
   

 

 

 

Abstract 
 

We propose a novel technique based on compressive 

sensing for expression-invariant face recognition. We view 

the different images of the same subject as an ensemble of 

intercorrelated signals and assume that changes due to 

variation in expressions are sparse with respect to the 

whole image. We exploit this sparsity using distributed 

compressive sensing theory, which enables us to grossly 

represent the training images of a given subject by only 

two feature images: one that captures the holistic 

(common) features of the face, and the other that captures 

the different expressions in all training samples. We show 

that a new test image of a subject can be fairly well 

approximated using only the two feature images from the 

same subject. Hence we can drastically reduce the storage 

space and operational dimensionality by keeping only 

these two feature images or their random measurements. 

Based on this, we design an efficient expression-invariant 

classifier. Furthermore, we show that substantially low 

dimensional versions of the training features, such as (i) 

ones extracted from critically-downsampled training 

images, or (ii) low-dimensional random projection of 

original feature images, still have sufficient information 

for good classification. Extensive experiments with 

publically-available databases show that, on average, our 

approach performs better than the state-of-the-art despite 

using only such super-compact feature representation. 

1. Introduction 

Face recognition (FR) has been a highly active research 

area for many years. A typical approach involves two 

tasks: feature extraction and classification. Commonly-

used feature extraction methods include subspace 

techniques such as principle component analysis (PCA or 

eigenface), independent component analysis (ICA), linear 

discriminant analysis (LDA or fisherface) and so on [1, 2]. 

With features extracted, classifiers based on techniques 

such as nearest neighbor and support vector machines can 

then be used to perform recognition. The above feature 

extraction methods are well-understood and in a sense 

have reached their maturity. Researchers are now looking 

for different methods and theories to address the persisting 

challenges in FR like expression, illumination and pose 

variation, and dimensionality reduction, etc. Reducing the 

space complexity and in particular the operational 

dimensionality of the classifier is vital for practical 

applications involving large databases.  
 

The recently-emerged Compressive Sensing (CS) 

theory [6,10,12-16], while originally intended to address 

signal sensing and coding problems, has shown 

tremendous potential for other problems like pattern  

representation and recognition [3,4], often beating the 

conventional techniques. In this paper we propose a new 

technique for face feature extraction and classification, 

based on the CS theory. We focus on addressing 

expression variation in FR. Expression-invariant FR is a 

challenging task owing to complex and varied nature of 

facial expressions. Some sample face images are shown in 

Fig. 1 to illustrate the complexity of the problem. Our 

method relies on distributed CS and joint sparsity models 

(JSM) [5, 10]. The JSM was originally proposed for 

efficient coding of multiple inter-correlated signals. In our 

work, we formulate the JSM from a “representation” 

perspective so that it can be readily applied to computer 

vision problems requiring compact representation of 

multiple correlated images such as instances of the same 

face in the context of FR, which is our focus of discussion 

in this paper. Further, we design feature extraction and 

classification algorithms based on the formulation. Unlike 

existing FR work based on sparse representation (e.g., 

[3]), the proposed approach has a natural and close knit 

with the CS theory and thus many potential benefits of CS 

apply (e.g., projecting the input image into ultra-low 

dimensions, as discussed in Section 4.2). 
 

Specifically, we consider the training face images of a 

single subject as an ensemble of inter-correlated signals 

and propose a technique to represent each subject class 

with two feature images: (i) one that captures holistic or 

gross face features (the common component) and (ii) the 

other that captures mostly the unique features (like 

expressions) of all images in a single image (the gross 

innovation component). Then, we design a CS based 

reconstruction algorithm that can produce a close 

approximation of a new face image of the subject, using 

only the two training features. In particular, the algorithm 
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first produces an approximation of expressions in the new 

face image using the gross innovation feature and then 

uses this with the common component to reconstruct the 

given face image. A face classifier is designed based on 

the same principle, where the class of the test image is 

decided based on how well it can be approximated using 

the training features of labeled classes. Since we store only 

two feature images per subject (or their low dimensional 

measurements), we drastically reduce the training set 

storage space and the operational dimensionality of the 

classifier, compared with the sparse-representation-based 

algorithm of [3], while being able to achieve better 

performance than the state-of-art results reported therein. 

Further, our method is more robust in scenarios where 

only a few samples are available for training. 
 

Section 2 reviews the background and related work. 

Section 3 presents our method for feature extraction based 

on JSM. A new classifier is designed and discussed in 

Section 4, followed by experimental results in Section 5. 

We conclude with discussion on future work in Section 6.  
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Figure 1: Sample face images with expressions from (a) [9], (b) 

[8], and (c) [7]. 

2. Background and Related Work 

In this section, we first briefly review basics of the CS 

theory, and then discuss one most recent work on FR 

based on sparse representation and CS.  

According to the CS theory, if a signal � � �� is K-

sparse, with respect to a basis � � ���� (i.e in the 

expansion � 	 �
�, there are only K<N non-zero or 

significant coefficients), then  � can be recovered by its 

measurement � � ��, M<N, obtained by projecting � 

onto a second basis � �  ���� , as long as (i) � and � 

are incoherent and (ii) M is of the order �Klog(N/K) 

[6,10,12-16]. Mathematically, if we write the 

measurement as y	  ��,   � �  ��, then the signal 

recovery can be done by convex l
1
 optimization: 

 

�� 	 arg min����     �. �. � 	 ���                  (1) 
 

or         �� 	 argmin����     �. �. �� � ����� ��        (2) 
 

Eqn. (1) is the Basis Pursuit problem and Eqn. (2) is the 

Basis Pursuit Denoising problem, which is well suited in 

cases where the measurements are noisy. A popular 

approximation equivalent to (2) is the unconstrained 

version given by 
 

 �� 	 argmin�  ����    !  0.5 $ �� � �����
� %       (3) 

 

There are efficient algorithms that use interior-point 

methods to solve the l
1
 minimization of (1) and (2). One of 

the earlier implementations is  l
1
-magic [18] which recasts 

these problems as a second-order cone program and then 

applies the primal log-barrier approach. More recent 

interests are in sparse recovery algorithms solving the 

unconstrained optimization of (3), since it is much faster 

than directly solving (1) or (2). Gradient Projection for 

Sparse Reconstruction (GPSR) [11] is one such more 

recent algorithm, which is reported to outperform prior 

approaches [17]. 
 

      Recently, an FR algorithm (called SRC) based on 

ideas of sparse representation and CS has been proposed 

[3], which appears to be able to handle changing 

expression and illumination. The work was enhanced by 

another paper [4] to handle pose variation. In the SRC 

algorithm, it is assumed that the whole set of training 

samples form a dictionary (each image is a base atom), 

and then the recognition problem is cast as one of 

discriminatively finding a sparse representation of the test 

image as a linear combination of training images by 

solving the optimization problem in (1), (2) or (3). While 

the SRC model demonstrates the power of harnessing 

sparsity in face recognition problem via l
1
 minimization, it 

has some disadvantages. First, for accurate recognition, 

sufficiently large training images for each subject are 

needed. But in practice, only a few instances might be 

available for a few or even all of the subjects. Second, all 

training images (or their low dimensional versions) have 

to be stored and accessed during testing, and thus for a 

large training set, both the space complexity and the speed 

performance may pose as practical challenges. 
 

Nevertheless, the comparison with other existing 

approaches in [3] suggests that the SRC algorithm is 

among the best and thus we treat it as the state-of-the-art 

and will use it as a bench mark in our study in this paper. 

3. Face Feature Extraction and Training  

The problem of recognition of an unknown object is to 

correctly identify the class to which it “belongs to”, using 

some information derived from labeled training samples 

belonging to K distinct classes. Here we refer to feature 

extraction as training. In this section, we propose a feature 

extraction algorithm based on the JSM CS recovery 

scheme [5, 10]. Our algorithm finds the common (holistic) 

and innovation components, with the latter corresponding 

to expressions, of all training images of class k. Since we 

use a sparsifying basis (like DCT), we term this as B-JSM 

feature extraction. 
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3.1. B-JSM Feature Extraction  

To present the idea, let us first assume a grayscale 

image represented as 1-D column vector � � ��, 

N=N1xN2. The extension of the presented idea to 2-D is 

straightforward. Since the features of interest lie in the 

textures but not the intensity of an image, we assume that 

x has its mean intensity subtracted. We assume that there 

are K distinct classes (i.e., subjects), with each class 

having Jk training images, k =1,2,…,K. Let the images of 

class k be represented as an ensemble &�',(), * 	 1, …,Jk, or 

simply &�',(). Jointly, such an ensemble can be 

represented as,  

�- 	   .�',�   �',�  … . .  �',/01

 �  ���/0     (4) 

Noting that all signals in ��',(% for a given k are highly 

intercorrelated, we may represent the j-th training image 

of class k as the sum of a common component and an 

innovation component as follows, 

 �',( 	  2'
3   !  2',(

4          (5) 

Further, let � � ���� be the matrix representation of 

some orthonormal basis (e.g., DCT) that can sparsely 

represent the training images, so that coefficients 5',( 	
 ��   � �� of signal � can be written as, 

5',( 	  �'
3   !  �',(

4 	  �2'
3   !  �2',(

4 ;   �'
3 , �',(

4 � ��  (6) 

Here �'
3  is common to all the Jk  training images of class k 

and �',( 
4 * 	 1,… Jk, is unique to each image. Under this 

model, let the common and innovation components of 

class k be jointly represented by the vector 

7' 	 .�'
3    �',�   

4 �',�
4 … . �',/0

4 1
 �  ���8/09�:    (7) 

Note that there might be more than one value of 2'
3  or �'

3  

satisfying (5) or (6), but the one we are interested in is the 

component �'
3  that is strictly derived from the common 

support in the ensemble &5',() such that the vector Wk is 

the sparsest representation of &�',() (Eqn.(4)) under the 

basis �. For highly correlated signals, naturally �'
3  would 

be strong and relatively denser compared to the very 

sparse innovations.  From a feature extraction point of 

view, for FR with varying expression, this representation 

is useful since the common component 2'
3  would retain all 

the gross common face features (holistic), while the 

innovation components  2',(
4  retains the unique features 

owing to changes in facial expressions. An example of 

such a representation is shown in Figure 2 and 3 and will 

be discussed in more detail later in this subsection.  

In the distributed CS theory of [5, 10], the additive 

model of (5) was assumed in the sense of “jointly 

recovering” correlated signals from measurements, which 

would help reduce the number of measurements in coding 

of multi-sensor signals. In our case, essentially we are 

interested in forming a new representation of ��',(% given 

in (7) so as to use the common and innovation features for 

facilitating the FR task. From (4)-(7), we may write,  

�' 	 ;<7'           (8) 

where ;< = >?@�A ?@�AB is formed by concatenating two 

matrices given by @� 	 ?�
 �
 … �
A
 �  �8/0�:�� and  

@� 	 diag8@�: �  �8/0�:�8/0�:, with diag8D: being a 

diagonal matrix whose diagonal elements are 

D�, D� …D� in D 	 ?D� D� …D�A
. Note that @� and 

@� correspond to the common and innovation components 

respectively. The 7' vector can be found by solving the 

following l
1
-minimization problem, 

(5) 

  (f)    (g)    (f)    (e)    (d)    (c)    (b)    (a)  

  (h)    (g)    (f)    (e)    (d)    (c)    (b)    (a)  

Figure 3: Illustration of common and innovation features using S-JSM. (a), (b) and (c) are the same images with added white patch 

(innovations). (d) is the obtained common component, in which even the skin texture at the patches is nearly retained; (e), (f) and (g) 

are the innovation components of (a), (b) and (c) respectively, each retaining an innovation as gray patches (white patch subtracted 

with the intensity of skin at regions of patches). (h) is the sum of the innovation components. It serves as a global representation of 

the innovations in all images. (For visual clarity, means are added back to in (a), (b), (c) and (d).) 

 

Figure 2: B-JSM feature extraction with DCT basis. (a), (b) and (c) are images of the same subject with different expressions (mean 

is added back); (d) The common component of (a), (b) and (c) or 23 with mean added. Images (e), (f) and (g) are the innovation 

components of (a), (b) and (c) respectively (2�4 , 2�4 , 2E4 ); Image (h) is the sum of the innovation components (e), (f) and (g) (or 2F). It 

serves as a global representation of the unique features of (a), (b) and (c) together. Note that the eye-brow and mouth regions are 

blurred in common component 23 in (d), where as these are captured as expression information in  2F shown in (h). 
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7' 	 arg min �7'��       �. �.  �' 	 ;<  7' 

or     7' 	 min �   �7'��   !  0.5 $ G�' � ;< 7'G�
� % 

 

The spatial domain common and innovation components 

can be recovered by the inverse transformation as, 

H' 	 I7'          (10) 

where I 	 diag8?�
 �
 … �
A
: �  �8/0�:�8/0�: and 

H' 	 .2'
3    2',�   

4 … . 2',/0
4 1
 �  ���8/09�:. For convenience 

and future reference, we represent the process described 

by the sequence of equations (8)-(10) for class k as 
 

B-JSM O 8��',(%, * 	 1, … P': Q  .2'
3   … . 2',/0

4 1
    (11) 
 

The last step in feature extraction is to form the gross 

innovation component denoted by 2'
F, (the superscript A 

standing for “all”) that can be computed as, 

2'
F 	 ∑  2',(   

4/0
(S�         (12) 

For each class k, we store only two feature images: the 

common component 2'
3  and the gross innovation 

component 2'
F and discard the training and other 

innovation images. Hence there is a significant reduction 

in the total storage space compared with the SRC method 

of [3]. Further dimensionality reduction of feature space 

can be achieved by storing just sufficient random 

measurements of 2'
3  and 2'

F instead of the whole feature 

images (see Section 4.2 for more on this). Since the 

innovations (changes in expressions) are sparse (and 

mostly with different support), the gross innovation 

component 2'
F captures most of the unique features of all 

images in one single image of the same size. It is worth 

mentioning that there may be some loss of innovation 

information in the representation of (12), especially if �3 

is very sparse with a small support while the �,
4’s are 

relatively dense with significant overlap in their support. 

However, for aligned face images of the same subject, we 

can expect �'
3  to be dense with a significant support 

compared to the innovations. We will show with examples 

that the representation of (12) indeed has sufficient 

information about the innovations (or expressions) of all 

training image for the purpose of face recognition. 
  

Refer to Fig. 2, where we have three images of a subject 

with different expressions. (For visual clarity, we have 

added back the mean of individual training images and 

also the overall mean to the common component.) It can 

be seen that the common component retains all the gross 

features like the face structure, nose region etc. The 

innovation components retain unique features in respective 

images (for example, the raised eye-brows and open 

mouth of the second image in (b) are clearly captured in  

2�
4  of (f) and so on). It is to be noted that �,

4TU are sparse 

and corresponding spatial domain version 2,
4TU in the figure 

are not sparse, but have some negative pixel values, due to 

which they appear visually dark. The gross innovation 

image 2F captures most of the innovation features of all 

three images in (a), (b) and (c). We will show later that, 

given only these two features, sufficient innovation 

information (or expressions) of any image can be 

recovered and a good estimation can be done using (5).  

3.2. S-JSM: A Special Case of B-JSM  

A special case of the B-JSM feature extraction method 

described above is when the common and innovations are 

directly extracted from spatial image supports (we may 

call it S-JSM, with S standing for spatial). However, such 

an approach is sensitive to image alignment, while B-JSM 

is more robust if a basis like DCT or Wavelet is used. 

Nevertheless, we present here this alternative so as to 

provide better insights about the common and innovation 

features. For S-JSM, we assume that the basis matrix � in 

Equations (1)-(10) is an identity matrix of size N. With 

these changes,  �'
3 	 2'

3  and �'
4 	  2'

4  in (6) and the 

algorithm is expressed as 

S-JSM V	 W&�',( ), * 	 1,… P'X Q  .2'
3   … . 2',/0

4 1
 (13) 

Fig. 3 shows an example of S-JSM features where white 

patches were intentionally added to the same image to 

simulate “innovations”. (Again, for visual clarity we add 

back the mean intensity.) We note that the common 

component retains almost all the information of the face 

(even the skin intensity at locations of the patches are 

closely recovered). The innovation component of an image 

retains the gray patch (which is the difference of the actual 

patch and the skin intensity at those pixel locations). 

Hence these effectively carry the information of the 

original white patches, given the common component. Fig. 

3(f) shows that the gross innovation retains all the three 

gray patches which are unique features of all images. This 

intuitively illustrates our argument earlier about why the 

gross innovation is sufficient as long as the individual 

innovations are sparse (with the hope that the overlap of 

the innovations should have been captured by the common 

component). 

4. Face Classification 

4.1. Expression Recovery and B-JSM Classifier   

With the given training features (the common and gross 

innovation images), there can be many different ways to 

design a classifier. Let Y � �� be a test image of unknown 

class. One simple way is to assume that Y is highly 

correlated with the correct training class (say class k), and 

hence it would have the same common component 2'
3   if 

we consider the ensemble &�',( , Z), * 	 1,2, ..Jk+1. So the 

test image Y can be expressed as 

Y 	 2'
3 ! Y'4             (14)   

 

(9) 
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where Y'4  is the innovation of Y. In reality, we need to 

determine the correct class label k, which may be found as 

the k for which the energy (or l
2
 norm) for Y'4  is minimum. 

Another approach would be to simply consider sparsity or 

number of non-zero components of the expansion of Y'4  in 

basis �. However, these methods ignore the information 

from the gross innovation component 2'
F. A better 

approach would be to first ask the question – “If any at all, 

what unique feature present in the test innovation Y'4  is 

also present in 2'
F "? In other words, we want to find the 

estimate of the innovation component Y'4  of (14) (or 

expressions) in the test image Y using the training features. 

Assuming B-JSM feature extraction, a good way to 

estimate Y'4  is to extract a common component \' 	 �]', 

from the support set common between ^'
4  (^'

4 	 �Y'4 ) and 

 _'
F ( _'

F 	  �2'
F). This can be achieved using the B-JSM 

recovery model in (11) as follows, 

B-JSM8�Y'4 , 2'
F  % : Q  .]' , ]'

4  ,  2'
4F1
    (15) 

where ]'
4  and  2'

4F are innovations of Y'4  and  2'
F. We may 

form the estimate of the test image for class k features as, 

Ỳ' 	  2'
3 ! ]'           (16) 

The correct class label can then be determined as,  

a 	 argmin-b�Ỳ' � Y��c     (17) 

Fig. 4 illustrates the results of expression recovery and 

the classification algorithm explained above for images 

from the CMU AMP EXpression database [7] (thirteen 

subjects with five training images chosen per subject). Fig. 

4(a) shows all five training images of one subject labeled 

as class 1 with different expressions. Note that in this case 

the training common shown in (d) is visually closer to the 

training images compared to the case in Fig. 2. It is 

difficult to visually interpret the gross innovation image 

(Fig. 4(d), right) since it contains a lot information. 

Nevertheless with the algorithm described above, the 

innovation information or expressions of a new test image 

of the correct class (e) can be well recovered, as in (f). On 

the other hand, for images of the wrong classes (e.g., (b) 

and (c)), the reconstruction is poor (as in (g) and (h)). 
 

A more challenging case is shown in Fig. 5, illustrating 

the algorithm performance under drastic variation in 

expression. Despite the challenge, the expression is fairly 

well recovered and the classifier residual is very small for 

the correct class compared to the other classes, leading to 

correct classification. Note that, in (e), the test image has a 

totally different expression that is not present in any of the 

training images. However, the classifier still yields the 

  (f)   (h)   (g) 

  (c)   (b)     (a)    (d) 

  (e) 

  (a)    (b)  

  (d)  

  (e)  

  (i) 
Figure 4: Feature extraction, expression recovery and classification illustrated. (a) Five training images of class 1 (from CMU AMP 

EXpression database [7] with 13 subjects); (b) & (c) One sample training image of class 2 & 3 respectively; (d) The feature images 

computed from (a); (e) A sample test image; (f) The estimate of (e) with recovered expressions using class 1 training features of (d); 

(g) & (h) Estimates with class 2 and class 3 training features respectively; (i) Residuals computed from Eqn. (17), which are used to 

determine the correct class. (Note: the mean is added back to all images except the gross innovation for better visual clarity).  

. 

  (c)  
Figure 5: Illustration of image recovery and classification under drastic expressions (13 subjects, five training samples each). (a) 

Training images of class 2; (b) Training features of (a); (c), (d) and (e) The image on the left is an actual test image of class 2, on the 

right is the reconstructed image  using class 2 features (in(b)), and at the bottom is the residual of Eqn. (17) for all thirteen classes. 

. 
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correct result. This can be attributed to the dominance of 

the “common component” over the innovations in terms of 

information for discriminative classification. However, if 

full or part of expression information is recovered, the 

discrimination would be more pronounced (compare the 

residuals of all three test images in Fig. 5). Hence, the B-

JSM classifier is robust even in cases where the expression 

information is missing in the training set. One such 

practical case is when only a few training images (per 

subject) are available. 

4.2. Low-Dimensional Feature Subspace   

We have presented our CS-based algorithm for feature 

extraction and classification, but have not explicitly 

considered the underdetermined or ill-poised case 

involving reduced measurement as in conventional CS 

coding problems [5, 6, 10, 14-16]. With sparsity prior, 

(under mild conditions as suggested in CS theory [6, 15, 

16]), significant dimensionality reduction in the feature 

space can be handled by the B-JSM algorithm. This can be 

explained considering (5), (14) and (15). As discussed in 

Section 3, the Jk innovations �'
4 of (5) (for class d) are very 

sparse with respect to the whole image. Suppose that the 

test image Y belongs to class d, then we may assume that it 

is sufficiently correlated with the training images (i.e., the 

training common 2'3  is significant inY), which means that 

Y'4  in (14) is also very sparse with its sparsity of the order 

comparable to any training innovations 2',(
4 . Essentially, in 

the B-JSM expression recovery of (15), we estimate a 

highly sparse signal and hence the estimate of  Y  via (16) 

can be done in a lower-dimensional feature space than the 

original (2'
3  and 2'

F ). Furthermore, since our emphasis is 

classification alone and not the fidelity of reconstruction, 

there is more scope for descending down to extreme low-

dimensions. 
 

Let the dimensionality reduction system be e � ����  

(e can be random or any matrix highly incoherent 

with �), a low-dimensional projection of the test image is,  

Yf 	 eY � ��         (18) 

And the low dimensional versions of the training features 

are 2f'3  and 2f'4F  given by, 

 2f'3 	 e2'
3 ,  2f'4F 	  e 2'

4F, � ��       (19) 

These can be stored right after the training process of 

Section 3.1. Then the B-JSM algorithm of (15) is 

computed using the modified version of (9) as below,  

7' 	 min g   �7'��   !  0.5 $ G�h' � e;<  7'G�
�  i   (20) 

where �h' 	 . 8Yf � 2f'3 :      2f'4F1

 �  ����� and 7' 	

?\d , \d
j  ,  _d

jkAl (the transform coefficients of the right hand 

side of (15). The estimate of the test image can then be 

determined by (16) as before. 
 

Fig. 6 illustrates the performance of the above algorithm 

in critically low dimensional feature space for the same 

setting as in Fig. 5. The original test image is of size 

32x32, which is then down-sampled to 16x16. It is 

obvious that downsampling does change the residuals 

much. A e operator is applied such that only 10% of 

linear measurements are retained (102 features for the 

32x32 case and merely 25 features for the 16x16 one). 

Again, the residuals do not alter much. Thus in all cases, 

correct classification is achieved (more results from entire 

databases are to be presented and discussed in Section 5). 

5. Experimental Results and Evaluation 

5.1. Experimental Setup  

The proposed algorithms described in Sections 3 and 4 

were implemented for working with 2-D images instead of 

vectored images for speed consideration. Further, in all 

cases unless specified otherwise, the GPSR algorithm [11] 

was used to solve the unconstrained version if l
1
 

minimization in (9). (We obtained similar results with 

other algorithms like TV minimization [12, 16]). For 

GPSR, we set   =0.009 and used the continuation 

approach [11] with first   factor  m 	 0.88maxWp�< 
�' p/
 X:. We assume DCT as the sparsifying basis � in our 

algorithm. Although the sparsifying operation (5 	 ��) is 

not exactly equivalent to 1-D DCT on vectored image or 

2-D DCT on 2-D image (but is actually 1-D DCT on 

columns of a 2-D image �), it yields satisfactory results.  
 

We used three face expression databases: (1) CMU 

AMP Face EXpression Database [7] (henceforth referred 

to as CMU), (2) Japanese Female Expression database [8] 

(henceforth JAFFE), and (3) Cohn-Kanade face 

expression database [9] (henceforth CK). The CMU 

database contains 975 images (13 subjects with 75 images 

per subject) with different facial expressions. The JAFFE 

database has 213 images with seven different expressions 

(10 female subjects). The CK database is the most 

challenging of the three, with 97 subjects and a total of 

Figure 6: Recognition with critically low-dimensional features. 

In (a) and (b), the top-left is the input image, and the bottom is 

its 10% measurement, and on the right are the residuals. 
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8795 images. Images of each subject were obtained in 5 to 

9 sessions, each session having multiple instances of 

similar expressions. Since this is a large database, we 

created three sub-databases of 2317 images by sampling 

the original frames (uniformly for the first two, randomly 

for the third) for all subjects. The images were normalized. 

Our results are compared with the most recent sparse 

representation based face classification algorithm (SRC) 

[3], which reported results superior to other methods.   

5.2. Experiments, Results, and Comparison 

In all the experiments, the training set was formed by 

randomly selecting J images per subject, leaving the rest 

for testing. The experiments are summarized below. 
 

 (i) Validation: We performed validation for various 

values of J with multiple repetitions for each J: J = 4 to 10 

for CMU, with 10 trials each; 2 to 5 for JAFFE, with 40 

trials each; and 5 to 10 for CK with 9 trials, 3 from each 

sub-database. The statistics of the recognition rates (High, 

Low and Average) are given in Tables 1, 2, and 3 with 

comparison with the SRC algorithm. For CMU and 

JAFFE, we used 32x32 image size.  The results with these 

two databases show that at lower number of training 

images, our algorithm invariably outperforms the SRC 

algorithm and shows better stability. As the number of 

training images increase, the performance for both 

methods are on par for most trials, but the averages still 

indicate that our method is better. For the CK database, we 

considered a critically low-dimensional image size of 7x7 

(49 features). Invariably all times, our method outperforms 

the SRC algorithm in mean, low and high accuracies. 

Further, unlike the SRC algorithm, our method exhibits a 

clear trend of increase in accuracy with increased J. 

(ii) Recognition in Low-Dimensional Feature Space: To 

demonstrate the performance of our algorithm in critically 

low-dimensional feature space, we apply linear random 

measurement on 32x32 database images (1024 features), 

retaining only 40% to 10% values (feature space of 409 

to102 points) and evaluate the recognition results. We then 

downsample the original 32x32 images to 16x16 (256 

features) and repeat the process for measurements from 

60% to 10%. The effective feature dimensions vary from 

153 to as low as just 25 points.  Operating in such a low 

dimensional space is certainly challenging for any 

database, especially for a large database like CK. Table 4 

tabulates the results; where the recognition rate is the 

average for 3 trials, with J=5, 4, and 11 for CMU, JAFFE 

and CK databases respectively. For this simulation, we 

used the TV minimization [12]. Clearly, even with 25 

feature points, the recognition rate is as high as 94.35%, 

97.69% and 97.818% for the three databases respectively. 
 

 (iii) Robustness of recognition w.r.t. expressions: We 

further designed two types of tests, one where similar 

expressions are present in both the training and the test 

sets, and the other where there is no common expression 

for the training and the test images. We experimented with 

three expressions (surprise, happiness and neutral) for 

each database and the results (averaging over 3 trials) are 

shown in Fig. 7. In all the cases, the performance is still 

very good: the worst case is only a loss of around 0.23%, 

0.4% and 0.79% for CMU, JAFFE and CK databases 

respectively for the “surprise” expression. For the neutral 

expression, there is virtually no loss in accuracy (except 

for JAFFE where the loss is merely 0.05%).  

 

Jk 
Proposed algorithm SRC 

High Low Avg High Low Avg 

2 95.89 81.18 89.94 95.11 82.1 90.1 

3 98.13 88.13 93.22 98.13 87.0 92.1 

4 98.67 90.67 95.12 98.24 90.2 95.13 

5 100 93.57 96.12 100 89 96.01 

 

Table 2: Recognition rate (%) for 40 trials on the JAFFE 

database with 32x32 image size. 

Image  Size %M ED CMU JAFFE CK 

32x32 

=1024 

pixels 

10 102 99.23 97.69 98.425 

20 204 99.45 98.46 98.69 

30 307 99.67 98.69 98.91 

40 409 99.78 98.69 99.01 
  

16x16 = 

256 pixels 

10 25 94.35 97.69 97.818 

20 51 99.45 98.22 98.303 

30 76 99.67 98.46 98.546 

40 102 99.67 98.46 98.546 

50 128 99.78 98.69 98.939 

60 153 99.78 99.69 98.939 

Table 4: Recognition rate (%) for databases with low-

dimensional features. “%M” gives the percentage of 

measurements taken and “ED” refers to “effective dimension”. 

Jk 
Proposed algorithm SRC 

High Low Avg High Low Avg 

5 96.2 94.01 95.47 89.3 93.4 91.41 

6 97.43 94.63 95.93 94.04 91.3 93.77 

7 97.35 95.21 96.15 91.89 94.9 93.29 

8 97.9 95.23 96.49 94.43 81.0 89.78 

9 98.01 95.28 96.90 97.73 95.4 96.29 

10 98.63 95.69 97.14 98.1 94.1 95.64 

Table 3: Recognition rate (%) for 5 trials on the CK database 

with mere 7x7 image size. 

Jk 
Proposed algorithm SRC 

High Low Avg High Low Avg 

4 100 97.48 98.95 100 97.68 98.9 

5 100 99.67 99.91 100 99.12 99.8 

6 100 99.69 99.97 100 98.76 99.75 

7 100 100 100 100 98.30 99.74 

8 100 100 100 100 99.31 99.87 

9 100 100 100 100 100 100 

10 100 100 100 100 98.73 99.49 

 

Table 1: Recognition rate (%) for 10 trials on the CMU 

database with 32x32 image size. 
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6. Conclusion and Future Work 
 

     We proposed a novel technique based on compressive 

sensing for expression-invariant face recognition. The 

approach exploits the correlation of images from the same 

subject through joint sparsity models in designing novel 

algorithms for feature extraction and face recognition. 

Thorough analysis of the proposed algorithms and their 

performance evaluation, with comparison to the state-of-

the-art, were performed to demonstrate the claimed 

advantages. We are currently working towards the 

following extension of the proposed method: handling 

illumination changes and pose variations. In addition, the 

approach is general in nature and thus can be applied to 

other problems involving multiple views of the scene, 

which is another direction we are pursuing.  
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Figure 7: The recognition rate with and without the presence of 

similar expressions in the training set - (Surprise (Exp1), 

Happiness (Exp2) and Neutral (Exp3)). For the CMU (top), CK 

(middle), and JAFEE (bottom) databases. 
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