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Abstract

An adaptive image and video retargeting algorithm
based on Fourier analysis is proposed in this work. We first
divide an input image into several strips using the gradient
information so that each strip consists of textures of similar
complexities. Then, we scale each strip adaptively accord-
ing to its importance measure. More specifically, the distor-
tions, generated by the scaling procedure, are formulated
in the frequency domain using the Fourier transform. Then,
the objective is to determine the sizes of scaled strips to min-
imize the sum of distortions, subject to the constraint that
the sum of their sizes should equal the size of the target out-
put image. We solve this constrained optimization problem
using the Lagrangian multiplier technique. Moreover, we
extend the approach to the retargeting of video sequences.
Simulation results demonstrate that the proposed algorithm
provides reliable retargeting performance efficiently.

1. Introduction

Image and video contents are nowadays consumed on
various multimedia devices with different display sizes and
aspect ratios. For example, high definition television con-
tents and cinema films are often watched on cellular phones
or portable multimedia players with small screens. In such
cases, image contents should be resized appropriately be-
fore the rendering.

Scaling and cropping are two standard techniques for re-
sizing images. Scaling reduces the sampling rate uniformly
over a whole image. It does not discard any regions during
the resizing, but it causes anistropic stretching when the as-
pect ratio is changed or shrinks important objects too much
when the target screen is very small. On the other hand,
cropping discards boundary regions while preserving im-
portant objects. But the information in the carved regions
is lost entirely. Figure 1 illustrates how the two techniques
reduce the horizontal resolution of an input image. We see
that scaling causes unnatural stretching of the tower, while
cropping carves out the cathedral that is an integral part of
the photograph.

(a) (b) (c) (d)

Figure 1. Image retargeting. An input image in (a) is resized by
(b) the scaling technique, (c) the cropping technique, and (d) the
proposed algorithm, respectively.

Recently, it has drawn much attention to develop
content-aware image and video resizing techniques, also
called retargeting techniques, which combine the merits of
both scaling and cropping. Retargeting attempts to pre-
serve important regions, while scaling down less important
regions, to achieve a target image size. In this work, we
propose a divide-and-conquer approach to the retargeting of
images and video sequences. The proposed algorithm first
divides an input image into several strips and then scales
each strip adaptively. To protect visual contents as faith-
fully as possible, we analyze the scaling distortions based
on the Fourier transform and formulate the resizing task
as a constrained optimization problem, which is solved us-
ing the Lagrangian multiplier technique. Extensive simula-
tion results show that the proposed algorithm resizes im-
ages in a content-aware manner more reliably, while de-
manding much lower computational complexity, than the
conventional algorithms [2, 10].

The paper is organized as follows. Section 2 surveys pre-
vious retargeting algorithms. Section 3 describes the pro-
posed algorithm. Section 4 extends the proposed algorithm
to video retargeting. Section 5 presents experimental re-
sults. Section 6 concludes the paper and discusses future
research issues.

2. Previous work

Recently, various retargeting algorithms have been pro-
posed. Suh et al. [15] proposed a cropping algorithm for
creating thumbnail images, which chooses cropped regions
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Figure 2. An overview of the proposed algorithm. The proposed algorithm partitions an input image based on the gradient map, and solves
an optimization problem to decide the scaling factor for each strip.

based on the saliency map [6] and the face detection [18].
Similarly, Chen et al. [3] presented a system for adapting
images to mobile devices. They considered a text attention
model as well as saliency and face attention models to lo-
cate perceptually important regions.

Liu and Gleicher [7] proposed an image retargeting al-
gorithm, which determines a region of interest (ROI) and
then applies a fisheye-view warping to achieve a target im-
age size. Their algorithm is simple, but the warping may
cause distortions that look unnatural. Setlur et al. [11, 12]
proposed a segmentation-based retargeting method. It seg-
ments an image into several regions, identifies important
ROIs, cuts the ROIs from the image, and fills the holes with
an inpainting scheme. Then, after scaling the background
image, it pastes the ROIs back to the image. The quality of
the resized image, however, depends on the accuracy of the
segmentation, which is difficult to be done automatically.

Avidan and Shamir [2] proposed the seam carving algo-
rithm, which removes a connected path of pixels, called a
seam, from an input image repeatedly to achieve a target
size. A dynamic programming method is used to find the
least noticeable seam at each repetition. The seam carv-
ing provides impressive results, but it also has limitations.
When an image is shrunken too much, it starts to carve out
important objects, yielding unnatural artifacts. Also, when
complex objects are scattered over the whole image, it is
difficult to find unnoticeable seams. In [10], Rubinstein
et al. proposed an improved energy function for the seam
carving to obtain better retargeting results. They also gen-
eralized the seam carving to video retargeting by employing
two-dimensional seam manifolds. In [5], Hwang and Chien
proposed to use a hybrid of the seam carving and the tradi-
tional scaling. When the energy of a carved seam becomes
greater than a threshold, their algorithm switches to the tra-
ditional scaling.

Pan-and-scan is a procedure to crop off the sides of
widescreen films to fit them into television screens of 4:3
aspect ratio, which is often done manually. Liu and Gle-
icher [8] proposed a video retargeting algorithm, which au-
tomates the pan-and-scan procedure. Their algorithm ob-

tains the importance map for each frame and determines the
cropping window for each frame to generate the effects of
virtual pans and cuts. Tao et al. [16] extended the auto-
mated pan-and-scan procedure by allowing the rotation of
the cropping window. Also, Deselaers et al. [4] introduced
the zooming operation in addition to the pan-and-scan op-
eration and proposed a dynamic programming method to
provide temporally coherent retargeting results.

Wolf et al. [17] proposed a video retargeting algorithm,
which models the mapping from an input image to a target
image as a system of linear equations. Given an input im-
age, their algorithm first computes the importance of each
pixel. Then, based on the importance map, it forms the sys-
tem of equations and obtains the least squares solution. Re-
cently, Simakov et al. [14] presented an image and video
summarization algorithm based on the bidirectional simi-
larity measure and demonstrated that their algorithm can be
employed in various applications such as retargeting, image
montage, and automated cropping.

3. Proposed algorithm

Figure 2 illustrates how the proposed algorithm resizes
a source image. After computing the gradient map, the
proposed algorithm partitions the source image into mul-
tiple strips. Then, it models the scaling distortion of each
strip and solves a constrained optimization problem to re-
size each strip and obtain the target image.

For the sake of simplicity, in this section, we assume that
the source image is resized in the horizontal direction only.
Specifically, we assume that a source image of size Ws×Hs

is reduced to a target image of size Wt × Ht, where Wt <
Ws and Ht = Hs. However, the proposed algorithm can be
generalized straightforwardly to vertical resizing also.

3.1. Partitioning

We attempt to partition a source image I to several strips
according to the complexity of regions. To measure the
complexity of pixel I(x, y), we employ its gradient mag-
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Figure 3. Partitioning of an image into K strips.
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where the partial derivatives are approximated by the So-
bel operators. Then, we compute the complexity of the xth
column by summing up the complexities of pixels in the
column, i.e.,

c(x) =
∑

y

‖∇I(x, y)‖. (2)

The goal of our retargeting algorithm is to preserve the
shapes of important objects, which are surrounded by strong
edges. Thus, when we measure the column complexity in
(2), we sort the gradient magnitudes of pixels and sum up
only the top 10% of magnitudes, which correspond to edge
pixels, instead of all magnitudes in the column.

Using the column complexities, we partition the image
into K strips as shown in Figure 3. Let bk denote the
coordinate of the leftmost column in the kth strip, where
0 ≤ k ≤ K − 1. Note that b0 is fixed to 0 and bK is fixed
to Ws. Then, the partitioning problem is to determine inner
boundaries bk for 1 ≤ k ≤ K − 1. Initially, the image is
divided into strips of the same size, i.e., bk = Ws

k
K .

Since the proposed algorithm downsamples each strip
uniformly, it is desirable for a strip to consist of columns of
similar complexities. Moreover, if the partitioning is suc-
cessful, adjacent strips should have different complexities.
These two criteria are used to decide the partitioning. Sup-
pose that, in Figure 3, the left boundary bk−1 and the right
boundary bk+1 are fixed. Then, we update the kth boundary
bk by

bk = arg min
bk−1+α≤b<bk+1−α

⎛
⎝ b−1∑

x=bk−1

|c(x) − sk−1|

+
bk+1−1∑

x=b

|c(x) − sk| + β
1

|sk−1 − sk|

⎞
⎠ (3)

where sk−1 and sk denote the averages of the column com-
plexities in the (k − 1)th strip and the kth strip, given by

sk−1 =

∑b−1
x=bk−1

c(x)

b − bk−1
and sk =

∑bk+1−1
x=b c(x)
bk+1 − b

. (4)

In (3), the first two terms represent the variations of com-
plexities within the (k−1)th and the kth strips, respectively,

-π 0 π 2π-2π

(a) Original signal Z(ejω)

-π -�c �c0 π 2π-2π

(b) Antialiasing filter

-π 0 π 2π-2π

(c) Downsampled signal Zd(ejω)

Figure 4. The frequency-domain illustration of downsampling [9].
Before reducing the sampling rate, a signal z[n], whose Fourier
transform is Z(ejω), is lowpass-filtered to avoid aliasing artifacts.

and the last term is the inverse of the complexity discrep-
ancy between the two strips. Therefore, the boundary bk is
selected such that the complexity variation within each strip
is low, while the variation across the strips is high. Also, in
(3), α is a positive constant that prevents two strip bound-
aries from being too close to each other. In other words, α
specifies the minimum width of a strip. β is a weighting
coefficient. In this work, α is fixed to 5, β is fixed to 0.05,
and the number of strips K is set to 10.

Next, together with bk+2, the updated bk is used to up-
date the next boundary bk+1 in a similar way. This process
is iteratively applied until all boundaries converge. Figure 2
shows an example of the partitioning result. We see that the
image is divided into strips according to the complexities.

3.2. Formulating scaling distortions

After the partitioning, each strip is downsampled uni-
formly. Let z[n] denote a row signal of length lk in the
kth strip. Suppose that we reduce the length by removing
rk pixels to obtain a downsampled signal zd[n]. In other
words, the sampling rate is reduced by a factor of 1− rk

lk
. In

such a case, as shown in Figure 4 (b), the signal should be
lowpass-filtered with a cutoff frequency ωc = (1 − rk

lk
)π to

avoid aliasing artifacts [9]. Thus, the downsampling proce-
dure suppresses high frequency components in the original
signal z[n], incurring detail losses inevitably. The energy
of the lost high frequency components, which we call the
scaling distortion of the kth strip, can be computed in the
frequency domain by

dk = 2
∫ π

(1− rk
lk

)π

|Z(ejω)|2dω. (5)

Next, we model the shape of the Fourier transform of an
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Figure 5. The average magnitudes of the Fourier transforms of (a)
the “Leaning Tower of Pisa” image and (b) the “Triumphal Arch”
image.

image signal. Since a typical image signal is a lowpass sig-
nal, |Z(ejω)| decreases quickly as ω increases. We observe
that, except for the dominant DC component |Z(ej0)|, the
magnitude of the Fourier transform can be effectively ap-
proximated by an exponential function

|Z(ejω)| = e
− ω

sk (6)

where sk controls the decreasing rate of the exponential
function. Figure 5 plots the average magnitudes of the
Fourier transforms of the rows in the “Leaning Tower of
Pisa” image in Figure 1 and the “Triumphal Arch” image in
Figure 2. Tests on various other images also confirmed that
the magnitudes exponentially decrease as ω increases.

In (6), a smaller sk makes the exponential function de-
crease more quickly, which corresponds to the case of a
smoother image signal. Therefore, sk should be propor-
tional to the complexity of the kth strip. In this work, each
strip complexity sk is first computed by averaging the col-
umn complexities within the strip as in (4), and then nor-
malized by the average of all strip complexities. Then, by
inserting (6) into (5), we obtain the scaling distortion of the
kth strip, which is a function of rk given by

dk(rk) = 2
∫ π

(1− rk
lk

)π

e
− 2ω

sk dω = ske
− 2π

sk (e
2πrk
sklk − 1). (7)

3.3. Adaptive scaling

Given the source image width Ws and the target image
width Wt, R = Ws −Wt columns should be removed from
the source image. Therefore, the numbers rk (0 ≤ k ≤
K − 1) of reduced columns from strips should satisfy the
constraint

K−1∑
k=0

rk = R. (8)

Table 1. The size lk, the complexity sk, and the number of re-
duced columns rk for each strip of the “Triumphal Arch” image in
Figure 2.

k 0 1 2 3 4 5 6 7 8 9

lk 222 31 66 68 115 54 70 36 172 66
sk 0.68 1.40 1.79 1.37 0.92 1.36 1.76 1.27 0.65 0.50
rk 168 2 1 17 66 11 3 7 127 48

Subject to this constraint, the objective is to minimize the
sum of the distortions of strips

K−1∑
k=0

dk(rk). (9)

This is a constrained optimization problem, which can be
solved by minimizing the Lagrangian cost function

J =
∑

k

dk(rk) + λ
∑

k

rk (10)

=
∑

k

(
ske

− 2π
sk (e

2πrk
sklk − 1) + λrk

)
(11)

where λ is a Lagrangian multiplier. By setting the partial
derivative ∂J

∂rk
to 0, we obtain

rk = lk(1 +
sk

2π
log μlk) (12)

where μ = − λ
2π . Since 0 ≤ rk ≤ lk, rk in (12) is clipped

to

rk = max
{
0, min{lk, lk(1 +

sk

2π
log μlk)}

}
. (13)

Next, we find μ so that rk’s satisfy the equality in (8). Since
each rk in (13) is a monotonic increasing function of μ,
the desired μ can be computed efficiently with the bisection
search method [13].

Table 1 lists the size lk, the complexity sk, and the num-
ber of reduced columns rk for each strip of the “Triumphal
Arch” image in Figure 2. Note that the number of reduced
columns is determined adaptively according to the size and
the complexity.

After deciding rk, the proposed algorithm reduces the
sampling rate of the kth strip uniformly by a factor of 1− rk

lk
.

Figure 6 shows an example of retargeting result. When the
scaling factors are 5

6 and 2
3 , the shape of the flower is pro-

tected faithfully. When the scaling factor is further reduced
to 1

2 , the flower is slightly squeezed horizontally but the re-
sized image still looks natural without severe artifacts.

4. Extension to video retargeting

We extend the proposed algorithm to video retargeting.
The simplest extension is to apply the image retargeting al-
gorithm to each frame in a video sequence independently.
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Figure 6. An input image on the left side is horizontally resized with scaling factors 5
6
, 2

3
, and 1

2
, respectively.

Figure 7. Partitioning of a video sequence for horizontal resizing.

Although this approach can resize each frame effectively,
it cannot maintain temporal coherence, yielding annoying
jitter artifacts.

An alternative approach is to apply the same partitioning
and the same scaling to all frames in a video sequence. This
can be achieved by treating the video sequence as a three-
dimensional volume of pixels. Then, the volume is cut into
parallelepipeds along the time axis, and each parallelepiped
is scaled down spatially. For the partitioning and the scal-
ing, the complexity of a parallelepiped can be defined as the
sum of gradient magnitudes of the pixels inside the paral-
lelepiped. However, similar to the static seam approach in
[10], this extension may yield artifacts when the sequence
contains fast object motions. Especially, an object may look
unnatural, when it moves across two adjacent partitions that
are downsampled with different scaling factors.

Therefore, we propose a partitioning scheme for video
sequences, which takes into account object motions. Fig-
ure 7 illustrates the partitioning scheme, when a video se-
quence is horizontally resized. First, the whole volume is
divided into two sub-volumes with a cutting plane, which
is perpendicular to the x-t plane. As in (3), the position
and the slope of the cutting plane are determined to mini-
mize the variation of complexities within each sub-volume
and maximize the complexity discrepancy between the two
sub-volumes. Each sub-volume is then recursively divided
until the sequence is divided into a pre-specified number of
sub-volumes.

After the partitioning, we reduce a number of planes,

which are perpendicular to the x-t plane, from each sub-
volume. The number of reduced planes from each sub-
volume is computed by employing the Lagrangian opti-
mization technique in Section 3.3. Notice that, within a sub-
volume, the number of reduced columns is fixed over all
frames and thus the scaling factors change monotonically.
The proposed algorithm hence can provide temporally co-
herent retargeting results, without causing jitter artifacts.

5. Simulation result

Figures 1 and 8 compare the proposed algorithm with the
standard scaling and cropping techniques. The proposed al-
gorithm protects the shapes of important objects more faith-
fully than scaling. Furthermore, unlike cropping, the pro-
posed algorithm does not carve out border regions entirely.

Figure 9 shows vertical resizing results, where the image
height is reduced from 900 to 750, 600, 450, and 300, re-
spectively. The proposed algorithm preserves the sizes of
the flower and the butterfly, as long as they can fit into the
target image. The proposed algorithm starts to scale them
down, when there is no room for size reduction in the back-
ground. Figure 10 shows two examples, in which both the
horizontal and the vertical sizes are halved.

Figure 11 compares the proposed algorithm with the
seam carving [2], which incorporates the forward energy
criterion [10] for performance improvement. The seam
carving provides visually pleasing retargeting results up to
a certain target width. However, if the width is further re-
duced, it starts to remove seams that cross foreground ob-
jects, causing severe distortions in the objects. Since seams
have irregular shapes, the distortions are unpredictable. For
example, in Figure 11 (a), the horse’s legs are too distorted
to convey the visual contents in the original image properly.
On the other hand, when the target width is too narrow, the
proposed algorithm downsamples the strips containing ob-
jects as well as those for the background. But, the down-
sampling within each strip is uniform, and the distortions
are less annoying. In other words, as the target image size
decreases, the proposed algorithm provides more graceful
degradations than the seam carving.

Moreover, it is worthy to point out that the proposed
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(a) Input image (b) Scaling (c) Cropping (d) Proposed algorithm

Figure 8. Comparison of the proposed algorithm with the standard scaling and cropping techniques.

Figure 9. An input image on the left side is resized in the vertical direction with different scale factors.

algorithm requires much less computations than the seam
carving. The seam carving requires a significant amount
computations to find optimal seams using dynamic pro-
gramming. On the other hand, in the proposed algorithm,
the main steps are the gradient map computation, the par-
titioning, the scaling factor decision, and the uniform scal-
ing of each strip. The complexities for the partitioning and
the scaling factor decision are negligible as compared with
those for the gradient map computation and the uniform
scaling. Thus, the computational complexity of the pro-
posed algorithm is much lower than that of the seam carv-
ing. In fact, it is comparable with that of the standard scal-
ing technique.

Figure 12 (a) shows a frame from the “Wall-E” movie
clip and its resized results. The proposed algorithm pre-
serves the robot more faithfully than the standard scaling
technique. Figure 12 (b) shows similar results on the “Kung
Fu Panda” clip. We have supplied retargeting results of var-
ious video clips as additional material [1]. The results ex-
hibit excellent temporal coherence without jitter artifacts.

6. Conclusions and future work

We proposed an algorithm for image and video retarget-
ing, which is computationally efficient but provides reliable

performance. The proposed algorithm consists of the parti-
tioning and the scaling steps. In the partitioning, an image
is divided into strips, so that the complexity variation within
each strip is low. After the partitioning, a constrained op-
timization problem is solved to decide the scaling factor of
each strip. Simulation results demonstrated that the pro-
posed algorithm provides high image quality even when the
target image size is very small.

Future research issues include the development of more
general partitioning schemes than the current rectangular di-
vision, which can adapt the shapes of partitions to scene
contents to achieve better quality retargeting. Another is-
sue is the sampling rate reduction in the temporal domain
as well as in the spatial domain. Also, although we focused
on the sampling rate reduction only, we will develop a sam-
pling rate expansion scheme, which can interpolate images
and videos in a content-aware manner.
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Figure 10. Resizing images in both horizontal and vertical directions.
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is the result of the proposed algorithm.
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