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Abstract

This paper presents a new method for computing optimal L
solutions for vision geometry problems, particularly for those
problems of fixed-dimension and of large-scale. Our strategy for
solving a large L problem is to reduce it to a finite set of smallest
possible subproblems. By using the fact that many of the problems
in question are pseudoconvex, we prove that such a reduction is
possible. To actually solve these small subproblems efficiently, we
propose a direct approach which makes no use of any convex op-
timizer (e.g. SOCP or LP), but is based on a simple local Newton
method. We give both theoretic justification and experimental val-
idation to the new method. Potentially, our new method can be
made extremely fast.

1. Introduction

The L., optimization is a rather new and promising di-
rection of research in multi-view geometry [4, 5, 6]. In just
afew years’ time it has attracted much attention from the vi-
sion geometry community (see e.g. [12, 17,9, 14, 2,7, 15]).

A critical virtue of the L., scheme is that the solution ob-
tained is not only geometrically meaningful, but also glob-
ally optimal and hence unique. The unique solution can al-
ways be reliably found, regardless of the size of the problem
and the configurations of the cameras. This forms a sharp
contrast to the conventional Lo method, which is known to
be problematic due to local minima or slow convergency.

This virtue entails the L, scheme particularly suitable
for large-scale applications. In these applications, there are
often e.g. thousands of views to be triangulated, or thou-
sands of points to be fit to a model. Paper [19] gives some
instances of large problems, one of which, the ‘Notre Dame’
data set, involves solving for 595 cameras and 277,887 3D
points.

However, to process large-scale data using L there is a
computational complexity issue. The standard approach for
solving an L, problem is to convert it into a sequence of
convex programs (e.g. SOCP, second-order cone program),
and iteratively solves many such SOCPs via a bisection

(binary search) procedure. But, convex optimization is any-
way an expensive computation. Modern convex optimizers
are mostly based on the Interior-Point-Algorithm, which
is known to be polynomial algorithm, meaning that the
required computation grows polynomially in the size of the
problem (i.e. number of constraints and variables). A high
polynomial degree often prevents it from handling too big
problems, or its speed is unbearably slow.

To accelerate the L., computation, researchers have ex-
plored various ways. However, most of them have been con-
centrated either on how to speedup the convex solver itself,
or on how to reduce the total number of convex program
iterations (e.g.,[5][2]).

As a consequence, despite having all those improve-
ments, their methods still have to solve a full-size convex
program using a full-scale convex optimizer at every itera-
tions. Since convex optimizer has still polynomial complex-
ity, also may come with a high memory (storage) require-
ment, it may not be capable of handling very large-scale
problems.

The goal of this paper is to develop a new method to
speed up the L., computation, particularly for those large-
scale applications. We will present a new approach that ef-
fectively solves an L, problem without solving any convex
program. Our method is not only theoretically provable, but
also practically efficient. Potentially, it can be easily made
extremely fast.

2. Related work

In an early work on L., vision computation [5], Kahl
formulated the problem as quasi-convex program, and pro-
posed an Improved Bisection method based on the idea of
updating the upper-bound adaptively, thus effectively re-
duces the total number of SOCP iterations. This way, con-
siderable time reduction was observed.

A recent paper [2], also aiming at reducing the total num-
ber of iterations, has gained remarkable success. Based
on fractional programming, it introduced five algorithms
(e.g. Dinkelbach algorithm, Gugat algorithm, etc.) to vi-
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sion community. The common idea is: instead of doing
a naive binary search (bisection) which has linear conver-
gence, it uses Newton method to cut-down the total number
of SOCPs significantly.

Olsson et al. [12] realized that many L., functions in
vision are in fact pseudoconvex (which is slightly stronger
than quasi-convex). They proposed two fast algorithms.
The first one is based on local search using LOQO, but
for large applications it suffers from numerical convergence
problem. The second one is via SOCP approximation, and
lately was shown to be a special case of Dinkelbach algo-
rithm. Our work is significantly motivated by the concept
of pseudoconvexity.

The new method, to be presented in this paper, is rooted
from the mathematical theory of LP-type problems. In our
previous work we introduced the elegant LP-type frame-
work to multi-view L., computation [7]. We have proven
that many fixed-dimensional L., geometry problems are in
fact instances of the so-called LP-type problem [10]. How-
ever, that paper’s focus was on outliers-removal, and no ef-
ficient algorithm was given there.

After the completion of the work, a very interesting con-
nection was brought to our attention, which is that our
method bears a remarkable similarity to the SMO method
for fast Support Vector Machine training in the machine
learning field [13]. We note that, while these two meth-
ods advocate the same idea of reducing to the smallest pos-
sible subproblems, the SMO was designed for the convex
(quadratic programming) case, and the actual reduction al-
gorithms are also different.

3. A Preview of the Paper

So far, almost all published works on L., vision com-
putation are based on convex optimization. As mentioned
earlier, being a polynomial-complexity algorithm, the con-
vex optimization is expensive, preventing it from handling
very big problems.

For this reason, most existing wisdom for accelerating
large-scale L., computation is either through using faster
convex solvers, or through reducing the total number of
convex programs.

However, since convex-optimization appears to be the
bottleneck here, can we avoid it at all? Motivated by this
question, we take a very different angle to attack the prob-
lem of large-scale L., computation. We ask ourselves a
novel question: is it possible to effectively solve an Lo,
problem without solving any convex program ?

Our answer to this question is “yes.” In this paper, we
propose a new method precisely does this: enjoying all the
benefits of L., without using any (slow and expensive) con-
vex optimizer.

Our method follows from the reduction (or decompo-
sition) strategy, which performs by reducing a big original
problem into a set of small-size subproblems. We call these
small subproblems as atom or primitive problems. Each of
the atom problems is so small that applying a full-scale con-
vex solver is often unnecessary. Rather, more direct and
more efficient methods (e.g. analytic) may exist and may
suffice for solving them. This way, we avoid the use of con-
vex optimizer.

To be able to apply the above strategy, it is crucial to
show that the L, problems are indeed “reducible”. To
this end, we will establish our main reduction theorem
in section-5. The theorem is substantially grounded on
the pseudoconvexity theory—which will be reviewed in
section-4.

To actually perform the reduction (i.e. form the origi-
nally big problem to a set of small primitive problems), we
present two reduction algorithms in section-7. These al-
gorithms are efficient, in the sense that they will find the op-
timal solution in linear expected time. Therefore, our new
method is also efficient.

Our efficiency argument also depends on the assumption
that, one can solve those primitive problems extremely ef-
ficiently. This is often the case, in fact, as the primitive
problems are usually very tiny and very regular. Section-6
is devoted to primitive solvers.

Indeed, as an example, later we will show a 1000-point
L planar homography problem can be reduced to 4-point
homography and 5-point homography problems etc. Obvi-
ously, to estimate an L., homography from 4 points one
does not need any sophisticated SOCP; a simple SVD suf-
fices.

4. The L., Minimization and Pseudoconvexity

To ease exposition, this section will summarize some
known results of L, in vision computation. Emphasis is
given to pseudoconvexity and its implications.

The key idea of the L, scheme is to replace the Ly er-
ror norm with the L,-norm (i.e. minimax norm). Previous
works show that this leads to quasi-convex minimization (or
quasi-convex program). We call a function quasi-convex if
all of its sublevel sets are convex. Quasi-convex minimiza-
tion in multi-view geometry often takes the following form

({5D:

st. cfx+d; >0,i=1,..,N, )

where the f;(x) are quasi-convex, x € R" is the unknowns
to be solved for. The dimension of the problem is n, which
is often fixed and intrinsic to particular application. For ex-
ample, n = 3 for multi-view triangulation, n = 6 for 2D
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affinity, n = 8 for planar homography, n = 7 for funda-
mental matrix and n = 11 for camera calibration, etc. The
size (scale) of the problem is defined by V. By ‘large-scale’
problems we mean /N > n in general.

The standard approach to solve such a quasi-convex pro-
gram is to convert it to iteratively solving the following
SOCPs via bisection:

min -y (3)
st Ci(x) = ||pix 4+ bil| = y(cF x +di) <0,i=1,..., N,

where C;(x) represents the i-th second-order cone (shell
only). Note that we have multiplied the chirality condition
to both side.

4.1. Useful results of pseudoconvexity

Paper [12] has proven that the above functions f;(x) are
in fact pseudoconvex in the feasible region. Pseudoconvex
is a slightly stronger condition than quasi-convex. A pseu-
doconvex function is always quasi-convex but the converse
is not necessarily true.

Definition 4.1 A function f is called pseudoconvex if it is
differentiable and V f (x)(x —x) > 0 implies f(x) > f(X),
where V denotes gradient operator [8].

Pseudoconvexity is very useful in minimization. Infor-
mally speaking, a local stationary point of a pseudoconvex
function is also its global minimum. To find the global min-
imum it is sufficient to find a local stationary point, and this
can be done sufficiently by solving a KKT system of the
problem, as assured by the following two results.

Lemma 4.2 Given a pseudoconvex function f, then we
have V f(x) = 0 if and only if f(x) > f(X) for all x.

This lemma says that any local stationary point of a pseu-
doconvex function is also its global minimum.

Theorem 4.3 (KKT sufficient condition [8]) Consider a
general inequality-constrained minimization problem:

minf(x)7 s.t. gl(x) <0,i=1,..,N 4
xX
X ina convex set.

Let X be a feasible solution. Suppose its KKT system holds
true at X, i.e., there exist scalars \; > 0 such that

VR + D Aivgi(R) = 0. (5)

Suppose further that f(x) and g;(x) are pseudoconvex,
then the point X which solves the KKT system is precisely
the global optimum.

This theorem says that, unlike the quasi-convex case, for
pseudoconvex case the KKT conditions are not only neces-
sary but also sufficient. This actually suggests a local de-
scent approach for pseudoconvex optimization. Following
from this, paper [12] made an important attempt in using
LOQO to solve L., problems. For small problems LOQO
worked fine, but for large problems it often failed to con-
verge.

Minimax case. Recall that our purpose is to minimize
max; fi(x), where each f;(x) is pseudoconvex. Although
the concept of pseudoconvexity does not extend to the min-
imax case, we however have a significant result as follows:

Theorem 4.4 ( minimax KKT) x* solves ~* =
min, max; f;(x), ¢ = 1,..., N, where f;(x) is pseudocon-
vex, if and only if there exist scalars \; such that

N N
> NVfi(x") =0, =1, (6)
=1 =1

where X\; > 0if fi(x") =~", X =0 if fi(x") <~".
This theorem says that: at the optimum point x* of ~, in
each direction (denoted by ) there must be an ‘i’ such that
V fi(x*) - 0 >0. Geometrically, this means that in each di-
rection there is at least one residual non-decreasing. Proofs
of all the above results can be found in [8, 12].

5. Main Reduction Theorem

We have seen that pseudoconvexity is useful in deriv-
ing optimization procedures. In this section, we will further
show that it actually offers more.

Recall that our intended strategy for solving a big prob-
lem of size N (c.f. Eq.3) is to reduce it to a single or a set of
small primitive problems, each of which is of size & <N.
By using pseudoconvexity, we will show this is indeed pos-
sible, thanks to the Main Reduction Theorem to be given
below.

Before presenting the theorem, we first point to a useful
empirical observation, which offers insight to the theorem.
Many authors have observed that, the L., optimum is
actually only supported by a small subset of the entire
constraints set. This empirical ‘fact’ was applied to L
computations (e.g. [18, 15, 7]). But neither of them has
offered sufficient justification, nor answered a key question:
“how big size that subset should be, and how to quickly
findit?”.

5.1. The Main Theorem

‘We now state the main reduction theorem.
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Theorem 5.1 (main reduction theorem)

Consider Lo, problem miny max; f;(x), where x €
R™ i=1,..,N, N > (n+1), each f;(x) is pseudocon-
vex. Denote f1(x) = max;e; fi(X), where I is a subset of
N = {1,..., N}. Also denote fi as the minimum of f1(x).
Then there must exist a proper subset B which is of size
|B| < n+ 1 such that 5 = [ and x5 = x; are their
(equal) optimizers.

We call a subset of N a basis set (or basis in short), if
this subset yields the same minimal function value and
if remove any member from it will decrease the function
value. The maximal size (cardinality) of any basis is called
the combinatorial dimension. Hence the combinatorial
dimension in the theorem is (n + 1).

A proof of the theorem is given in the Appendix of the
paper. It is adduced in a form most suitable for the purpose.
A related and neat result, though in a different context, can
be found in [11].

This theorem predicts that the solution of the big prob-
lem is dominated by a small basis set of at most (n + 1)
constraints. This is very appealing, because solving that
small sub-problem yields identically the same result to the
original problem. Now the remaining task is to quickly find
a basis.

If the purpose were merely fo find a basis, then one could
easily do it a posteriori, meaning that extracting a basis set
after having found a solution of the original problem. But
this is meaningless however, for our current purpose of re-
duction. We must have an a priori approach that can iden-
tify a basis quickly before spending too much time on solv-
ing the original big problem. But how ?

Our answer to this will be given in section-7, in which
we will present two reduction algorithms, both of which can
find a basis in linear expected time. In the next section (i.e.,
section-0), instead, we will explain how to construct primi-
tive solvers.

6. Solving Primitive Problems

In this section, we will elaborate on how to actually com-
pute the primitive problems fast and efficiently, without us-
ing convex optimizer. We choose to describe our primitive
solvers earlier (before describing the actual reduction algo-
rithms in the next section), is to assure the reader earlier of
the possibility of solving L, without SOCP.

Let us use N-view triangulation as an example to il-
lustrate the possibility to construct ad hoc primitive solvers
without SOCP. The combinatorial dimension here is 4.
Hence only 4 distinct primitive problems exist: 1-view, 2-
view, 3-view and 4-view (the 1-view case is trivial). Note
that they are all under the L., norm.

Suppose by using our reduction algorithms (to be given
in the next section) we have reduced a big N-view problem
into a small set of k-view (k < 4) primitive problems. Be-
cause the primitive problems are so small that one is able
to solve them directly, efficiently, or even in closed-form.
Now let us show this.

2-view case. Itis easy to imagine (via geometric intuition)
that, solving 2-view L, triangulation is equivalent to find-
ing two non-inclusive cones that are tangent in 3-space. The
optimum attains, i.e., the  values is minimal, when the
two cones are tangent with the two gradients at the point
of tangency pointing to opposite directions. This point-of-
tangency gives the optimal solution. Summarizing this up
mathematically and we get:

Ci(x) = |aix+bi|| =y (eix+di) =0, i=1,2
AVC1(x) 4+ (1 = A\)VCa(x) =0, A > 0,ascalar.

This is almost a system of equations. Having very small
size, the system can be easily solved by any Newton method
(e.g. Levenberg-Marquardt). In solving the system, the last
positivity condition can be relaxed first and reinforced after-
ward. A linear triangulation method may be used to provide
an initial point. To ensure that the linear solution is also fea-
sible in terms of chirality, a validation before using it seems
necessary.

The reader may worry that the local Newton method may
not converge globally. The fact is, being pseudoconvex the
problem has only one local minimum, which is also the
global optimum. In addition, because the problem size is so
tiny and the nonlinearity is so mild that the Newton solver
is adequate in practice. Our tests hardly encountered any
difficulties, even when the noise level was high.

3-view case. The 3-view case is a bit tricky. Now the 3
cones cannot be tangent in any configuration, otherwise it
will reduce to the 2-view case, contradict to the fact that
the 3 cones form a basis set. Hence, they must intersect at
a common point. Moreover, at that point the three gradi-
ents must cover all feasible directions, otherwise the point
would move therefore not non-optimal, contradict to the
preassumption. Mathematically we have:

Ci(x) = |aix+bil| =y (e x+di) =0, i=1,...,3
Z/\N(Zz(x) =0, Z)\Z =1, A\; > 0.

4-view case. The 4-view case, on the other hand, is par-
ticularly simple. Note that we have totally 4 unknowns to
solve, 3 in x and 1 in «y. Now we have precisely 4 cones in
the basis set. Hence the solution can be found as a proper
root of the square system of equalities.

Ci(x) = |Bix + b =y (el x+di) =0, i=1,..,4

There may be multiple roots. However, this is no serious,
thanks to the use of local solver, and to the fact that we
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can easily rule out the spurious roots by examining the 4
gradients at the root, as in the 3-cone case.

Extensions. (i.) The above direct solvers are specifically de-
signed for triangulation. But, similar procedures can be derived
easily for other problems as well. Moreover, a common pattern
for their computations exists: Consider a problem with degree-of-
freedom d and combinatorial dimension (n 4 1). We want to find
its k-cone solution. Then we have: the case of £ < d is triv-
ial; the case of k=d is nothing but the minimal case which can be
solved linearly; the case of £ =n+1 leads to a square system of
equations; the cases of d < k& < n may be solved by examining
the k gradients. (ii.) The foregoing direct solvers work well in
practice. However, the way to obtain them is rather ad hoc and
heuristic. One can imagine, it would soon become tedious as the
problem’s combinatorial dimension grows higher. However, by
using theorem-4.4 it is not hard to find a systematic way to con-
struct generic solvers.

7. Two Reduction Algorithms

By far all other preparations are ready. One key question
remains: how to find a basis quickly ?

Using the combinatorial dimension bound § = (n + 1),
one could naively enumerate all possible subsets and choose
the one that yields the smallest values as a basis. For a size
N problem, this gives a plausible algorithm but of complex-
ity O(N' + ... + N™*1), which is impractical to use.

We will introduce two practical reduction algorithms in
this section. The algorithms accept as input the pseudocon-
vex program P1 (Eq.3) with N constraints, reduce it to a set
of primitive problems of size at most (n + 1), and finally
output a single basis within finitely-many steps. These two
algorithms are in fact equivalent to each other. They dif-
fer only in the forms of coding or implementations: one of
them is recursive, and the other is iterative. The recursive
version is neat and element, easy to analyze, while the itera-
tive version performs faster on certain platform as it avoids
much of the function-calls overhead. We call our algorithms
QuickPseudo Algorithm.

7.1. The recursive algorithm

The actual algorithm for recursive-reduction is summa-
rized in Algorithm-1. In it, we say a constraint h violates a
set B, if adding h to B leads to an increase in the function
value. Easy to check that the condition |B| < § is redundant;
it is nevertheless kept here for ease presentation.

The correctness of the algorithm can be verified by in-
duction. Because there are only two recursive calls inside
the recursive function, both of them decrease the size of
P while maintain and increase the size of B in a range of
0 < |B| < 4. Therefore, the algorithm will always termi-
nate in finite steps, and the output will be a basis, since it
must pass all the violation tests.

Input: Problem P1 (Eq.3), constraints set N, combinatorial
dimension §
Output: a single basis B of Problem P1
begin
Initialization: Store N in a list and then perform a
random permutation 7 on it, i.e., N := 7(N);

return QuickPseudo (N, J);
end

Function QuickPseudo (P, B)
begin
% P is a list of constraints, B is an initial basis ;
if (|B| < 0 and P = &) or |B| = ¢ then
y:=PrimitiveSolver (B);
D:=B;
else
choose the lastp € P ;
D:=QuickPseudo ({P\p}, B) ;
if p violates D then
D := QuickPseudo ({P\p}, {BUp}) ;
move p to the front of the list P ;
end
end

return D ;
end

Algorithm 1: Recursive QuickPseudo Algorithm

7.2. The iterative algorithm

Input: Problem P1, the constraint set N
Output: a single basis B of P1
begin
N:=7(N);
B: =9,
repeat
% test elements of N one after another;
if p € N violates Bthen
B :=BasisUpdate (B p) ;
move p to the front of the list N ;
end
until nop € N violates B,

return B ;
end

Algorithm 2: Iterative QuickPseudo Algorithm

The analysis to this algorithm is similar to the above one.
The internal function BasisUpdate is used to find the ba-
sis of an enlarged set consisting of the old basis B and a vio-
lating constraint p. The algorithm starts from B = &. Based
on its functionality, details of the function BasisUpdate
can be easily filled in by the reader, thus is left out for space
reason. The step of “move p to the front of the list” in
both algorithms, is based on the well-known move-to-front
heuristics in algorithm research. It is used to “pivot” impor-
tant solutions, so that the algorithms run practically faster.

Complexity Analysis. The proposed two algorithms are
special cases of the LP-type algorithm in the LP-type the-
ory. The reader is referred to [16, 10] and [3] for excellent
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references with detailed analysis of the algorithms.

Both algorithms are randomized algorithms, as seen by
the fact that a random permutation is used to initialize them.
Despite being randomized algorithms, on average their ex-
pected computational time is fixed, and a careful counting
of the algorithm steps reveals that, both the algorithms have
an expected linear computational complexity,i.e. linear in
the problem size O(£|N|), where ¢ is a constant depending
on the problem’s combinatorial dimension.

The implication of such a linear complexity is mixed: on
one hand, one can quickly (on average) find a basis after a
linear number of primitive computations; On the other hand,
the hidden constant £ can be very big if the problem dimen-
sion is high, because it depends upon the dimension up to
(sub)exponential (e.g., a rough estimate is that £ = §!). Due
to such a (sub)exponential bound, the overall efficiency of
these algorithms is much compromised.

So far, in theory there is still no exact cure to the big
& problem. However, in practice: (1) many geometry prob-
lems are of low dimension in nature; (2) for high-dimension
problems one may count on some super-fast implementa-
tions of the primitive solvers; (3) thirdly, if one settle for
some approximate solutions, then the order of dependency
of £ on the problem dimension may be reduced substan-
tially. For example, a desirable case would be that the &
depends on § only linearly (or quadratically, or cubically,
...), rather than (sub)exponentially.

Following the third point (of approximate optimal solu-
tion), we now point out a possible (and seemingly promis-
ing) remedy to the big- £ problem, that is the Core-Set
paradigm. The ‘Core-Set’ is a new and significant idea be-
ing developed recently in the field of computational geome-
try [1]. Its key motivation is to find an approximate optimal
solution to the original problem by using a very small (and
often sparse) subset (called a core-set) of the data, form
which an approximate -optimal solution can be found (e
being an accuracy factor). A fundamental property of such
core-set approximation is that, for certain problems there
are e-core-sets whose size depend only on ¢, but not on the
problem dimension (9), or on the problem size (|N|). If such
core-sets do exist for our L., multiview geometry prob-
lems, then potentially a linearly-bounded linear-time algo-
rithm may be constructed. We believe this is an interesting
future research direction.

8. Experiments

We tested the proposed method on both synthetic data
and real data. For synthetic data, we simulated 1,000 point
clouds within a cube in front of all NV views. The synthetic
images’ sizes are roughly of 1000 x 1000 and uniformly
random noise of up to £5 pixels were added in.

Both the recursive version and the iterative version of

Method:Time(seconds) | 2-view | 3-view | 4-view
Improved Bisection 0.58 0.71 0.80
Our direct solvers 0.010 0.012 0.014

Table 1. Primitive solvers: time comparison.

our reduction algorithm have been implemented and tested.
They show no difference in outputs, but the latter one is
slightly fast. This is in accord with the common argument
w.rI.t. iteration vs. recursion. So, in below our timing reports
are based on the iterative version. The test environment is
consisted of a standard PC (P4-3G, 1GB 32bits) and Matlab
2008a. We use Matlab’s profiler to report the timings
and comparisons. The adopted SOCP solver is SEDUMI.

The base-line algorithm used for comparison is the im-
proved bisection of [5], which is the best implementation
of the bisection SOCP approach, and it is already much
faster than the standard bisection procedure. We understand
that such comparisons are qualitative only, as the results
are much dependent of the actual implementation. Compar-
ing absolute running timing with Matlab code gives merely
a relative performance index. In particular, from a reduc-
tion algorithm’s point of view, a better question to answer is
that: given a big pseudoconvex program, how many prim-
itive problems do we need to solve, and how fast can we
solve each of them ?

In deed, a central argument of the paper is: if one can
provide super-fast, or closed-form, or hardware parallelized
primitive solvers, then the overall performance of our new
method will be remarkably high.

8.1. Primitive triangulation

We use Matlab’s £ solve (with levenberg marquardt op-
tion and user-provided analytic jacobians) as our primitive
solvers (see section-6). Initial points for £solve are found
via linear method. The theory of pseudoconvexity guaran-
tees that a local solution is also the global optimum. The
size of primitive problem is so small that the Levenberg-
Marquardt algorithm always converges practically.

Two methods, i.e., the Improved-Bisection and our prim-
itive solvers, are tested on the 2-view, 3-view, 4-view cases.
Both methods are set to terminate at the same accuracy (le-
5), and their final results are verified to be identical (up to
the accuracy).

The following results (table-1, average of 100 runs)
clearly show that our specially-designed primitive solvers
perform much faster than the Improved-Bisection. On av-
erage, with our current un-optimized Matlab code we can
solve a primitive problem in about 10 milliseconds. We be-
lieve it can be reduced to the order of 1 milliseconds, if
much optimized C code is to be used.
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| Problems | I-Bisection ‘ Our method || #(prim-prob) | ‘ Data Sets | I-Bisection | Our method || #(prim-prob) |
10-view 1.02s 0.19s 6 Dinosaur (full) 3676s 365s 8897
100-view 1.25s 0.82s 17 NotreDame (1/10) | 35815s~210h | 4968s~ 11h 152780
1000-view 6.30s 3.31s 33
10000-view 92.10s 6.02s 49 Table 3. Real test results: the dinosaur data set and 1-tenth of the
20000-view | 310.12s 11.8s 65 Notre Dame data set.
50000-view 1520s 15.1s 77

Table 2. Reduction results. Left two columns: core computation
time; Right column: the numbers of resulting primitive problems.

Time Distribution: 10-View Time Distribution: 100-View

#(instances)
#(instances)

o 0.1 0.4 05 9

02 03 05 1
time (in seconds) time (in seconds)

Figure 1. Histogram of running time (over 500 tests) for “10-view
triangulation” (left) and “100-view triangulation” (right) by our
new method.

8.2. N-view triangulation

Then we tested the iterative reduction algorithm on N-
view triangulation. We deliberately made N very big, just
to confirm the performance of our reduction under extreme
cases.

Table-2 gives comparison of core timings and the num-
ber of resulting primitive problems (round to integers).
These results are also the average of 100 runs (up to the
10,000-view case). The reported times are core computa-
tional time including those spent on reductions and on prim-
itive problems. The actual numbers of primitive problems
are much smaller than that theoretically-predicted. We be-
lieve this phenomenon is owe to the peculiar nature of tri-
angulation.

Recall that our algorithm is randomized algorithm, there-
fore we would like to know the variations of execution
times. Two sample results are provided in fig-1.

N-point homography. We also tested our method on N-
point 2D affine problem, N-point planar homography prob-
lem and N-point camera resectioning problem. The combi-
natorial dimensions of these problems are higher than trian-
gulation. Our method still runs correctly, but the improve-
ment is less evident, or even much slower for large V.
However, as we have always argued, our method can be
made fast, as long as one can implement very fast primitive
solvers. This is indeed possible in practice. Since the sizes
of these primitive problems are so tiny and very regular,
they are very suitable for hardware or parallel computation.
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We envisage the real potentials of applying GPU to the L,
computation. For example, it takes little time to compute a
batch of 5-point homographies in parallel on GPU.

8.3. Tests on real images

We validated our method on two real data sets, one is
the well-known Dinosaur sequences (fig-2), the other is the
Notre Dame data courtesy of [19] (fig-3). The Dinosaur
contains 36 view of 4,983 tracks and 16,432 feature points.
The Notre Dame contains 595 views of 277,877 tracks and
about one million feature points. We only tested 1-tenth of
tracks in the Notre Dame data set, which is probably already
sufficient to give a performance indication.

For the Dinosaur data set (4983 points in full) our
method spent 6 minutes in getting an L., reconstruction,
while the Improved-Bisection took more than one hour. In
terms of reduction, the original problem has been reduced to
8,897 small primitive problems. For the Notre-Dame data
set, the improvement is even more apparent, as shown in
table-3.
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Figure 2. Dinosaur Sequence: a sample image and 3D recon.

Figure 3. Notre Dame dataset: a sample image and 3D recon.



9. Discussion and Conclusion

From the above analysis we can see, the proposed
method is most suitable for problems having low-dimension
(i.e., a few variables) but subjecting to a large number of
constraints (i.e. the constraints-to-variables ratio is high). If
this is the case, our method performs the best.

Moreover, the method is only effective for problems hav-
ing fixed and low dimensions. In the area of multi-view
geometry, however, there are problems not falling into this
category. For example, structure-and-motion from known
rotation (dimension is not fixed) or plane-based reconstruc-
tion (high and varying dimension) are two exceptions. For
these problems, a better solution is [2].

So far, for medium-dimension problems the absolute
speedup by our method is not significant. However, the po-
tential to reach faster speed is high. Not like the original
big problem, the primitive problems are so tiny and regular.
Therefore, finding a closed-form solution (via e.g. Grobner
basis), or a hardware (e.g. GPU) implementation are both
possible.

To conclude, if the optimal solution of a big problem is
dominated by a small subproblem, then why bother solv-
ing the big one? The present work offers a valuable way to
efficiently solve large-scale L, multi-view geometry prob-
lems. We hope this paper will contribute to the endeavor of
applying the elegant L, scheme to large-scale real-world
applications.
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A. Appendix: proof of the main reduction the-
orem in section-5

To prove the theorem, we will need Helly’s theorem—a well-
known result in geometry and in convex optimization.

Theorem A.1 (Helly’s theorem) Given a set of N convex objects
in n-dimensional space R", N > n+1, if each (n+1) objects has
a common point, then there exists a point that is common to all the
N objects.

Recall f; : R™ +— Ry is psudoconvex. Assume that the sub-
levelsets
Si(p) ={z € R"; fi(x) < p}
are compact. We first form all subsets of size (n + 1) and order
them into I, Io, ..., Ipr, where M > n + 1. We let

Sty () ={z € R"; fix) < p, Vi€ L} = () Si(w)

i€l

and
* .
- = minmax f;(x
fI] 11 el ft( )

Then ff/ < fx. Let

p' =max(fr,, f,, - fry)--

Since for any fixed j, S, (1) is non-empty we have that all .+ 1
sets Si (1), ¢ € I; have a point in common. Therefore according
to Helly’s theorem there is a point ™ € (,.; Si(p”). It’s easy
to see that u* = fx. For the point ™ we therefore have that
fN = max;en fi(z™). Finally, to show that 4* = max f,*j for
some j we note that, as we have seen there is j such that

" = minmax f;(z) < max f;(z")
T I; I

Butsince x € [, Si(1") we also have

max fj(z") < "

J

And therefore " and B = I; for this j works. [J
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