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Abstract

This paper presents a new method for computing optimal L∞

solutions for vision geometry problems, particularly for those

problems of fixed-dimension and of large-scale. Our strategy for

solving a large L∞ problem is to reduce it to a finite set of smallest

possible subproblems. By using the fact that many of the problems

in question are pseudoconvex, we prove that such a reduction is

possible. To actually solve these small subproblems efficiently, we

propose a direct approach which makes no use of any convex op-

timizer (e.g. SOCP or LP), but is based on a simple local Newton

method. We give both theoretic justification and experimental val-

idation to the new method. Potentially, our new method can be

made extremely fast.

1. Introduction

The L∞ optimization is a rather new and promising di-

rection of research in multi-view geometry [4, 5, 6]. In just

a few years’ time it has attracted much attention from the vi-

sion geometry community (see e.g. [12, 17, 9, 14, 2, 7, 15]).

A critical virtue of the L∞ scheme is that the solution ob-

tained is not only geometrically meaningful, but also glob-

ally optimal and hence unique. The unique solution can al-

ways be reliably found, regardless of the size of the problem

and the configurations of the cameras. This forms a sharp

contrast to the conventional L2 method, which is known to

be problematic due to local minima or slow convergency.

This virtue entails the L∞ scheme particularly suitable

for large-scale applications. In these applications, there are

often e.g. thousands of views to be triangulated, or thou-

sands of points to be fit to a model. Paper [19] gives some

instances of large problems, one of which, the ‘Notre Dame’

data set, involves solving for 595 cameras and 277,887 3D

points.

However, to process large-scale data using L∞ there is a

computational complexity issue. The standard approach for

solving an L∞ problem is to convert it into a sequence of

convex programs (e.g. SOCP, second-order cone program),

and iteratively solves many such SOCPs via a bisection

(binary search) procedure. But, convex optimization is any-

way an expensive computation. Modern convex optimizers

are mostly based on the Interior-Point-Algorithm, which

is known to be polynomial algorithm, meaning that the

required computation grows polynomially in the size of the

problem (i.e. number of constraints and variables). A high

polynomial degree often prevents it from handling too big

problems, or its speed is unbearably slow.

To accelerate the L∞ computation, researchers have ex-

plored various ways. However, most of them have been con-

centrated either on how to speedup the convex solver itself,

or on how to reduce the total number of convex program

iterations (e.g.,[5][2]).

As a consequence, despite having all those improve-

ments, their methods still have to solve a full-size convex

program using a full-scale convex optimizer at every itera-

tions. Since convex optimizer has still polynomial complex-

ity, also may come with a high memory (storage) require-

ment, it may not be capable of handling very large-scale

problems.

The goal of this paper is to develop a new method to

speed up the L∞ computation, particularly for those large-

scale applications. We will present a new approach that ef-

fectively solves an L∞ problem without solving any convex

program. Our method is not only theoretically provable, but

also practically efficient. Potentially, it can be easily made

extremely fast.

2. Related work

In an early work on L∞ vision computation [5], Kahl

formulated the problem as quasi-convex program, and pro-

posed an Improved Bisection method based on the idea of

updating the upper-bound adaptively, thus effectively re-

duces the total number of SOCP iterations. This way, con-

siderable time reduction was observed.

A recent paper [2], also aiming at reducing the total num-

ber of iterations, has gained remarkable success. Based

on fractional programming, it introduced five algorithms

(e.g. Dinkelbach algorithm, Gugat algorithm, etc.) to vi-
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sion community. The common idea is: instead of doing

a naive binary search (bisection) which has linear conver-

gence, it uses Newton method to cut-down the total number

of SOCPs significantly.

Olsson et al. [12] realized that many L∞ functions in

vision are in fact pseudoconvex (which is slightly stronger

than quasi-convex). They proposed two fast algorithms.

The first one is based on local search using LOQO, but

for large applications it suffers from numerical convergence

problem. The second one is via SOCP approximation, and

lately was shown to be a special case of Dinkelbach algo-

rithm. Our work is significantly motivated by the concept

of pseudoconvexity.

The new method, to be presented in this paper, is rooted

from the mathematical theory of LP-type problems. In our

previous work we introduced the elegant LP-type frame-

work to multi-view L∞ computation [7]. We have proven

that many fixed-dimensional L∞ geometry problems are in

fact instances of the so-called LP-type problem [10]. How-

ever, that paper’s focus was on outliers-removal, and no ef-

ficient algorithm was given there.

After the completion of the work, a very interesting con-

nection was brought to our attention, which is that our

method bears a remarkable similarity to the SMO method

for fast Support Vector Machine training in the machine

learning field [13]. We note that, while these two meth-

ods advocate the same idea of reducing to the smallest pos-

sible subproblems, the SMO was designed for the convex

(quadratic programming) case, and the actual reduction al-

gorithms are also different.

3. A Preview of the Paper

So far, almost all published works on L∞ vision com-

putation are based on convex optimization. As mentioned

earlier, being a polynomial-complexity algorithm, the con-

vex optimization is expensive, preventing it from handling

very big problems.

For this reason, most existing wisdom for accelerating

large-scale L∞ computation is either through using faster

convex solvers, or through reducing the total number of

convex programs.

However, since convex-optimization appears to be the

bottleneck here, can we avoid it at all? Motivated by this

question, we take a very different angle to attack the prob-

lem of large-scale L∞ computation. We ask ourselves a

novel question: is it possible to effectively solve an L∞

problem without solving any convex program ?

Our answer to this question is “yes.” In this paper, we

propose a new method precisely does this: enjoying all the

benefits of L∞ without using any (slow and expensive) con-

vex optimizer.

Our method follows from the reduction (or decompo-

sition) strategy, which performs by reducing a big original

problem into a set of small-size subproblems. We call these

small subproblems as atom or primitive problems. Each of

the atom problems is so small that applying a full-scale con-

vex solver is often unnecessary. Rather, more direct and

more efficient methods (e.g. analytic) may exist and may

suffice for solving them. This way, we avoid the use of con-

vex optimizer.

To be able to apply the above strategy, it is crucial to

show that the L∞ problems are indeed “reducible”. To

this end, we will establish our main reduction theorem

in section-5. The theorem is substantially grounded on

the pseudoconvexity theory–which will be reviewed in

section-4.

To actually perform the reduction (i.e. form the origi-

nally big problem to a set of small primitive problems), we

present two reduction algorithms in section-7. These al-

gorithms are efficient, in the sense that they will find the op-

timal solution in linear expected time. Therefore, our new

method is also efficient.

Our efficiency argument also depends on the assumption

that, one can solve those primitive problems extremely ef-

ficiently. This is often the case, in fact, as the primitive

problems are usually very tiny and very regular. Section-6

is devoted to primitive solvers.

Indeed, as an example, later we will show a 1000-point

L∞ planar homography problem can be reduced to 4-point

homography and 5-point homography problems etc. Obvi-

ously, to estimate an L∞ homography from 4 points one

does not need any sophisticated SOCP; a simple SVD suf-

fices.

4. The L
∞

Minimization and Pseudoconvexity

To ease exposition, this section will summarize some

known results of L∞ in vision computation. Emphasis is

given to pseudoconvexity and its implications.

The key idea of the L∞ scheme is to replace the L2 er-
ror norm with the L∞-norm (i.e. minimax norm). Previous
works show that this leads to quasi-convex minimization (or
quasi-convex program). We call a function quasi-convex if
all of its sublevel sets are convex. Quasi-convex minimiza-
tion in multi-view geometry often takes the following form
([5]):

min
x

max
i

fi(x) =
‖Aix + bi‖

(cT
i x + di)

(1)

s.t. c
T
i x + di > 0, i = 1, ..., N, (2)

where the fi(x) are quasi-convex, x ∈ R
n is the unknowns

to be solved for. The dimension of the problem is n, which

is often fixed and intrinsic to particular application. For ex-

ample, n = 3 for multi-view triangulation, n = 6 for 2D
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affinity, n = 8 for planar homography, n = 7 for funda-

mental matrix and n = 11 for camera calibration, etc. The

size (scale) of the problem is defined by N . By ‘large-scale’

problems we mean N ≫ n in general.

The standard approach to solve such a quasi-convex pro-
gram is to convert it to iteratively solving the following
SOCPs via bisection:

min
x

γ (3)

s.t. Ci(x) = ‖Aix + bi‖ − γ(cT
i x + di) ≤ 0, i = 1, ..., N,

where Ci(x) represents the i-th second-order cone (shell

only). Note that we have multiplied the chirality condition

to both side.

4.1. Useful results of pseudoconvexity

Paper [12] has proven that the above functions fi(x) are

in fact pseudoconvex in the feasible region. Pseudoconvex

is a slightly stronger condition than quasi-convex. A pseu-

doconvex function is always quasi-convex but the converse

is not necessarily true.

Definition 4.1 A function f is called pseudoconvex if it is

differentiable and ▽f(x̄)(x− x̄) ≥ 0 implies f(x) ≥ f(x̄),
where ▽ denotes gradient operator [8].

Pseudoconvexity is very useful in minimization. Infor-

mally speaking, a local stationary point of a pseudoconvex

function is also its global minimum. To find the global min-

imum it is sufficient to find a local stationary point, and this

can be done sufficiently by solving a KKT system of the

problem, as assured by the following two results.

Lemma 4.2 Given a pseudoconvex function f , then we

have ▽f(x̄) = 0 if and only if f(x) ≥ f(x̄) for all x.

This lemma says that any local stationary point of a pseu-

doconvex function is also its global minimum.

Theorem 4.3 (KKT sufficient condition [8]) Consider a
general inequality-constrained minimization problem:

min
x

f(x), s.t. gi(x) ≤ 0, i = 1, ..., N (4)

x in a convex set.

Let x̄ be a feasible solution. Suppose its KKT system holds
true at x̄, i.e., there exist scalars λi ≥ 0 such that

▽f(x̄) +
X

i

λi▽gi(x̄) = 0. (5)

Suppose further that f(x) and gi(x) are pseudoconvex,

then the point x̄ which solves the KKT system is precisely

the global optimum.

This theorem says that, unlike the quasi-convex case, for

pseudoconvex case the KKT conditions are not only neces-

sary but also sufficient. This actually suggests a local de-

scent approach for pseudoconvex optimization. Following

from this, paper [12] made an important attempt in using

LOQO to solve L∞ problems. For small problems LOQO

worked fine, but for large problems it often failed to con-

verge.

Minimax case. Recall that our purpose is to minimize

maxi fi(x), where each fi(x) is pseudoconvex. Although

the concept of pseudoconvexity does not extend to the min-

imax case, we however have a significant result as follows:

Theorem 4.4 ( minimax KKT) x
∗ solves γ∗ =

minx maxi fi(x), i = 1, ..., N, where fi(x) is pseudocon-
vex, if and only if there exist scalars λi such that

N
X

i=1

λi▽fi(x
∗) = 0,

N
X

i=1

λi = 1, (6)

where λi ≥ 0 if fi(x
∗) = γ

∗
, λi = 0 if fi(x

∗) < γ
∗
.

This theorem says that: at the optimum point x
∗ of γ, in

each direction (denoted by θ) there must be an ‘i’ such that

▽fi(x
∗) · θ ≥0. Geometrically, this means that in each di-

rection there is at least one residual non-decreasing. Proofs

of all the above results can be found in [8, 12].

5. Main Reduction Theorem

We have seen that pseudoconvexity is useful in deriv-

ing optimization procedures. In this section, we will further

show that it actually offers more.

Recall that our intended strategy for solving a big prob-

lem of size N (c.f. Eq.3) is to reduce it to a single or a set of

small primitive problems, each of which is of size k ≪N.

By using pseudoconvexity, we will show this is indeed pos-

sible, thanks to the Main Reduction Theorem to be given

below.

Before presenting the theorem, we first point to a useful

empirical observation, which offers insight to the theorem.

Many authors have observed that, the L∞ optimum is

actually only supported by a small subset of the entire

constraints set. This empirical ‘fact’ was applied to L∞

computations (e.g. [18, 15, 7]). But neither of them has

offered sufficient justification, nor answered a key question:

“how big size that subset should be, and how to quickly

find it?”.

5.1. The Main Theorem

We now state the main reduction theorem.
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Theorem 5.1 (main reduction theorem)

Consider L∞ problem minx maxi fi(x), where x ∈
R

n, i = 1, ..., N , N > (n + 1), each fi(x) is pseudocon-

vex. Denote fI(x) = maxi∈I fi(x), where I is a subset of

N = {1, ..., N}. Also denote f∗

I
as the minimum of fI(x).

Then there must exist a proper subset B which is of size

|B| ≤ n + 1 such that f∗

B
= f∗

N
and x∗

B
= x∗

N
are their

(equal) optimizers.

We call a subset of N a basis set (or basis in short), if

this subset yields the same minimal function value and

if remove any member from it will decrease the function

value. The maximal size (cardinality) of any basis is called

the combinatorial dimension. Hence the combinatorial

dimension in the theorem is (n + 1).

A proof of the theorem is given in the Appendix of the

paper. It is adduced in a form most suitable for the purpose.

A related and neat result, though in a different context, can

be found in [11].

This theorem predicts that the solution of the big prob-

lem is dominated by a small basis set of at most (n + 1)
constraints. This is very appealing, because solving that

small sub-problem yields identically the same result to the

original problem. Now the remaining task is to quickly find

a basis.

If the purpose were merely to find a basis, then one could

easily do it a posteriori, meaning that extracting a basis set

after having found a solution of the original problem. But

this is meaningless however, for our current purpose of re-

duction. We must have an a priori approach that can iden-

tify a basis quickly before spending too much time on solv-

ing the original big problem. But how ?

Our answer to this will be given in section-7, in which

we will present two reduction algorithms, both of which can

find a basis in linear expected time. In the next section (i.e.,

section-6), instead, we will explain how to construct primi-

tive solvers.

6. Solving Primitive Problems

In this section, we will elaborate on how to actually com-

pute the primitive problems fast and efficiently, without us-

ing convex optimizer. We choose to describe our primitive

solvers earlier (before describing the actual reduction algo-

rithms in the next section), is to assure the reader earlier of

the possibility of solving L∞ without SOCP.

Let us use N-view triangulation as an example to il-

lustrate the possibility to construct ad hoc primitive solvers

without SOCP. The combinatorial dimension here is 4.

Hence only 4 distinct primitive problems exist: 1-view, 2-

view, 3-view and 4-view (the 1-view case is trivial). Note

that they are all under the L∞ norm.

Suppose by using our reduction algorithms (to be given

in the next section) we have reduced a big N-view problem

into a small set of k-view (k ≤ 4) primitive problems. Be-

cause the primitive problems are so small that one is able

to solve them directly, efficiently, or even in closed-form.

Now let us show this.

2-view case. It is easy to imagine (via geometric intuition)
that, solving 2-view L∞ triangulation is equivalent to find-
ing two non-inclusive cones that are tangent in 3-space. The
optimum attains, i.e., the γ values is minimal, when the
two cones are tangent with the two gradients at the point
of tangency pointing to opposite directions. This point-of-
tangency gives the optimal solution. Summarizing this up
mathematically and we get:

(

Ci(x) = ‖Aix + bi‖ − γ (cT
i x + di) = 0, i = 1, 2

λ▽C1(x) + (1 − λ)▽C2(x) = 0, λ > 0, a scalar.

This is almost a system of equations. Having very small

size, the system can be easily solved by any Newton method

(e.g. Levenberg-Marquardt). In solving the system, the last

positivity condition can be relaxed first and reinforced after-

ward. A linear triangulation method may be used to provide

an initial point. To ensure that the linear solution is also fea-

sible in terms of chirality, a validation before using it seems

necessary.

The reader may worry that the local Newton method may

not converge globally. The fact is, being pseudoconvex the

problem has only one local minimum, which is also the

global optimum. In addition, because the problem size is so

tiny and the nonlinearity is so mild that the Newton solver

is adequate in practice. Our tests hardly encountered any

difficulties, even when the noise level was high.

3-view case. The 3-view case is a bit tricky. Now the 3
cones cannot be tangent in any configuration, otherwise it
will reduce to the 2-view case, contradict to the fact that
the 3 cones form a basis set. Hence, they must intersect at
a common point. Moreover, at that point the three gradi-
ents must cover all feasible directions, otherwise the point
would move therefore not non-optimal, contradict to the
preassumption. Mathematically we have:

8

>

<

>

:

Ci(x) = ‖Aix + bi‖ − γ (cT
i x + di) = 0, i = 1, ..., 3

X

i

λi▽Ci(x) = 0,
X

i

λi = 1, λi > 0.

4-view case. The 4-view case, on the other hand, is par-
ticularly simple. Note that we have totally 4 unknowns to
solve, 3 in x and 1 in γ. Now we have precisely 4 cones in
the basis set. Hence the solution can be found as a proper
root of the square system of equalities.

Ci(x) = ‖Aix + bi‖ − γ (cT
i x + di) = 0, i = 1, ..., 4

There may be multiple roots. However, this is no serious,

thanks to the use of local solver, and to the fact that we
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can easily rule out the spurious roots by examining the 4

gradients at the root, as in the 3-cone case.

Extensions. (i.) The above direct solvers are specifically de-

signed for triangulation. But, similar procedures can be derived

easily for other problems as well. Moreover, a common pattern

for their computations exists: Consider a problem with degree-of-

freedom d and combinatorial dimension (n + 1). We want to find

its k-cone solution. Then we have: the case of k < d is triv-

ial; the case of k=d is nothing but the minimal case which can be

solved linearly; the case of k =n+1 leads to a square system of

equations; the cases of d < k ≤ n may be solved by examining

the k gradients. (ii.) The foregoing direct solvers work well in

practice. However, the way to obtain them is rather ad hoc and

heuristic. One can imagine, it would soon become tedious as the

problem’s combinatorial dimension grows higher. However, by

using theorem-4.4 it is not hard to find a systematic way to con-

struct generic solvers.

7. Two Reduction Algorithms

By far all other preparations are ready. One key question

remains: how to find a basis quickly ?

Using the combinatorial dimension bound δ = (n + 1),
one could naı̈vely enumerate all possible subsets and choose

the one that yields the smallest values as a basis. For a size

N problem, this gives a plausible algorithm but of complex-

ity O
(

N1 + ... + Nn+1
)

, which is impractical to use.

We will introduce two practical reduction algorithms in

this section. The algorithms accept as input the pseudocon-

vex program P1 (Eq.3) with N constraints, reduce it to a set

of primitive problems of size at most (n + 1), and finally

output a single basis within finitely-many steps. These two

algorithms are in fact equivalent to each other. They dif-

fer only in the forms of coding or implementations: one of

them is recursive, and the other is iterative. The recursive

version is neat and element, easy to analyze, while the itera-

tive version performs faster on certain platform as it avoids

much of the function-calls overhead. We call our algorithms

QuickPseudo Algorithm.

7.1. The recursive algorithm

The actual algorithm for recursive-reduction is summa-

rized in Algorithm-1. In it, we say a constraint h violates a

set B, if adding h to B leads to an increase in the function

value. Easy to check that the condition |B| < δ is redundant;

it is nevertheless kept here for ease presentation.

The correctness of the algorithm can be verified by in-

duction. Because there are only two recursive calls inside

the recursive function, both of them decrease the size of

P while maintain and increase the size of B in a range of

0 ≤ |B| ≤ δ. Therefore, the algorithm will always termi-

nate in finite steps, and the output will be a basis, since it

must pass all the violation tests.

Input: Problem P1 (Eq.3), constraints set N, combinatorial

dimension δ

Output: a single basis B of Problem P1

begin
Initialization: Store N in a list and then perform a

random permutation π on it, i.e., N := π(N);

return QuickPseudo(N, ∅);
end

Function QuickPseudo(P,B)

begin
% P is a list of constraints, B is an initial basis ;

if (|B| < δ and P = ∅) or |B| = δ then
γ:= PrimitiveSolver(B);

D := B ;
else

choose the last p ∈ P ;

D:=QuickPseudo({P\p}, B) ;

if p violates D then
D := QuickPseudo({P\p}, {B ∪ p}) ;

move p to the front of the list P ;

end

end

return D ;
end

Algorithm 1: Recursive QuickPseudo Algorithm

7.2. The iterative algorithm

Input: Problem P1, the constraint set N

Output: a single basis B of P1

begin
N := π(N) ;

B := ∅ ;

repeat
% test elements of N one after another;

if p ∈ N violates B then
B := BasisUpdate(B, p) ;

move p to the front of the list N ;

end

until no p ∈ N violates B ;

return B ;
end

Algorithm 2: Iterative QuickPseudo Algorithm

The analysis to this algorithm is similar to the above one.

The internal function BasisUpdate is used to find the ba-

sis of an enlarged set consisting of the old basis B and a vio-

lating constraint p. The algorithm starts from B = ∅. Based

on its functionality, details of the function BasisUpdate

can be easily filled in by the reader, thus is left out for space

reason. The step of “move p to the front of the list” in

both algorithms, is based on the well-known move-to-front

heuristics in algorithm research. It is used to “pivot” impor-

tant solutions, so that the algorithms run practically faster.

Complexity Analysis. The proposed two algorithms are

special cases of the LP-type algorithm in the LP-type the-

ory. The reader is referred to [16, 10] and [3] for excellent
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references with detailed analysis of the algorithms.

Both algorithms are randomized algorithms, as seen by

the fact that a random permutation is used to initialize them.

Despite being randomized algorithms, on average their ex-

pected computational time is fixed, and a careful counting

of the algorithm steps reveals that, both the algorithms have

an expected linear computational complexity,i.e. linear in

the problem size O(ξ|N|), where ξ is a constant depending

on the problem’s combinatorial dimension.

The implication of such a linear complexity is mixed: on

one hand, one can quickly (on average) find a basis after a

linear number of primitive computations; On the other hand,

the hidden constant ξ can be very big if the problem dimen-

sion is high, because it depends upon the dimension up to

(sub)exponential (e.g., a rough estimate is that ξ ≈ δ!). Due

to such a (sub)exponential bound, the overall efficiency of

these algorithms is much compromised.

So far, in theory there is still no exact cure to the big

ξ problem. However, in practice: (1) many geometry prob-

lems are of low dimension in nature; (2) for high-dimension

problems one may count on some super-fast implementa-

tions of the primitive solvers; (3) thirdly, if one settle for

some approximate solutions, then the order of dependency

of ξ on the problem dimension may be reduced substan-

tially. For example, a desirable case would be that the ξ

depends on δ only linearly (or quadratically, or cubically,

...), rather than (sub)exponentially.

Following the third point (of approximate optimal solu-

tion), we now point out a possible (and seemingly promis-

ing) remedy to the big- ξ problem, that is the Core-Set

paradigm. The ‘Core-Set’ is a new and significant idea be-

ing developed recently in the field of computational geome-

try [1]. Its key motivation is to find an approximate optimal

solution to the original problem by using a very small (and

often sparse) subset (called a core-set) of the data, form

which an approximate ε-optimal solution can be found (ε

being an accuracy factor). A fundamental property of such

core-set approximation is that, for certain problems there

are ε-core-sets whose size depend only on ε, but not on the

problem dimension (δ), or on the problem size (|N|). If such

core-sets do exist for our L∞ multiview geometry prob-

lems, then potentially a linearly-bounded linear-time algo-

rithm may be constructed. We believe this is an interesting

future research direction.

8. Experiments

We tested the proposed method on both synthetic data

and real data. For synthetic data, we simulated 1,000 point

clouds within a cube in front of all N views. The synthetic

images’ sizes are roughly of 1000 × 1000 and uniformly

random noise of up to ±5 pixels were added in.

Both the recursive version and the iterative version of

Method:Time(seconds) 2-view 3-view 4-view

Improved Bisection 0.58 0.71 0.80

Our direct solvers 0.010 0.012 0.014

Table 1. Primitive solvers: time comparison.

our reduction algorithm have been implemented and tested.

They show no difference in outputs, but the latter one is

slightly fast. This is in accord with the common argument

w.r.t. iteration vs. recursion. So, in below our timing reports

are based on the iterative version. The test environment is

consisted of a standard PC (P4-3G, 1GB 32bits) and Matlab

2008a. We use Matlab’s profiler to report the timings

and comparisons. The adopted SOCP solver is SEDUMI.

The base-line algorithm used for comparison is the im-

proved bisection of [5], which is the best implementation

of the bisection SOCP approach, and it is already much

faster than the standard bisection procedure. We understand

that such comparisons are qualitative only, as the results

are much dependent of the actual implementation. Compar-

ing absolute running timing with Matlab code gives merely

a relative performance index. In particular, from a reduc-

tion algorithm’s point of view, a better question to answer is

that: given a big pseudoconvex program, how many prim-

itive problems do we need to solve, and how fast can we

solve each of them ?

In deed, a central argument of the paper is: if one can

provide super-fast, or closed-form, or hardware parallelized

primitive solvers, then the overall performance of our new

method will be remarkably high.

8.1. Primitive triangulation

We use Matlab’s fsolve (with levenberg marquardt op-

tion and user-provided analytic jacobians) as our primitive

solvers (see section-6). Initial points for fsolve are found

via linear method. The theory of pseudoconvexity guaran-

tees that a local solution is also the global optimum. The

size of primitive problem is so small that the Levenberg-

Marquardt algorithm always converges practically.

Two methods, i.e., the Improved-Bisection and our prim-

itive solvers, are tested on the 2-view, 3-view, 4-view cases.

Both methods are set to terminate at the same accuracy (1e-

5), and their final results are verified to be identical (up to

the accuracy).

The following results (table-1, average of 100 runs)

clearly show that our specially-designed primitive solvers

perform much faster than the Improved-Bisection. On av-

erage, with our current un-optimized Matlab code we can

solve a primitive problem in about 10 milliseconds. We be-

lieve it can be reduced to the order of 1 milliseconds, if

much optimized C code is to be used.
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Problems I-Bisection Our method #(prim-prob)

10-view 1.02s 0.19s 6

100-view 1.25s 0.82s 17

1000-view 6.30s 3.31s 33

10000-view 92.10s 6.02s 49

20000-view 310.12s 11.8s 65

50000-view 1520s 15.1s 77

Table 2. Reduction results. Left two columns: core computation

time; Right column: the numbers of resulting primitive problems.
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Figure 1. Histogram of running time (over 500 tests) for “10-view

triangulation” (left) and “100-view triangulation” (right) by our

new method.

8.2. N-view triangulation

Then we tested the iterative reduction algorithm on N -

view triangulation. We deliberately made N very big, just

to confirm the performance of our reduction under extreme

cases.

Table-2 gives comparison of core timings and the num-

ber of resulting primitive problems (round to integers).

These results are also the average of 100 runs (up to the

10,000-view case). The reported times are core computa-

tional time including those spent on reductions and on prim-

itive problems. The actual numbers of primitive problems

are much smaller than that theoretically-predicted. We be-

lieve this phenomenon is owe to the peculiar nature of tri-

angulation.

Recall that our algorithm is randomized algorithm, there-

fore we would like to know the variations of execution

times. Two sample results are provided in fig-1.

N-point homography. We also tested our method on N-

point 2D affine problem, N-point planar homography prob-

lem and N-point camera resectioning problem. The combi-

natorial dimensions of these problems are higher than trian-

gulation. Our method still runs correctly, but the improve-

ment is less evident, or even much slower for large N .

However, as we have always argued, our method can be

made fast, as long as one can implement very fast primitive

solvers. This is indeed possible in practice. Since the sizes

of these primitive problems are so tiny and very regular,

they are very suitable for hardware or parallel computation.

Data Sets I-Bisection Our method #(prim-prob)

Dinosaur (full) 3676s 365s 8897

NotreDame (1/10) 35815s≈10h 4968s≈ 1
1

2
h 152780

Table 3. Real test results: the dinosaur data set and 1-tenth of the

Notre Dame data set.

We envisage the real potentials of applying GPU to the L∞

computation. For example, it takes little time to compute a

batch of 5-point homographies in parallel on GPU.

8.3. Tests on real images

We validated our method on two real data sets, one is

the well-known Dinosaur sequences (fig-2), the other is the

Notre Dame data courtesy of [19] (fig-3). The Dinosaur

contains 36 view of 4,983 tracks and 16,432 feature points.

The Notre Dame contains 595 views of 277,877 tracks and

about one million feature points. We only tested 1-tenth of

tracks in the Notre Dame data set, which is probably already

sufficient to give a performance indication.

For the Dinosaur data set (4983 points in full) our

method spent 6 minutes in getting an L∞ reconstruction,

while the Improved-Bisection took more than one hour. In

terms of reduction, the original problem has been reduced to

8,897 small primitive problems. For the Notre-Dame data

set, the improvement is even more apparent, as shown in

table-3.
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Figure 2. Dinosaur Sequence: a sample image and 3D recon.
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Figure 3. Notre Dame dataset: a sample image and 3D recon.
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9. Discussion and Conclusion

From the above analysis we can see, the proposed

method is most suitable for problems having low-dimension

(i.e., a few variables) but subjecting to a large number of

constraints (i.e. the constraints-to-variables ratio is high). If

this is the case, our method performs the best.

Moreover, the method is only effective for problems hav-

ing fixed and low dimensions. In the area of multi-view

geometry, however, there are problems not falling into this

category. For example, structure-and-motion from known

rotation (dimension is not fixed) or plane-based reconstruc-

tion (high and varying dimension) are two exceptions. For

these problems, a better solution is [2].

So far, for medium-dimension problems the absolute

speedup by our method is not significant. However, the po-

tential to reach faster speed is high. Not like the original

big problem, the primitive problems are so tiny and regular.

Therefore, finding a closed-form solution (via e.g. Gröbner

basis), or a hardware (e.g. GPU) implementation are both

possible.
To conclude, if the optimal solution of a big problem is

dominated by a small subproblem, then why bother solv-
ing the big one? The present work offers a valuable way to
efficiently solve large-scale L∞ multi-view geometry prob-
lems. We hope this paper will contribute to the endeavor of
applying the elegant L∞ scheme to large-scale real-world
applications.
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A. Appendix: proof of the main reduction the-

orem in section-5

To prove the theorem, we will need Helly’s theorem—a well-

known result in geometry and in convex optimization.

Theorem A.1 (Helly’s theorem) Given a set of N convex objects

in n-dimensional space R
n, N > n+1, if each (n+1) objects has

a common point, then there exists a point that is common to all the

N objects.

Recall fi : R
n 7→ R+ is psudoconvex. Assume that the sub-

levelsets

Si(µ) = {x ∈ R
n; fi(x) ≤ µ}

are compact. We first form all subsets of size (n + 1) and order

them into I1, I2, ..., IM , where M ≥ n + 1. We let

SIj
(µ) = {x ∈ R

n; fi(x) ≤ µ, ∀i ∈ Ii} =
\

i∈Ij

Si(µ)

and

f
∗

Ij
= min

x
max
i∈Ij

fi(x)

Then f∗

Ij
≤ f∗

N . Let

µ
∗ = max(f∗

I1
, f

∗

I2
, ..., f

∗

IN
)..

Since for any fixed j, SIj
(µ∗) is non-empty we have that all n+1

sets Si(µ
∗), i ∈ Ij have a point in common. Therefore according

to Helly’s theorem there is a point x∗ ∈
T

i∈IN
Si(µ

∗). It’s easy

to see that µ∗ = f∗

N . For the point x∗ we therefore have that

f∗

N = maxi∈N fi(x
∗). Finally, to show that µ∗ = max f∗

Ij
for

some j we note that, as we have seen there is j such that

µ
∗ = min

x
max

Ij

fj(x) ≤ max
Ij

fj(x
∗)

But since x ∈
T

i∈IN
Si(µ

∗) we also have

max
Ij

fj(x
∗) ≤ µ

∗

And therefore x∗ and B = Ij for this j works. �
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