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Abstract

The problem of reconstructing a 3D scene from a mov-

ing camera can be solved by means of the so-called Fac-

torization method. It directly computes a global solution

without the need to merge several partial reconstructions.

However, if the trajectories are not complete, i.e. not ev-

ery feature point could be observed in all the images, this

method cannot be used. We use a Factorization-style al-

gorithm for recovering the unobserved feature positions in

a non-incremental way. This method uniformly utilizes all

data and finds a global solution without any need of sequen-

tial or hierarchical merging. Two contributions are made

in this work: Firstly, partially known trajectories are com-

pleted by minimizing the distance between the subspace and

the trajectory within an affine subspace associated with the

trajectory. This amounts to imposing a global constraint on

the data. Secondly, we propose to further include local con-

straints derived from epipolar geometry into the estimation.

It is shown how to simultaneously optimize both constraints.

By using simulated and real image sequences we show the

improvements achieved with our algorithm.

1. Introduction

One of the oldest problems in computer vision is to esti-

mate the three-dimensional structure of a rigid object from

images taken by cameras moving around it. This is some-

times labeled as the structure-from-motion problem. The

classic approach is to first establish correspondences be-

tween feature points in the images and then to compute the

structure of the object and the motion of the camera by these

correspondences.

By means of the so-called Factorization method, it is

possible to compute the 3D reconstruction of the shape in

a single step. Its advantage is that it uniformly utilizes

all available data and directly computes a global solution,

i.e. reconstructions from several sub-sequences need not be

merged. However, the use of this method requires that the

correspondences of all feature points must be known across

all images. If not all points could be observed in every im-

age, this method cannot be used. Many algorithms have

been introduced to complete partially observed trajectories.

In the case of an affine camera, Tomasi and Kanade [19]

used the fact that the trajectories of a rigid body moving ar-

bitrarily in space are constrained to be in a 3-dimensional

affine subspace. Their idea was to obtain an initial esti-

mate of this subspace by starting with a completely known

subset of the measurement matrix. A subspace is fitted to

this matrix, and incomplete rows and columns of the to-

tal matrix are incrementally recovered subsequently. The

first problem with this method is that finding the best initial

submatrix is known to be NP-hard, as noticed by Jacobs in

[10]. Secondly, the initially computed subspace may be in-

accurate, and the error is uncontrollably propagated which

might result in a wrong solution.

Jacobs [10] extended this idea and fitted subspaces to

several submatrices given by triples of columns. The author

combines these subspaces to obtain an estimate of the global

subspace. This estimate is then used to fill in the missing

values. However, this algorithm does not uniformly utilize

the data, and it merges partial reconstructions.

Brand [3] generally showed how to compute the SVD

of a matrix having missing elements. Starting with a com-

pletely known submatrix, the missing row or column ele-

ments are incrementally chosen such that the rank constraint

is minimized. Since this approach is similar to the one of

Tomasi and Kanade, it shares the disadvantages: finding the

best initial submatrix to start with is NP-hard and the error

made at the initial factorization might cause the algorithm

to fail. Chen and Suter [5] extended Brand’s method by us-

ing only certain, reliable trajectories for the subspace esti-

mation. They proposed how to determine these trajectories

and introduced a second stage of their algorithm to find a

global optimum. Sugaya and Kanatani [17] select reliable

trajectories at each iteration and iteratively estimate the un-

known parts of trajectories.

Hartley and Schaffalitzky [8] proposed an algorithm to

factorize a matrix having unknown entries without using

any estimates of the unknown values. Marquez and Costeira

[13] introduced a non-incremental method for estimating
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the missing data. They iteratively estimate the unobserved

feature points. Additionally, they utilize a constraint on the

structure of the affine camera matrices.

In the case of a perspective camera an often used tech-

nique is to initialize a statistical optimization technique such

as bundle adjustment with solutions computed from multi-

linear constraints [6, 9, 16, 18, 20]. Alternatively, it is pos-

sible to use multi-linear constraints and sequentially [1, 2]

or hierarchically [7] built up a conjoint reconstruction of the

3D shape.

Martinec and Pajdla [14] combine local and global con-

straints: in their iterative algorithm, they alternate between

estimating fundamental matrices and then fitting a subspace

to obtain a projective estimate of the 3D shape. Epipolar

geometry is used for recovering the projective depths, and

the subspace constraint to estimate the missing data. In [15]

the same authors propose to combine multiple epipolar con-

straints to estimate the projective depths.

Algorithms using multi-linear or closure constraints use

only observed data, but need to choose particular combi-

nations of images, and combine the partial reconstructions

by some means. Conversely, factorization algorithms, also

called subspace algorithms, utilize all data uniformly and

do not require to sequentially or hierarchically merge par-

tial reconstructions. However, they usually use estimates of

the unobserved data. The latter might cause them to recon-

struct a heavily distorted shape.

We propose to use a subspace algorithm for completing

the trajectories. Uniformly utilizing all available data, we

are independent of the image ordering. Our algorithm re-

quires neither sequential nor hierarchical merging of partial

reconstructions, and it is not incremental.

The contributions in this work can be summarized as fol-

lows:

1. We utilize the global subspace constraint, and mini-

mize a distance between the trajectory and the esti-

mated subspace. Since only unknown elements of the

trajectory may be changed, an affine subspace is as-

sociated with the trajectory, and a simple expression

is derived for minimizing the distance to the subspace

within the affine space.

2. We integrate local constraints derived from epipolar

geometry into the algorithm. It is shown how to com-

bine the subspace constraint and the epipolar con-

straints to estimate the missing data simultaneously.

To the best knowledge of the authors, neither one of these

two ideas has been used in the context of completing par-

tially known trajectories.

It has been stated before that subspace algorithms fail

to converge even if few missing data are present since es-

timates are used during the optimization [3]. Conversely,

utilizing only epipolar geometry may fail in the case of de-

generate camera configurations [9]. However, if both types

of constraints are combined, these problems can be com-

pensated.

The paper has the following structure. In Sec. 2, we

shortly summarize the subspace constraint. Our result on

missing data estimation using the subspace constraint is de-

rived in Sec. 3.1. The geometric constraints are presented

in Sec. 3.2. We evaluate our algorithm in Sec. 4 using syn-

thetic and real image sequences. The paper concludes with

a brief summary in Sec. 5.

2. Affine Subspace Constraint

Suppose N rigidly moving points are tracked through M

consecutive frames taken by an affine camera. The projec-

tion of the αth point onto the κth image can be modeled

by

xκα =





uκα

vκα

1



 = PκXα + tκ (1)

where uκα and vκα denote the measured x and y coordi-

nates in the image positions [9, 17]. The 2 × 3 matrices Pκ

define the affine projection in the κth image, and Xα are

the 3-dimensional positions of the αth point. The 2-vectors

t define a translation for each camera.

Let the 2M × N matrix W be

W =







x11 · · · x1N

...
. . .

...

xM1 · · · xMN






, (2)

and the 2M × 3 matrix P , the 2M vector t and the 3 × N

matrix X be

P =







P1

...

PM






, t =







t1

...

tM






,

X =
(

X1 · · · XN

)

. (3)

Eq. (1) may now be written as

W = PX + t. (4)

Locating the coordinate origin at t, Eq. (4) implies that

the columns of W are constrained to be in an 3-dimensional

affine subspace spanned by the columns of P .

If the origin of the coordinate system is not fixed to

the centroid t, the trajectories are constraint to be in a 4-

dimensional subspace. We utilize this fact and directly fit

a 4D subspace to the trajectories. Under the assumption

of independent and identically distributed zero-mean Gaus-

sian noise, a maximum-likelihood estimate of the subspace

can be computed using singular value decomposition of the

matrix defined in Eq. (2).
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3. Recovery of Partial Trajectories

The Factorization method computes a global and unique

solution to the structure-from-motion problem. However, if

the feature points could not be observed in all images, this

method cannot be used. This happens if there is occlusion

or if problems occur during tracking the feature points. In

this section, an algorithm is described, which can recover

partially observed trajectories.

In the first part we utilize the global subspace constraint,

and derive how to minimize the distance between a trajec-

tory and the estimated subspace along an associated affine

space. In the second part it is shown how the local epipolar

constraints can be exploited. The last part of this Section

explains how to combine both types of constraints into a

single equation system so that all constraints may be simul-

taneously optimized.

3.1. Subspace Constraint

Consider the following matrix:

W =













x11 x12 · x14 x15

· x22 · x24 x25

x31 x32 x33 · x35

· · x43 x44 ·
x51 x52 · x54 ·













. (5)

The · symbol denotes missing elements. Let k be the num-

ber of missing elements in one column vector wα of W .

The idea is to separate the known from the unknown en-

tries of each particular column vector. The known entries

need be kept fixed, but we may choose the missing ones as

we like. Therefore, each vector wα having unknown entries

gives rise to an affine subspace as follows (cf. Fig. 1):

wα = Ay + v. (6)

The origin of this affine space is given by the 2M -

dimensional vector v. Each two of its entries equal xκα

if the observation is known and zero otherwise. The vec-

tor y corresponds to the positions xκα which were not ob-

served, and its length is twice the number of unknown vec-

tors xκα in wα. The basis A of this affine space consists of

2k 2M -dimensional basis vectors ei. Each two basis vec-

tors correspond to one unknown observation xκα = (u v)
⊤

in the vector wα. The first of the two basis vectors equals 1
at the coordinate corresponding to the coordinate u of xκα

in the vector wα; the second basis vector equals 1 at the

coordinate corresponding to v, respectively. They are zero

elsewhere.

The idea is to assign the unknown entries in wα val-

ues which minimize the distance to the subspace. In other

words, we want to minimize the distance between wα and

its orthogonal projection onto the subspace. Since only val-

Figure 1. Each vector wα having unknown entries is separated

into the known and the unknown components. Since the un-

known components may be chosen arbitrarily, they give rise to an

affine subspace with the origin being the vector consisting of the

known entries of wα and being zero otherwise. Here, ei denotes

a 10-dimensional basis vector with its ith coordinate set to 1. The

2-vectors 0 are identically zero.

ues for the unknown observations may be chosen, the dis-

tance minimization is performed within the affine subspace

spanned by the missing entries.

Assume that we are given an orthonormal basis U for

the subspace which spans W , i.e. the column vectors of U

have unit length and are mutually orthogonal. The miss-

ing entries of wα are now chosen such that the distance of

wα to the subspace becomes 0, i.e. we want the distance

between wα and its orthogonal projection ŵα onto U to

become zero:

0 = ‖wα − ŵα‖
2

⇔ 0 = ‖
(

I − UU⊤
)

wα‖
2. (7)

Here, I denotes the identity matrix. Since U is an orthonor-

mal matrix the expression for orthogonal projection is sim-

plified.

Inserting Eq. (6) into Eq. (7), we obtain

0 = ‖
(

I − UU⊤
)

(Ay + v) ‖2. (8)

Using normal equations, the solution to Eq. (8) is given by

y = −
((

I − UU⊤
)

A
)+ (

I − UU⊤
)

v, (9)

where (·)+ denotes the general inverse.

If the subspace were known, y could be directly deter-

mined. Conversely, if the complete matrix W were known,

the subspace could be computed. This suggests the follow-

ing algorithm: First, the points in W which could not be

observed are initialized to 1. Then, an 4D-subspace is fit-

ted to W and the unknown observations are estimated by

Eq. (9). The two steps of subspace fitting and missing data

estimation are repeated until convergence.

3.2. Including Epipolar Constraints

The iterative subspace estimation algorithm presented in

the previous section uses estimated trajectories. Since these
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estimates can significantly differ from the true position, an

iterative algorithm alternating between subspace fitting and

missing data estimation may converge to a wrong solution.

The more unknown feature positions, the worse a solution,

computed by using only the subspace constraint. In order

to prevent this, we include local constraints derived from

epipolar geometry.

Utilizing epipolar geometry does not imply that any par-

ticular images are selected. In general, it is difficult to ana-

lytically determine the images which are best suited to com-

pute the epipolar geometry, so we integrate all epipolar con-

straints we are able to use.

Given two images i and j of the same rigid scene, cor-

responding points xi = (u v 1)
⊤

i and xj = (u v 1)
⊤

j

between the two images satisfy the affine epipolar equation

[9]

x⊤
j Fjixi = 0, (10)

The affine Fundamental matrix F is a 3 × 3 matrix of rank

2 consisting of five parameters

F =





0 0 a

0 0 b

c d e



 . (11)

If there are at least four correspondences between any two

images, it is possible to compute the affine Fundamental

matrix by a linear method. Due to the parametrization in

Eq. (11), the matrix F automatically satisfies the rank-2
constraint [9].

If some point x could not be observed in image I′ but it

was observed in other images I, we can compute the epipo-

lar lines

lji = Fjixi, j ∈ I′, i ∈ I (12)

of this point in image I′ provided that we know the Funda-

mental matrices between the images.

In the absence of noise and assuming that the cameras

are in general positions, the epipolar lines corresponding to

other cameras which observed the feature point intersect in

a single point x, i.e.

∑

i∈I

l⊤i x = 0 (13)

(cf. Fig. 2). The solution to Eq. (13) is the best estima-

tion of the unobserved feature point x in terms of epipolar

geometry.

In the presence of noise, the epipolar lines do not inter-

sect in a single point. However, as long as the noise in the

observed points of the images is not too large, the intersec-

tions will be close to the true position. Utilizing Eq. (13)

for estimating the unobserved positions implies that an al-

gebraic distance is minimized, not the correct yet hard to

optimize geometrical distance.

Figure 2. Left Image: The affine epipolar lines (red lines) intersect

in a single point. Confer to Sec. 4 for detailed information about

the sequence. Right Image: The camera centers are denoted by

C1, C2 and C3. The feature point observed in image 1 and 3 is

denoted by x1 and x3, respectively. Here, l21 and l23 denote the

epipolar lines induced by planar homographies Π21 and Π23 be-

tween images 1 and 2, and 3 and 2, respectively. The intersection

is the best estimation of the unobserved feature in image 2 in terms

of epipolar geometry.

Since we do not know which epipolar lines intersect

closest to the true position of the unobserved point, the un-

known position of xj in image I′ may be determined by

least-squares minimization of all the Eqs. (13). Imagine a

sequence of five images. A particular feature point was not

observed in images one and two, and the Fundamental ma-

trices could not be computed between images one and five.

Denote by (u v 1)
⊤

i the feature in the first or second image,

respectively. The joint system of Eqs. (13) then is as follows













l⊤13 0
l⊤14

0

l⊤23
l⊤24
l⊤25

































u

v

1





1



u

v

1





2

















= 0. (14)

Here, 0 denotes a vector solely consisting of zeros. The

upper right and lower left blocks of the matrix on the left

side are identically zero.

3.3. Joint Optimization

We will now describe how to jointly optimize both types

of constraints. In order to do so, both the Eqs. (8) and (13)

need be merged into a single equation system.

However, Eq. (8) is inhomogeneous while Eqs. (13)

seem to be homogeneous. This is due to the definition of

the vectors xj = (u v 1)⊤j which contain a 1 as third coor-

dinate in the context of Eqs. (13). Since only the first two

coordinates of xj may be varied, we subtract all third coef-

ficients of the epipolar lines lji from both sides of Eqs. (13)

∑

j∈I′

(l1)jiuj + (l2)jivj = −(l3)ji. (15)

Here, (lk)ji denotes the kth coordinate of the epipolar line

lji.
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Figure 3. A schematic of the method introduced in this work. First,

all Fundamental matrices are estimated. Subsequently, the algo-

rithm alternates between subspace fitting and missing data estima-

tion.

For instance, consider a sequence of five images. For

some trajectory α, let two observations in the first and sec-

ond images be unknown. The following Fundamental ma-

trices can be computed: F13 (between the third and first

image), F14, F23, F24 and F25. Let P =
(

I − UU⊤
)

, 06×4

be a 6 × 4 matrix solely consisting of zeros, and 02 be a 2-

vector being identically 0. Then, the joint equation system

arising for this case is as shown in Eq. 16:



















P

0

B

B

B

B

B

@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

06×4

1

C

C

C

C

C

A

0

B

B

B

B

B

@

(l1)
13

(l2)
13

0 0

(l1)
14

(l2)
14

0 0

0 0 (l1)
23

(l2)
23

0 0 (l1)
24

(l2)
24

0 0 (l1)
25

(l2)
25

1

C

C

C

C

C

A























 

u

v

!

1α 

u

v

!

2α





=



















−P

0

B

B

B

B

B

@

02

02

x2α

x4α

x5α

1

C

C

C

C

C

A

0

B

B

B

B

B

@

− (l3)
13

− (l3)
14

− (l3)
23

− (l3)
24

− (l3)
25

1

C

C

C

C

C

A



















. (16)

The scale of the two equation systems (8) and (15) is

different, so they need be normalized. Since any scaling

of the rows of Eq. (8) changes the geometrical meaning, we

adjust Eqs. (15). We determine the scale factor for Eqs. (15)

so that the vector on the right side has the same length as the

vector on the right side of Eq. (8).

Whenever it is possible to compute a Fundamental ma-

trix we include the corresponding epipolar constraints into

the estimation. All epipolar lines are indiscriminately uti-

lized without considering possible degenerate camera posi-

tions. For some images, however, there are no correspon-

dences between images in which a particular point was ob-

served and the images where the point could not be ob-

served. In this case, we complete the trajectories by only

minimizing the distance to the subspace, i.e. only the sub-

space constraint is utilized then. A scheme of the final al-

gorithm is shown in Fig. 3.

4. Experimental Results

In this Section we evaluate the algorithm introduced in

this paper. Firstly, the performance is measured using a

synthetic image sequence. The accuracy is calculated for

different ratios of missing data and different levels of noise.

Secondly, the method is tested on real image sequences.

4.1. Synthetic Sequence

We created a synthetic image sequence of 200 points on

a cylindrical surface shown in Fig. 4(a). The points were

projected into images of size 512 × 512 pixels by a per-

spective camera with focal length 600 pixels. The sequence

consists of 20 images.

Using this data, our algorithm is compared with Power-

Factorization [8]. This algorithm estimates the left and right

subspace of the input matrix by only considering the known

entries. We used the implementation kindly provided by

Buchanon [4]1.

Incomplete trajectories were simulated by randomly re-

moving a certain percentage of points. This simulates tra-

jectories as might be created using a SIFT tracker [12],

where feature points are missing in one frame, but may

reappear in subsequent images. The accuracy of the algo-

rithm was measured by computing the Frobenius norm be-

tween the matrix consisting of recovered trajectories and the

matrix consisting of the ground-truth trajectories. Further-

more the 3D error was computed by computing the homog-

raphy which optimally projects the reconstructed shape to

the ground-truth shape. The average Euclidean distance be-

tween the 3D points was taken as measure. Both algorithms

were iterated until convergence. PowerFactorization was

randomly started 100 times and the best result was used.

To determine how robust the proposed algorithm is to

missing points, we sampled the sequence in Fig. 4(a) ten

times for sampling ratios of r = 10%, 20%, . . . , 70%. Re-

sults are shown in the two leftmost plots of Fig. 4(b). The

left of the two plots correspond to the Frobenius norm be-

tween the reconstructed matrix and the ground-truth one,

the right plot the 3D error. The solid line indicates the mean

error of the ten trials of our algorithm, the dashed line the

maximum error; the dotted line the mean error of Power-

Factorization, the dash-dotted line the maximum error. Both

algorithms perform almost identically for low sampling ra-

tios. For a large amount of unobserved points, the proposed

algorithm converges more reliably to a good solution. For

70%, our method failed only once to compute a very accu-

rate solution while PowerFactorization computed a satisfac-

tory solution only twice and even failed to converge in two

more trials.

To determine how susceptible the proposed algorithm is

to noise, we fixed the number of missing data to 60% and

1www.robots.ox.ac.uk/ amb
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(a)

(b)

Figure 5. (a) The three images show the first, an intermediate, and

the last frame of the 182-image hotel sequence. It consists of 816

trajectories. (b) The first, an intermediate, and the last image of a

sequence of an industrial dredger are shown. The sequence con-

sists of 50 frames and 464 points.

increasingly added normally distributed noise with standard

deviation σ = 0, 0.5, . . . , 3.0. The results are shown in the

two rightmost plots of Fig. 4(b). Our method recovers the

trajectories same as good as PowerFactorization while the

accuracy of the reconstructed 3D shape is somewhat better.

Although we tried PowerFactorization 1500 times, it failed

to compute an accurate solution in one trial for σ = 0.

For both experiments, the proposed algorithm was five

to fifty times faster than PowerFactorization.

4.2. Real Image Sequences

The performance of the algorithm was evaluated using

two different real image sequences.

First, we used the sequence of the model of a hotel2.

It consists of 182 images. Three of them are shown in

Fig. 5(a). The publicly available voodoo camera tracker3

was utilized for establishing a total of 816 correspondences.

Due to brightness changes, the tracker looses almost all

points around frame 55, so the amount of missing data is

approximately 55%. The top diagram in Fig. 6 shows which

feature was found in which image (black indicates that the

feature was observed in the respective frame). By visual

inspection we conclude that outliers are not present in this

data set.

After completing the trajectories using the approach

from Sec. 3, we reconstructed the affine 3D shape and mo-

tion with the algorithm from [11]. Four images of the re-

constructed shape are shown in Fig. 7. The overall quality

of the shape is satisfactory. However, some angles are not

exactly rectangular as they ought be. This is a well-known

problem due to the use of the affine camera model whereas

the images were created using a perspective camera [6, 9].

The second sequence shows an industrial dredger. In

this sequence, the camera moves freely around the object.

A total of 464 points were tracked over 50 frames. The

2www.ius.cs.cmu.edu
3www.digilab.uni-hannover.de/docs/manual.html

first, middle and last images of the sequence are shown in

Fig. 5(b). The correspondences were also established us-

ing the voodoo camera tracker. Although the overall quality

of the correspondences is good, some outliers are present

in the tracking data. However, we did not employ any out-

lier rejection, neither for estimating the subspace nor for

computing the Fundamental matrices. In this sequence ap-

proximately 20% of the feature points were not be observed

due to occlusion and lost trajectories. For the recovery of

the trajectories, we used all feature points tracked over at

least twenty frames. The observation matrix which shows

in which frames each feature could be observed is shown in

the bottom Fig. 6.

Although the amount of missing data seems to be low,

this sequence is especially challenging: the depth varia-

tion within the sequence amounts to the distance between

camera and dredger, at least, and thus perspective distor-

tion is strong. For many images the depth variation within

the scene is multiple times larger than the distance between

camera and scene. This violates the affine camera model

assumption which requires that the depth variation in the

scene is negligible compared with the distance to the cam-

era.

After having recovered the trajectories, we used an affine

3D-reconstruction algorithm [11]. Two images of the recon-

structed 3D shape are shown Fig. 8(a). We assigned each

3D point the average color over all images it was observed

in. As can be seen the reconstruction looks reasonable,

and the distortion due to the affine camera model is low.

For the purpose of better visualization, the reconstructed

shape was manually augmented by adding texture patches

obtained from the images. The resulting images are shown

in Fig. 8(b).

5. Conclusions

In this paper, we introduced a method to recover partial

trajectories for affine 3D-reconstruction. It uniformly uti-

lizes all available data and non-incrementally computes a

global solution.

Local and global constraints on rigid scenes are jointly

optimized. The cost function utilized to enforce the sub-

space constraint has not been used in the context of re-

covering partial trajectories. An expression was derived

how to minimize the distance to the subspace in the direc-

tion of the unknown data. The use of the global subspace

constraint was complemented by including as many local

epipolar constraints as possible. We showed how to simul-

taneously optimize both constraints.

The effectiveness of the proposed method was demon-

strated by simulated and real image sequences without us-

ing any outlier rejection strategy. Epipolar lines arising

from cameras being in degenerate positions were not ex-

cluded from the estimation. For the simulated sequence, it
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Figure 4. (a) Simulated image sequence of 200 points on a cylindrical surface through 20 frames (six images are shown here). (b) Left left

two plots correspond to a noise-free experiment in which the amount of unobserved points was gradually increased. The right two plots

correspond to an experiment in which the noise was gradually increased (the amount of missing data was fixed to 60%). The solid line

indicates the mean error of ten trials of the proposed algorithm, the dashed line the maximum error. The dotted line indicates the mean

error achieved using PowerFactorization, the dash-dotted line indicates the maximum error.

Figure 7. Reconstructed shape corresponding to the 182 image sequence shown in Fig. 5(a). The sequence consists of 816 trajectories and

the the missing data amounts to approximately 55%. As can be seen, the shape looks satisfactory. Due to the use of the affine camera

model some angles are distorted which is shown in the fourth image (top-view).

was shown that the trajectories were accurately recovered.

For the two real image sequences, affine 3D shapes com-

puted from the recovered trajectories were satisfactory. The

solution of this algorithm can be used to initialize a statisti-

cal optimization technique such as bundle adjustment.
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(a)

(b)

Figure 8. Reconstructed shape corresponding to the sequence shown in Fig. 5(b). 464 trajectories were tracked over 50 images. The

amount of missing data was approximately 20%. Although the depth variation within the scene is larger than the distance between camera

and dredger, the reconstructed shape looks reasonable. For the upper two images we computed the average colors of the features over all

images which the points could be observed in. The right image in Fig. 8(a) shows the scene viewed from above. We manually augmented

the shapes shown in Fig. 8(b) by texture patches obtained from the original images.
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Figure 6. Visibility of the tracked feature points, i.e. which point

(y-axis) was observed in which image (x-axis). The black color in-

dicates that the feature could be observed, white that it was not ob-

served. The upper figure corresponds to the hotel sequence shown

in Fig. 5(a) (missing data ratio of approximately 55%), the lower

to the sequence shown in Fig. 5(b) (missing data ratio of approxi-

mately 20%).
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