction

Many problems in computer vision can be modeled using

conditional Markov random fields (CRFs). Solving these

problems amounts to maximum a posteriori (MAP) infer-

ence, or finding an assignment to each variable that jointly

minimizes the energy function (maximizes the probability)

defined by the model. Although MAP inference for a gen-

eral CRF is NP-hard, efficient algorithms exist for some

special cases. One important case is that of pairwise binary

CRFs with regular potentials, a class that can be solved effi-

ciently using graph-cut-based algorithms. Inspired by this,

a number of works have attempted to develop efficient ap-

proximation algorithms for the non-binary case. Notably,

the α-expansion search method of Veksler et al. [26, 1] can

be applied to problems with pairwise regular1 energy func-

1Here the regularity condition is on the energy function defined by the

α-expansion moves, i.e., θij(α, α)+θij(β, γ) ≤ θij(β, α)+θij(α, γ).

tions and has been shown in empirical studies [25] to pro-

duce solutions that are near optimal. Thus, for the special

case of regular energies, the problem of MAP inference is

essentially solved.

Regular energies, and the associated minimization al-

gorithms, are used ubiquitously in addressing early vision

tasks, such as dense stereo, image denoising, binary image

segmentation, etc. [25], where one often uses a simple (pair-

wise) smoothness prior between neighboring pixels in a 2D

grid. However, as noted Szeliski et al. [25], the energy for

the groundtruth assignment is often worse than the energy-

optimizing assignment, indicating that these simple energy

functions fail to model important aspects of the problem.

The distance between tractable and useful models becomes

even more severe when we use CRFs to model mid-level

and high-level vision tasks, such as multi-class image seg-

mentation [9, 20], joint segmentation and detection [15] and

3D reasoning from monocular images [8]. These tasks,

while usually having fewer variables than their early vision

cousins, have significantly more difficult energy functions,

which often include high-order terms, non-grid neighbor-

hoods and heterogeneous variables.

Thus, for many vision applications, the CRFs that ade-

quately capture the important properties of the problem are

unlikely to be regular, and therefore are not amenable to

the use of the highly-efficient graph-cut-based algorithms.

Currently, the only general purpose methods for solving

problems with arbitrary energy functions are message pass-

ing algorithms such as max-product (MP) belief propaga-

tion [19], or its convex variants, such as tree-reweighted

message-passing (TRW) [28, 10] or GEMPLP [5]. Unfortu-

nately, these algorithms are often very slow to converge, and

cannot handle graphs with very large value spaces. Indeed,

as noted in [9], “the lack of efficient algorithms for per-

forming inference in these [higher-order] models has lim-

ited their applicability.”

In this paper, we aim to meet this challenge, by provid-

ing a flexible framework that can produce good approxi-

mate solutions and that can scale to accommodate available

computing resources and problem complexity. Briefly, we

propose a method, called Alphabet SOUP (Sequential Op-
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timization for Unrestricted Potentials), that performs an it-

erative search over variable assignments. The method per-

forms large global moves in the space by (temporarily) re-

ducing the state-space for each variable, and finding the

minimum energy assignment over the reduced state-space.

The method is agnostic to the algorithm used for this opti-

mization step, allowing the algorithm best-suited to the par-

ticular energy function to be used.

Our method can be viewed as a generalization of the α-

expansion search method of Veksler et al. [26, 1], which

also iteratively proposes steps based on optimizing the en-

ergy over a reduced state-space for each variable. However,

our more general method is also applicable to CRFs with

higher-order cliques and arbitrary energy functions. Our

method also allows us to consider a much larger subspace

during each iteration of the search, enabling the algorithm

to make larger global moves.

Our contributions are threefold: First, we propose a

wrapper method for performing approximate MAP infer-

ence in graphical models which can be scaled to accom-

modate different problem sizes and processing limitations.

Second, we provide optimality guarantees when the inner

loop of our method is exact. Last, we show how the subsets

required by our method can be chosen and validate our ap-

proach on various contemporary problems. In many cases,

our method results in lower energies than were achieved by

the methods reported in the literature.

Finally, we note that our Alphabet SOUP method is a

general purpose energy minimization technique and not re-

stricted to vision problems. For example, CRFs were first

introduced in modeling natural language [16] where they

provide state-of-the-art solutions for problems ranging from

named-entity recognition to information extraction. They

have also been used with great success in computational bi-

ology, in applications that include 3D protein-structure pre-

diction [30] and inferring the architecture of cellular net-

works.

2. Background and Related Work

A Markov random field (MRF) defines a probability

distribution P (X ) = 1
Z exp {−

∑

c θc(Xc)} over discrete

random variables X = {X1, . . . ,Xn}, where each variable

can take on values in some domain dom (Xi). The distri-

bution is parameterized by real-valued potential functions

θc(Xc) over sets of variables, or cliques, Xc ⊆ X . The

potentials represent a relative preference for every assign-

ment to the variables in the clique Xc. For example, in

the standard Potts model, a pairwise potential θij(Xi,Xj)
assigns a uniform penalty for Xi 6= Xj and no penalty oth-

erwise. The term E(x) =
∑

c θc(xc) is called the energy

and the MAP assignment for P (X ) can be found by solving

the problem:

minimize E(x) =
∑

c θc(xc)
subject to xi ∈ dom (Xi) ∀Xi ∈ X

(1)

A large body of literature exists covering MAP infer-

ence; here, we provide only a very brief review. We note

that Szeliski et al. [25] provides a review of different energy

minimization methods for computer vision, and a quantita-

tive comparison on a number of benchmark vision tasks.

One of the earliest energy-minimization methods is the

still-popular max-product (MP) belief propagation [19].

Here, messages are sent between nodes in the MRF indicat-

ing a node’s preference for the assignment of its neighbor.

Each node accumulates messages from all of its neighbors

and maintains a belief (distribution) over possible assign-

ments. The algorithm iterates until beliefs stop changing

(or until a maximum number of messages have been sent).

The joint MAP assignment is discovered by taking the as-

signment which locally maximizes each belief.

A different approach is based on viewing the MAP in-

ference problem of Eq. 1 as an integer programming opti-

mization problem, and solving its linear programming (LP)

relaxation. Although solving the linear program directly

is generally infeasible, several approaches use message-

passing-like algorithms to solve its dual; some of these

methods are not guaranteed to converge to the dual-optimal

solution [28, 10, 5] whereas more recent methods [24, 13]

do provide such guarantees. An important advantage of

these methods is that, due to the properties of linear pro-

gramming duality, they provide a lower bound on the en-

ergy function. This lower bound can be used to guide the

addition of consistency constraints and result in an optimal

solution [24]. However, these methods have limited appli-

cability, as they are only usable when the entire problem

can be fit in main memory, and are therefore inapplicable to

problems where the domain size of the variables is large, or

where cliques involve a large number of variables.

In the context of computer vision problems, signifi-

cant attention has been given to graph-cut based algo-

rithms [6, 26, 1, 12, 4, 25] which have been shown to

perform exceptionally well on large grid-structured prob-

lems with (regular pairwise) smoothness priors, i.e., prob-

lems of the form: P (X ) = 1
Z exp

{

−
∑

(i,j) θij(Xi,Xj)
}

where a term is included for every pair of adjacent variables

(i, j) and θij(Xi,Xj) is assumed to be a metric, encoding a

preference for adjacent variables to take on similar values.

When the problem is over binary-valued variables with so-

called regular potentials, these methods obtain the global

optimum. For non-binary problems, i.e., where each vari-

able can be assigned a value from a larger label space L,

a search algorithm is generally used, with graph-cut meth-

ods providing the optimal move in some constrained search

space. One such method, which is closely related to ours,

is the α-expansion algorithm [26, 1]. The algorithm main-

tains a current best joint assignment and iterates over labels

α ∈ L trying to find a better assignment by allowing vari-

ables to either keep their current assignment or change to α.

This is called an α-expansion move. The algorithm cycles
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until no further improvement to the objective can be made.

The solution is a local minimum in the sense that no sin-

gle α-expansion move can result in a lower energy. Here, a

global optimum is not guaranteed, but the approach seems

to work very well in practice.

There are two main problems with the basic α-expansion

algorithm described above. First, it can only be used on

pairwise MRFs with regular potentials (and hence also lim-

ited to MRFs with homogeneous variables). Second, when

the cardinality of each variable is large, it needs many iter-

ations and risks getting stuck in local minima.

Several works attempt to address the first of these issues

by extending the graph-cut approach to non-regular poten-

tials. One approach is to approximately solve the pairwise

binary MRF required by α-expansion using algorithms such

as quadratic pseudo-binary optimization (QPBO) [11, 21];

this method is only applicable when most of the potentials

are regular. Another approach is to develop algorithms for

special-case energy functions, such as truncated convex pri-

ors [27]. While all of these methods are effective for some

problems, they are limited to pairwise potentials and do not

address the problem of optimizing general energy functions.

Other works aim to address the issue of large value

spaces by reducing the set of labels considered. The novel

fusion-move approach [18] makes moves by combining two

proposed solutions x
0 and x

1. These fusion-moves usually

result in non-regular energies and so the algorithm resorts to

approximate inference (e.g., QPBO). Our work generalizes

this approach by allowing the fusing of multiple proposed

solutions in a single search step. In addition, we provide

theoretical guarantees when the search steps are exact.

Recent work in computer vision has started to make use

of higher-order cliques and problems over heterogeneous

variables. Lan et al. [17] showed that for the problem of

image denoising the value space for each variable can be

pruned reliably (by examining its local neighborhood) mak-

ing belief propagation tractable. However, their method

is not general and does not provide any guarantee on the

quality of the solution. Other recent work [20] shows how

to transform multi-label high-order energy functions into

second-order binary ones which can then be solved by ap-

proximation techniques. It is not clear the extent to which

the approximation at the binary level affects the multi-label

result. Furthermore, for problems with large variable do-

mains, the transformation to binary can be prohibitive.

3. Alphabet SOUP

We now describe a new algorithm for approximate MAP

inference. Like α-expansion, we aim to optimize the as-

signment by performing a search over the value space: we

maintain a current best joint assignment to the random vari-

ables, which we modify by searching over a space of possi-

ble moves. However we will consider a much richer set of

moves than α-expansion.

3.1. γexpansion Moves

Let A
γ
i ⊆ dom (Xi) be a subset of the domain for each

variable Xi. We define a γ-expansion move to be a mapping

for each variable Xi from its current value xi to a value

x̂i ∈ A
γ
i ∪ {xi}. Our goal is to find the assignment that is

a γ-expansion move that has minimum energy. We do this

by defining a new energy function Eγ(x̂;x) =
∑

c θγ
c (x̂c)

over the restricted domain for each variable A
γ
i ∪{xi} where

we construct each potential θγ
c (x̂c) as

θγ
c (x̂c)=

{

θc(x̂c) if ∀Xi ∈Xc : x̂i∈A
γ
i ∪ {xi}

∞ otherwise
(2)

That is, for every value in the potential, we either copy the

value if it corresponds to an assignment in our restricted

state-space, or set it to infinity otherwise. This reduction

operation is illustrated in Figure 1. Notice that the entries

corresponding to assignments outside of the restricted state-

space can be removed from the potential, creating a poten-

tial whose size is a factor of
∏

Xi∈Xc

|dom(Xi)|
|Aγ

i
∪{xi}|

smaller.

This decrease in size can lead to substantial speed improve-

ments by allowing potentials to fit in memory.

∞

Φ
k
(Xi, Xj)Φ(Xi, Xj)

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

xi = 1, xj = 3

Ai
k = {0, 1}

Aj
k = {0, 1}

Figure 1: Illustration of restricting a potential for evaluating the opti-

mal γ-expansion move. In this example the current best assignment to

(Xi, Xj) is (1, 3). If A
γ
i

= A
γ
j

= {0, 1} then the restricted potential

will be over the entries in {0, 1} × {0, 1, 3} as shown.

The restricted potential allows us to efficiently find the

optimal γ-expansion move:

Observation 3.1. Finding the MAP assignment for the

problem with all potentials restricted to A
γ
i ∪{xi} is equiv-

alent to finding the optimal γ-expansion move from x.

3.2. Using γExpansion Moves

Based on the notion of a γ-expansion move, we can now

define an algorithm that iteratively searches over the space.

At each point, we select a particular γ-expansion opera-

tion. We then use the energy-minimization algorithm of

our choice to find the assignment x
′ that is the optimal γ-

expansion move from x and accept the move if it results in a

lower energy, i.e., if E(x′) < E(x). The algorithm contin-

ues until none of the γ-expansion moves that we are willing

to consider improves the energy, so that we have found a

local optimum in our search space.

To define the algorithm concretely, we need to specify

which γ-expansions we want to consider at each iteration.
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Most simply, we can statically partition the domain of each

variable into K subsets A1
i , . . . , A

K
i ; these subsets need not

be disjoint and may even be empty. Then, we define γk

to be the set {Ak
1 , . . . , Ak

n}, and iterate over the k’s in a

round-robin fashion. We note that standard α-expansion is a

special case of this static variant of our algorithm, where we

select Ak
i to be the singleton set containing the k-th label.

However, our framework also allows substantially

greater flexibility, in several dimensions. First, we can se-

lect subsets that include more than one value for each vari-

able. For example, it is very common for variable assign-

ments to represent some ordinal values (e.g., disparities in

stereo reconstruction). In this case, an obvious partition is to

group labels into contiguous ranges. At each iteration, the

algorithm chooses to keep the current assignment to each

variable Xi or change it to one of the values in the range

specified by Ak
i . By allowing overlapping partitions, vari-

ables can smoothly move from one ordinal range to the next.

A second dimension of flexibility is our method’s ability

to choose the subsets to reflect the properties of the energy

function. For example, one useful heuristic for choosing

expansion moves is to group low energy assignments to-

gether, as these are likely to occur in low energy solutions.

In particular, when singleton potentials are very strong, we

might choose to construct a γ that places in each A
γ
i the as-

signments to Xi that receive low values in θi(Xi). When

pairwise (or higher-order) terms are strong, we can choose

to group values that jointly give rise to low energy config-

urations within individual cliques; that is, if θij(xi, xj) is

low, then we might put (xi, xj) ∈ A
γ
i × A

γ
j , for some γ.

A third dimension of flexibility allows us to construct the

expansion moves dynamically, based on the current assign-

ment x. For example, we might construct our current γ-

expansion move so as to include in A
γ
i assignments xi that

are compatible (achieve low energy) with the current assign-

ments to variables Xj 6= Xi. This approach is related to the

value pruning methods found in the literature [17, 14], but

does not require that the values be pruned permanently. In

fact, our Alphabet SOUP method can provide a theoretical

foundation for these methods: We can use the value pruning

techniques to define the γ-expansion moves in early itera-

tions of the algorithm, but then use a covering set of γ’s

as a final iteration to provide ourselves with the theoretical

guarantees as we discuss in Section 3.3 below.

Dynamic construction is also useful when vector-valued

variables (e.g., 3D surface normals) are quantized into a dis-

crete label space. Here, a natural search procedure is to

apply coordinate descent on each dimension. In this case

the partitions are chosen dynamically based on the decoded

coordinate value for each assignment. Here, the subsets cor-

respond to all the assignments consistent with the best as-

signment at hand, while allowing one coordinate to vary.

Many other heuristics are possible, and their develop-

ment is an interesting direction for further research.

3.3. Theoretical Guarantees

Above, we discussed different options for selecting the

set of possible expansion moves that we consider. We now

provide a result that shows that, under weak conditions,

the local optimality of an assignment x in the γ-expansion

space implies a bound on the distance between the energy

of x and the optimal energy.

We define a set of γ-expansion moves γ1, . . . , γK to be

covering if, for every xi ∈ dom (Xi), there exists a γk such

that xi ∈ A
γk

i . When each γ-expansion move is optimal,

we can make the following guarantee.

Theorem 3.2. Let γ1, . . . , γK be a covering set of moves.

Assume that θc(xc) ≥ 0 for all cliques c, with equality only

if there exists some γk such that xi ∈ A
γk

i for all vari-

ables Xi in the clique. If x is a local optimum relative to

γ1, . . . , γK , then E(x) is within a factor of λ (maxc |Xc|)
of the optimal energy, where

λ = max
c:|Xc|>1

(

maxxc
θc(xc)

minxc:θc(xc) 6=0 θc(xc)

)

(3)

and |Xc| is the number of variables in clique c.

This theorem (see appendix for proof) subsumes the op-

timality result for α-expansion [26], i.e., that α-expansion

returns an assignment that is within a constant factor of the

global optimum. For a Potts model, this ensures that the

energy is within a factor of two of the optimum.

Many state-of-the-art techniques exist for solving small

problems exactly and can be used for the inner loop of our

algorithm, e.g., the junction tree algorithm [2] for problems

with small treewidth, min-cut [12] for binary problems with

regular potentials, or linear programming (LP) relaxation

with cluster pursuit [24]. However our algorithm is well

defined even if the inner loop is not solved exactly, allowing

researchers to use approximate MAP inference algorithms

that are appropriate for their problem.

Recall that a major benefit of the class of LP-based meth-

ods is that they exploit duality to place a bound on the dis-

tance between the energy of the current assignment and the

optimal energy. When such a method is used to perform

the optimization for the γ-expansion steps in the inner loop

of the Alphabet SOUP algorithm, we can provide similar

bounds. In particular, Globerson et al. [5] show that the

dual of the LP relaxation of Eq. 1 can be reformulated as:

maximize
∑

s minxs

∑

c∈N(s) minxc\s
βs

c (xc)

subject to
∑

s∈S(c) βs
c (xc) = θc(xc), ∀c,xc

(4)

where s enumerates the set of non-empty intersections, or

separators, between cliques, and S(c) and N(s) represent

the neighborhoods of clique c and separator s, respectively.

The βs
c (xc) are the dual variables to the primal LP con-

straints. As usual, the dual objective at any feasible as-

signment provides a lower bound on E(x). Globerson et
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al. show that this dual LP can be solved efficiently using a

message-passing algorithm similar to belief propagation.

When using this LP-based approach to solve the re-

stricted optimization defined by a γ-expansion step, the pri-

mal is restricted to the value-space defined by each A
γ
i . The

effect on the dual is that βs
c (xc)’s corresponding to assign-

ments not allowed by the γ-expansion move can be removed

from the objective. The dual optimum of the restricted prob-

lem is now not guaranteed to be a feasible point for the orig-

inal unrestricted dual of Eq. 4. However, we can use the

restricted solution to produce a dual-feasible assignment to

Eq. 4, which thereby immediately provides a bound on the

duality gap for the original problem. Specifically, the so-

lution to the restricted dual provides dual-feasible assign-

ments to the βs
c (xc) corresponding to xc’s allowed by the

γ-expansion move, leaving us only to find a feasible assign-

ment to the remaining βs
c (xc)’s. A simple solution is to split

the mass of θc(xc), giving βs
c (xc) = 1

|S(c)|θc(xc). The re-

sulting solution is dual feasible and hence provides a bound

∆ on the distance between our current assignment’s energy

and the optimal energy as

δs
c(xs) = min

xc\s

{

{

βs
c (xc)

}

xc∈γ
,
{

1
|S(c)|θc(xc)

}

xc /∈γ

}

(5)

∆ = E(x) −
∑

s

min
xs

∑

c∈N(s)

δs
c(xs). (6)

An interesting avenue for future research is to investigate

using the terms δs
c that cause an increase in the dual objec-

tive to guide the construction of dynamic expansion moves.

4. Experimental Results

We now provide an Alphabet soup of example problems

that can be solved by our framework.

Image Completion and Inpainting. Exemplar-based im-

age completion [3, 14] is a method for filling-in missing

parts of an image by copying patches from other parts of the

image. Recently, Komodakis and Tzititas [14] formulated

the problem as a pairwise MRF over grid locations within

the missing region. Briefly, fixed-sized patches (from the

observed part of the image) are placed in overlapping fash-

ion on the grid to complete the image. Grid locations around

the perimeter of the missing region are assigned a single-

ton term θi(Xi) measuring the sum-of-square-difference

(SSD) between the observed region of the grid location

and the candidate patch. Similarly, a pairwise SSD term

θij(Xi,Xj) is defined for every neighboring grid location

(see [14] for details). This energy function is not metric and

hence the α-expansion algorithm cannot be used.

Since patches can be drawn from any location within the

observed part of the image, the value space is enormous,

e.g., roughly 70,000 for a 320 × 240 image. Clearly, stan-

dard message passing algorithms cannot support a problem

of this magnitude. To solve the problem, Komodakis and

Original image Result of [14] Greedy Alphabet SOUP

(i) (ii) E = 3.37 (iii) E = 4.97 (iv) E = 2.84

(a) Bungee jumping example from [3].

(i) (ii) E = 3.26 (iii) E = 3.36 (iv) E = 2.03

(b) Author removed from an image.

Figure 2: Comparison of different methods on image completion task. We

use a 7 × 7 grid spacing; (a) required 280 patches to fill, (b) required 179

patches. Results are annotated with cost (energy) per patch. Our method

achieves lower energy than the other more greedy approaches.

Tzititas propose a priority-based message scheduling algo-

rithm with label pruning. Their approach is to run a belief

propagation algorithm in which messages are scheduled ac-

cording to the current belief and the value-space for each

variable is pruned the first time it sends a message. This

greedy approach results in a smaller MRF in which pairwise

terms can be computed efficiently. However, the pruned la-

bels are never reconsidered and therefore the approach may

result in suboptimal energies.

Instead of pruning values we applied our method of iter-

ating over subsets of label assignments, but still considering

all possible labels in the end. Concretely, we divided the la-

bel space (set of possible patches) into non-overlapping sets

Lk, each containing 250 patches. During each iteration k,

we set A
γk

i for the first variable Xi in each row of the miss-

ing grid to Lk. We then set the remaining A
γk

j in each row to

take labels from the observed part of the image correspond-

ing to labels in Lk offset by the same distance as between

Xi and Xj . This approach helped provide many low energy

pairwise matches.

In our experiments we found the method of Komodakis

and Tzititas to be very sensitive to the priority schedule and

amount of pruning. This makes it susceptible to the same

sort of errors produced by more greedy approaches. We ran

a number of trials and report the best energy found.

Our naive implementation did not include any speed ups

for computing the SSD terms (e.g., computing them in the

frequency domain); thus, running time was dominated by

the SSD calculations. Nevertheless, our method only ran

about 5 times slower than the competing approach.

Results are shown in Figure 2. Here we compare the en-
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ergy per variable for the method of Komodakis and Tzititas,

a naive greedy approach, and Alphabet SOUP (using max-

product message passing as the inner loop). On both test

images, we achieve a lower energy.

Object Detection and Outlining. The task of object out-

lining involves finding instances of an object class in novel

images and providing a precise outline around those objects.

We tried out our method on the CRF-based LOOPS model

of Heitz et al. [7], in which correspondences are found be-

tween landmarks on the online of an object (e.g., animal’s

nose) and image pixels. Their model defines a CRF where

the variables are the n landmarks, and their assignments

represent options for corresponding image pixels. To al-

low the use of discrete energy optimization techniques, they

consider, for each landmark, the m pixels that give rise to

the lowest energy values in the (learned) singleton poten-

tials. As n and m are often reasonably small (around 50 or

60), the LOOPS models fit easily into memory. Neverthe-

less, due to the dense connectivity of the model, standard

belief propagation has trouble performing inference and of-

ten fails to converge. The LOOPS method [7] handles this

problem by removing weak pairwise relationships to pro-

duce a sparse model.

We performed experiments on 42 images of giraffes us-

ing a LOOPS model with 60 landmarks (see Figure 3), com-

paring results from our method with the best singleton land-

mark locations and those found by the discrete stage of the

LOOPS approach. As the singleton potentials are very in-

formative in this application, we partitioned the domain of

each variable into subsets according to the score of the sin-

gleton potentials, using three candidates in each A
γ
i . We

ordered subsets with the lowest energy first, so that a low

energy assignment was generally found in the very first iter-

ation, with later iterations serving only to correct a few out-

liers. In our significantly smaller models, belief propagation

had no convergence problems, and so we could use the full

LOOPS model with all pairwise interactions, rather than the

sparsified version. This approach consistently found solu-

tions that have lower energy and are more visually appeal-

ing than the other two.
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Figure 3: Object outlining using the model of Heitz et al. [7] comparing

best scoring independent match (red dashed), discrete round of inference

in [7] (green dotted), and Alphabet SOUP (blue solid). Our method consis-

tently finds a lower-energy solution than the other two approaches (right).

Surface Reconstruction. One general class of vision ap-

plications is that of 3D surface reconstruction from a set

of 2D measurements collected from different viewing an-

gles. Here, we can model the surface as a mesh of small

Energy per Pixel Running Time (s)

Problem (i) (ii) (iii) (i) (ii) (iii)

(a) 40 × 43 0.507 0.509 0.521 39 1 < 1

(b) 112 × 116 n/a 0.527 0.555 ∞ 23 5

Table 1: Results for the 3D surface reconstruction experiments. Shown

are results for (i) optimizing all coordinates simultaneously, (ii) coordinate

descent over pairs of coordinates, and (iii) coordinate descent over indi-

vidual coordinates. Problem (a) was over a 40 × 43 mesh; (b) was over a

112 × 116 grid (and too large to solve by (i)). Variables were quantized

into (13, 7, 7, 13) and (23, 9, 9, 23) bins, respectively.

patches, where each is parameterized by a 4-dimensional

vector defining its (3D) orientation and (1D) radial offset.

The singleton potentials generally measure the fit between

the patch position and the image(s) obtained from the rele-

vant viewing angles. The pairwise potentials impose a pref-

erence for smoothness of the reconstructed surface.

To allow discrete energy optimization to be applied to

this task, we can discretize this 4-dimensional vector. The

energy function here is metric and so amenable to the α-

expansion algorithm. However, depending on the number

of quantization bins per dimension, the state-space for each

variable can be very large (often containing around 40,000

values). In these cases, the pairwise smoothness term can

be too large to precompute and too expensive to compute on

the fly during each iteration of α-expansion. The Alphabet

SOUP approach provides a way for reducing the computa-

tional cost, by using a coordinate descent variation, with the

A
γ
i chosen dynamically, as described in Section 3.2.

We experiment with this approach over the task of re-

constructing the outermost surface layer (S-layer) of a bac-

teria from images obtained by 3D-tomography from cryo-

electron microscopes. The S-layer often exhibits geometri-

cal lattice-like 2D structure [23, 22], which provides insight

into how the bacteria interacts with its environment. These

structures are not easily visible in the raw 2D images, but

much more easily discerned in a 3D surface reconstruction.

We evaluated on two different size problems using three

approaches: (i) optimizing all coordinates at once, (ii) coor-

dinate descent over pairs of coordinates, and (iii) coordinate

descent over individual dimensions. In each case (for our

inner loop) we use the α-expansion algorithm using code

available online. Results are shown in Table 1.

As expected, optimizing over all coordinates simulta-

neously obtains the lowest energy. However, very little

penalty is paid in terms of energy when performing coor-

dinate descent over pairs of coordinates, while a significant

improvement in running time can be gained. In the smaller

of our two problems, a 40-fold reduction in running time is

obtained, at negligible cost in the energy obtained; in the

larger problem, standard α-expansion was simply too large

to be solved without coordinate ascent.

Rosetta Protein Design. We also ran our algorithm on

some non-vision applications to verify its ability to solve

difficult problems consisting of heterogeneous variables
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with large domains. We chose the challenging Rosetta Pro-

tein Design dataset made available by Yanover et al. [29].

The dataset contains 97 models that aim to find the most

stable sequence of amino-acids that give rise to a given 3D

structure. These problems cannot be solved using standard

min-cut approaches since each variable has a different do-

main. Sontag et al. [24] showed that these models could

be solved using a state-of-the-art dual message passing al-

gorithm [5] with cluster pursuit. Using their method we

were able to find the true MAP solution for 93 of the 97

problems.2 In Figure 4 we compare the energy and run-

ning time of our algorithm with asynchronous max-product

belief propagation (MP) and the exact method. We also

compare against the dual message passing algorithm, GEM-

PLP [5], without cluster pursuit. Surprisingly, our results

show that, not only does Alphabet SOUP run faster (in

91.4% cases) and require less memory than MP or GEM-

PLP, it also often produces lower energies. In particular,

in 96.8% of cases our method is within 5% of the optimal

solution.
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Figure 4: Results for the Rosetta Design Dataset. (left) compares running

time in seconds of Alphabet SOUP against async. MP belief propaga-

tion. (right) shows the quality of solutions for MP, GEMPLP and Alphabet

SOUP compared to the optimum energy. For MP we ran for a maximum

of 1000 iterations, most problems failing to converge. For Alphabet SOUP

we set the subset size for all variables to 50 and ran asynchronous MP as

the inner loop. Mean running time for the exact method [24] was 15 hours.

5. Discussion

In this work, we presented a method for finding approx-

imate solutions to the MAP inference problem for arbitrary

energy functions. We can provide an optimality bound on

the solution when the inner loop of our method is exact.

However, as we showed in our experiments, even when the

inner loop cannot be solved exactly, our method still pro-

vides several advantages over other approaches. In partic-

ular, our method is faster than standard max-product belief

propagation, requires significantly less memory, and often

produces lower energy solutions.

Perhaps the most interesting directions for further study

are in providing more formal foundations for the choice of

subsets used for the different variables. First, the empir-

ical observation that problems with smaller domains can

be solved more easily deserves more theoretical attention.

2The exact method is very computationally intensive and the remain-

ing four problems exceeded the runtime limits (160 hours) on our cluster

computer before convergence and so we could not solve them exactly.

It would also be interesting to see whether our theoretical

bound can be used to provide more formal guidance as to

which subsets are likely to give better bounds. Along sim-

ilar lines, it would be valuable to further explore the con-

nections between these value-based approximations and the

linear-program relaxation of the MAP problem, with the

goal of providing a bound on the gap between the cur-

rent solution and the optimal one. Last, the ability to dy-

namically select expansion moves suggests a subset pursuit

method, in which subsets are dynamically chosen in a way

that facilitates greatest decrease in energy.

Finally, as noted by Szeliski et al. [25], groundtruth as-

signments often fare worse in terms of energy than solutions

produced by current state-of-the-art energy minimization

techniques, indicating that the energy functions are too sim-

ple and fail to model important aspects of the problem. A

flexible MAP inference algorithm that caters to large cliques

and heterogeneous variables may allow vision researchers

to more explore energy functions that are better-suited to

their problems.
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A. Appendix
Proof of Theorem 3.2. Let x† be a local minimum in the ex-

pansion move space and let x
⋆ be the global optimum. Fix

some k and let Xk = {Xi : x⋆
i ∈ A

γk

i }, i.e., the set of vari-

ables whose optimal assignment is within the k-th subset for

that variable. We can produce a labeling x
′ within one γk-

expansion move from x
† as follows: x′

i = x⋆
i if Xi ∈ Xk,

and x′
i = x

†
i otherwise. Now, since x

† is a local minimum,

E(x⋆) ≤ E(x†) ≤ E(x′) (7)

For any set of cliques S, define ES(x) to be the restriction

of the energy to that set. Formally, ES(x) =
∑

c∈S θc(xc).

Define three sets: Ik = {c : Xc ⊆ Xk}, the set of all

cliques where the variables Xi have their optimal assign-

ment in A
γk

i ; Bk = {c : Xc ∩ Xk 6= ∅,Xc * Xk}, the

set of all cliques where at least one variable Xi has optimal

assignment in A
γk

i and one variable Xj has optimal assign-

ment outside of A
γk

j ; and Ok = {c : Xc ∩ Xk = ∅}, the

set of all cliques where the variables Xi have their optimal

assignment outside of A
γk

i . For any assignment x we can

write E(x) = EIk(x) + EBk(x) + EOk(x).
The following is true: EOk(x′) = EOk(x†), EIk(x′) =

EIk(x⋆), and EBk(x′) ≤ λEBk(x⋆) where λ is defined in

Theorem 3.2. The first two are obvious (and can be seen by

summing the relevant θc(xc)). The the last holds because

EBk(x′) ≤ max
x

EBk(x) ≤
∑

c∈Bk

max
xc

θc(xc)
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=
∑

c∈Bk

(

maxxc
θc(xc)

minxc:θc 6=0 θc(xc)

)

min
xc:θc 6=0

θc(xc)

≤ λ
∑

c∈Bk

min
xc:θc 6=0

θc(xc) ≤ λ
∑

c∈Bk

θc(x
⋆
c) = λEBk(x⋆)

where for the last inequality used the fact that for c ∈ Bk

we have θc(x
⋆
c) 6= 0 by the conditions of our theorem.

Substituting the above into Eq. 7 and applying some sim-

ple algebraic manipulation, we have that

EIk(x†) + EBk(x†) ≤ EIk(x⋆) + λEBk(x⋆).

Now consider the case that the A
γk

i are disjoint. Sum-

ming over k we have for the left-hand side:
∑

k

(

∑

c∈Ik

θc(x
†
c) +

∑

c∈Bk

θc(x
†
c)

)

≥
∑

c∈
S

k Ik∪Bk

θc(x
†
c) = E(x†)

Similarly for the right-hand side:
(
∑

k

∑

c∈Ik θc(x
⋆
c)

)

+ λ
(
∑

k

∑

c∈Bk θc(x
⋆
c)

)

≤
(
∑

k

∑

c∈Ik θc(x
⋆
c)

)

+ λ
(

∑

c∈
S

Bk |Xc| · θc(x
⋆
c)

)

=
(

∑

c∈
S

Ik θc(x
⋆
c) +

∑

c∈
S

Bk θc(x
⋆
c)

)

+
(

∑

c∈
S

Bk (λ|Xc| − 1) · θc(x
⋆
c)

)

≤ E(x⋆) + (λ maxc |Xc| − 1)
∑

c∈
S

Bk θc(x
⋆
c)

≤ E(x⋆) + (λ maxc |Xc| − 1) E(x⋆)
= λ (maxc |Xc|) E(x⋆)

where we have used the fact that due to the disjointness

of the A
γk

i we cannot have terms appearing in Bk more

than |Xc| times. Now for A
γk

i not disjoint, define Ã
γk

i =

A
γk

i \
⋃k−1

l=1 A
γk

i . The proof above holds for Ãiγk which are

subsets of the A
γk

i and so holds in general. Thus we have

E(x⋆) ≤ E(x†) ≤ λ (maxc |Xc|) E(x⋆).
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