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Abstract

In many image and video collections, we have access
only to partially labeled data. For example, personal photo
collections often contain several faces per image and a cap-
tion that only specifies who is in the picture, but not which
name matches which face. Similarly, movie screenplays can
tell us who is in the scene, but not when and where they are
on the screen. We formulate the learning problem in this set-
ting as partially-supervised multiclass classification where
each instance is labeled ambiguously with more than one
label. We show theoretically that effective learning is pos-
sible under reasonable assumptions even when all the data
is weakly labeled. Motivated by the analysis, we propose
a general convex learning formulation based on minimiza-
tion of a surrogate loss appropriate for the ambiguous label
setting. We apply our framework to identifying faces culled
from web news sources and to naming characters in TV se-
ries and movies. We experiment on a very large dataset
consisting of 100 hours of video, and in particular achieve
6% error for character naming on 16 episodes of LOST.

1. Introduction
Photograph collections with captions have motivated re-

cent interest in weakly annotated images [6, 1]. As a further
motivation, consider Figure 1, which shows another com-
mon setting where we can obtain plentiful but ambiguously
labeled data: videos and screenplays. Using a screenplay,
we can tell who is in the scene, but for every face in the im-
ages, the person’s identity is ambiguous. Learning accurate
face and object recognition models from such imprecisely
annotated images and videos can improve many applica-
tions, including image retrieval and summarization. In this
paper, we investigate theoretically and empirically when ef-
fective learning from this weak supervision is possible.

To put the ambiguous labels learning problem into per-
spective, it is useful to lay out several related learning sce-
narios. In semi-supervised learning, the learner has access
to a set of labeled examples as well as a set of unlabeled

Figure 1. Examples of frames and corresponding parts of the script
from the TV series “LOST”. From aligning the script to the video,
we have 2 ambiguous labels for each person in the 3 different
scenes.

examples. In multiple-instance learning, examples are not
individually labeled but grouped into sets which either con-
tain at least 1 positive example, or only negative examples.
In multi-label learning, each example is assigned multiple
binary labels, all of which can be true. Finally, in our set-
ting of ambiguous labeling, each example again is supplied
with multiple potential labels, only one of which is correct.
A formal definition is given in Sec. 3.

There have been several papers that addressed the
ambiguous label framework. [12] proposes several non-
parametric, instance-based algorithms for ambiguous learn-
ing based on greedy heuristics. [13] uses expectation-
maximization (EM) algorithm with a discriminative log-
linear model to disambiguate correct labels from incor-
rect. Additionally, these papers only report results on
synthetically-created ambiguous labels and rely on iterative
non-convex optimization.

In this work, we provide intuitive assumptions under
which we can expect learning to succeed. Essentially, we
identify a condition under which ambiguously labeled data
is sufficient to compute a useful upper bound on the true la-
beled error. We propose a simple, convex formulation based
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on this analysis and show how to extend general multi-
class loss functions to handle ambiguity. We show that our
method significantly outperforms several strong baselines
on a large dataset of pictures from newswire and a large
video collection.

2. Related work

A more general multi-class setting is common for images
with captions (for example, a photograph of a beach with a
palm and a boat, where object locations are not specified).
[6, 1] show that such partial supervision can be sufficient to
learn to identify the object locations. The key observation is
that while text and images are separately ambiguous, jointly
they complement each other. The text, for instance, does
not mention obvious appearance properties, but the frequent
co-occurrence of a word with a visual element could be an
indication of association between the word and a region in
the image. Of course, words in the text without correspon-
dences in the image and parts of the image not described in
the text are virtually inevitable. The problem of naming im-
age regions can be posed as translation from one language
to another. Barnard et al. [1] address it using a multi-modal
extension to mixture of latent Dirichlet allocation.

The specific problem of naming faces in images and
videos using text sources has been addressed in several
works [15, 2, 9, 7]. There is vast literature on fully super-
vised face recognition, which is out of the scope of this the-
sis. Approaches relevant to ours include [2] which aims at
clustering face images obtained by detecting faces from im-
ages with captions. Since the name of the depicted people
typically appears in the caption, the resulting set of images
is ambiguously labeled, if more than one name appears in
the caption. Moreover, in some cases the correct name may
not be included in the set of potential labels for a face. The
problem can be solved by using unambiguous images to es-
timate discriminant coordinates for the entire dataset. The
images are clustered in this space and the process is iter-
ated. Gallagher and Chen [9] address the similar problem
of retrieval from consumer photo collections, in which sev-
eral people appear in each image which is labeled with their
names. Instead of estimating a prior probability for each
individual, the algorithm estimates a prior for groups using
the ambiguous labels. Unlike [2], the method of [9] does
not handle erroneous names in the captions.

In work on video, a wide range of cues was used to help
supervise the data, including: using captions or transcripts
[7], using sound [15] to obtain the transcript, using cluster-
ing based on clothing within scenes to group instances [14].
Most of the methods involve either procedural, iterative re-
assignment schemes or non-convex optimization.

Figure 2. Co-occurrence graph of the top characters across 16
episodes of LOST. Larger edges correspond to a pair of charac-
ters appearing together more frequently in the season.

3. Formulation

In the standard supervised multiclass setting, we have
labeled examples S = {(xi, yi)mi=1} from an unknown
distribution P (x, y) where x ∈ X is the input and y ∈
{1, . . . , L} is the class label. In the partially supervised
setting we investigate, instead of an unambiguous single
label per instance we have a set of labels, one of which
is the correct label for the instance. We will denote the
sample as S = {(xi, yi, Zi)mi=1} from an unknown dis-
tribution P (x, y, Z) = P (x, y)P (Z | x, y) where Zi ⊆
{1, . . . , L} \ yi is a set of additional labels. We will de-
note Yi = yi ∪ Zi as the ambiguity set actually observed
by the learning algorithm. Clearly, our setup generalizes
the standard semi-supervised setting where some examples
are labeled and some are unlabeled: if the ambiguity set Yi
includes all the labels, the example is unlabeled and if the
ambiguity set contains one label, we have a labeled exam-
ple. We consider the middle-ground, where all examples
are partially labeled as described in our motivating exam-
ples and analyze assumptions under which learning can be
guaranteed to succeed.

Consider a very simple ambiguity pattern that makes
learning impossible: L = 3, |Zi| = 1 and label 1 is present
in every set Yi. Then we cannot distinguish between the
case where 1 is the true label of every example or the case
where it is not a label of any example. More generally, if
two labels always co-occur when present in Y , we cannot
tell them apart. In order to learn from ambiguous data, we
need to make some assumptions about the joint distribution
of P (Z | x, y). Below we will make an assumption that en-
sures some diversity in the ambiguity set. Looking at Fig-
ure 2, we can see that the distribution of ambiguous pairs is
more benign.
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The model and loss functions. We assume a mapping
f(x) : X 7→ <d from inputs to d real-valued features and a
multi-linear classifier g(x) : X 7→ <L with L components,

ga(x) = wa · f(x),

one for each label a ∈ {1, . . . , L}, to which we will refer
to as class scores. The prediction of the classifier is de-
termined by g∗(x) = arg maxa ga(x), the highest scoring
label according to ga (we assume that ties are broken ar-
bitrarily, for example, by selecting the label with smallest
index a). Hence the classifier is parameterized by d × L
weights wai , one for each feature-and-class pair.

Many formulations of fully-supervised multiclass learn-
ing have been proposed based on minimization of convex
upper bounds on risk, usually, the 0/1 loss [17]:

L01(g(x), y) = 1(g∗(x) 6= y).

In addition, we define ambiguous 0/1 loss:

L01(g(x), Y ) = 1(g∗(x) /∈ Y ).

Connection between ambiguous and standard 0/1 loss.
An obvious observation is that the ambiguous loss is an un-
derestimate of the true loss. However in the ambiguous
learning setting we would like to minimize the 0/1, with
access only to the ambiguous loss. Therefore we need a
way to upperbound the 0/1 loss with the ambiguous loss.

The following definition defines a measure of the hard-
ness of learning under ambiguous supervision.

Definition. Ambiguity degree ε(P ) of a distribution
We define the ambiguity degree ε(P ) of a distribution
P (x, y, Z) as:

ε(P ) = sup
x∈X ;y,a∈{1,...,L}

P (a ∈ Z | x, y). (1)

In words, ε(P ) corresponds to the maximum probabil-
ity of an extra label co-occurring with a true label y, over
all labels and examples. Let us consider several extreme
cases: When ε(P ) = 0, Z = ∅ with probability one, and
we are back to standard supervised learning case, with no
ambiguity. When ε(P ) = 1, some extra label consistently
co-occurs with a true label y on an example x and we can-
not tell them apart: no learning is possible for this exam-
ple. For a fixed ambiguity set size |Z|, the smallest pos-
sible ambiguity degree is achieved for the uniform case:
ε(P ) = |Z|/(L − 1). Intuitively, the best case scenario
for ambiguous learning corresponds to a distribution with
high conditional entropy for P (Z|x, y).

The following proposition shows we can bound the (un-
observed) 0/1 loss by the (observed) ambiguous loss, al-
lowing us to approximately minimize the standard loss with
only access to the ambiguous one. The tightness of the ap-
proximation directly relates to the ambiguity degree.

Proposition 3.1 For any classifier g and distribution P
with ε(P ) < 1,

EP [L01(g(x), Y )] ≤ EP [L01(g(x), y)] (2)

≤ 1
1− ε(P )

EP [L01(g(x), Y )] (3)

Proof See full version of the paper [5].

Note, the second bound is tight, as can be shown by con-
sidering the uniform case with a fixed ambiguity size Z and
P (a ∈ Z | x, y) = |Z|/(L− 1).
Robustness to outliers. One potential issue with proposi-
tion 3.1 is that unlikely pairs x, y might force ε to be large,
making the bound very loose. We show we can refine the
notion of ambiguity degree ε(P ) by excluding such pairs.

Definition. (ε, δ)-ambiguous distribution. Define a dis-
tribution P to be (ε, δ)-ambiguous if there is a subset of the
space A ⊆ X × {1, . . . , L} with probability mass at least
1− δ, (i.e. P ((x, y) ∈ A) ≥ 1− δ), where

sup
(x,y)∈A,a∈{1,...,L}

P (a ∈ Z | x, y) ≤ ε

Note, in the extreme case ε = 0, this corresponds to
standard semi-supervised learning, where δ-proportion of
examples are unambiguously labeled, and 1− δ are (poten-
tially) fully unlabeled.

This definition allows us to bound the 0/1 loss even in
the case when some unlikely pair x, y with probability ≤ δ
would make the ambiguity degree arbitrarily large. Suppose
we mix an initial distribution with small ambiguity degree,
with an outlier distribution with large overall ambiguity de-
gree. The following proposition (proved in [5]) shows that
the bound degrades only by an additive amount, which can
be interpreted as a form of robustness to outliers.

Proposition 3.2 For any classifier g and (ε, δ)-ambiguous
P (Z | x, y),

EP [L01(g(x), y)] ≤ 1
1− ε

EP [L01(g(x), Y )] + δ.

Label-specific recall bounds. In real settings such as in
our movie experiments we observe that certain subsets of
labels are harder to disambiguate than others. We can fur-
ther tighten our bounds between ambiguous loss and stan-
dard 0/1 loss if we consider label specific information. We
define the label-specific ambiguity degree εa(P ) of a distri-
bution (with a ∈ {1, . . . , L}) as:

εa(P ) = sup
x∈X ;a′∈{1,...,L}

P (a′ ∈ Z | x, y = a).

We can show ([5]) a label-specific analog of proposition 3.1:
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Proposition 3.3 For any classifier g and distribution P
with εa(P ) < 1,

EP [L01(g(x), y) | y = a] ≤ 1
1− εa

EP [L01(g(x), Y ) | y = a],

where we see that εa bounds per-class recall.
These bounds give a strong give a strong connection be-

tween ambiguous loss and real loss, which allows us to ap-
proximately minimize the expected real loss by minimizing
(an upper bound on) the ambiguous loss.

4. A convex learning formulation
We build our formulation on a simple and general

multiclass scheme that combines convex binary losses
ψ(·) : < 7→ <+ on individual components of g to create
a multiclass loss. For example, we can use hinge, expo-
nential or logistic loss. In particular, we assume a type of
one-against-all scheme for the supervised case:

Lψ(g(x), y) = ψ(gy(x)) +
∑
a 6=y

ψ(−ga(x)). (4)

A classifier g is selected by minimizing the empirical loss
on the sample augmented with a regularization term to pe-
nalize complex models.
Convex loss for ambiguous labels. In the ambiguous la-
bel setting, instead of an unambiguous single label y per
instance we have a set of labels Y , one of which is the cor-
rect label for the instance. We propose the following loss
function:

Lψ(g(x), Y ) = ψ

 
1

|Y |
X
a∈Y

ga(x)

!
+
X
a/∈Y

ψ(−ga(x)) (5)

Note that if the set Y contains a single label y, then the
loss function reduces to the regular multiclass loss. When
Y is not a singleton, then the loss function will drive up the
average of the scores of the labels in Y . If the score of the
correct label is large enough, the other labels in the set do
not need to be positive. This tendency alone does not guar-
antee that the correct label has the highest score. However,
we show in 8 that Lψ(g(x), Y ) upperbounds L01(g(x), Y )
whenever ψ(·) is an upper bound on the 0/1 loss.

Of course, minimizing an upperbound on the loss does
not always lead to sensible algorithms. We show next that
our convex relaxation offers a tighter upperbound to the
ambiguous loss compared to a more straightforward multi-
label approach.
Comparison to naive multi-label loss. The “naive” model
treats each example as taking on multiple correct labels,
which implies the following loss function

Lnaiveψ (g(x), Y ) =
∑
a∈Y

ψ (ga(x)) +
∑
a/∈Y

ψ(−ga(x)) (6)
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Figure 3. Our loss, (5) provides a tighter upperbound than the naive
loss (6) on the non-convex function (7). Left: plots of ψ( 1

2
(g1 +

g2)) (ours), ψ(max(g1, g2)) (max), 1
2
(ψ(g1) + ψ(g2)) (naive),

as a function of g1 ∈ [−2, 2] (with g2 = 0 fixed). Right: same,
with g2 = −g1. In each case we use the square hinge loss for ψ,
assume Y = {1, 2}, and drop the negative terms.

One reason we expect our loss function to outperform the
naive approach is that we obtain a tighter convex upper
bound on L01. Let us also define

Lmaxψ (g(x), Y ) = ψ

(
max
a∈Y

ga(x)
)

+
∑
a/∈Y

ψ(−ga(x)) (7)

which is not convex. Under the usual conditions that ψ is a
convex, decreasing upper bound of the step function (e.g.,
square hinge loss, exponential loss, and log loss with proper
scaling), the following inequalities hold [5], see Figure 3:

L01 ≤ Lmaxψ ≤ Lψ ≤ Lnaiveψ (8)

This shows that our loss Lψ is a tighter approximation
to L01 than Lnaiveψ , and the bound is non-trivial: when
ga(x) = constant over a ∈ Y , we have:

ψ

„
max
a∈Y

ga(x)

«
= ψ

0@ 1

|Y |
X
a∈Y

ga(x)

1A =
1

|Y |
X
a∈Y

ψ (ga(x))

To gain additional intuition on why our proposed loss (5)
is better than the naive loss (6): For an input x with am-
biguous label set (a, b), our model only encourages the sum
ga(x) + gb(x) to be large, allowing the correct score to
be positive and the extraneous score to be negative (e.g.,
ga(x) = 2, gb(x) = −1). In contrast, the naive model en-
courages both ga(x) and gb(x) to be large.
Algorithm. Our ambiguous learning formulation is flexible
and we can derive many alternative algorithms depending
on the choice of the binary loss ψ(u), the regularization,
and the optimization method. In the experiments we use
the square hinge loss for ψ and add an L2 regularization,

922



resulting in the following objective:

min
w

1
2
||w||22 + C||ξ||22 (9)

s.t.
1
|Yi|

∑
a∈Yi

wa · f(xi) ≥ 1− ξi (10)

−wa · f(xi) ≥ 1− ξia ∀a /∈ Yi (11)

where {ξi, ξia} are slack variables and C is a regularization
parameter that can be set by K-fold cross-validation on the
ambiguously labeled data. We fixed C = 103 in all experi-
ments. The optimization can be converted into a L2 loss lin-
ear Support Vector Machine, which we solve in the primal
using a trust region Newton method, with the off-the-shelf
implementation of [8]. The sparse structure of the problem
allows us to tackle large scale problems with thousands of
instances and features, and hundreds of labels.

5. Controlled experiments
We first perform a series of controlled experiments to

analyze our algorithm on a face naming task from Labeled
Faces in the Wild [11]. The goal is to correctly label faces
from examples that have multiple potential labels (transduc-
tive case), as well as learn a model from ambiguous data that
generalizes to other unlabeled examples (inductive case).

5.1. Baselines

In the experiments, we compare our approach with the
following baselines.
Random model. We define chance as randomly guess-
ing between the possible ambiguous labels only. Defin-
ing the (empirical) average ambiguous size to be E[|Y |] =
1
m

∑m
i=1 |Yi|, then the error from the chance baseline is

given by errorchance = 1− 1
E[|Y |] .

IBM Model 1. This generative model was originally pro-
posed in [3] for machine translation, but we can adapt it to
the ambiguous label case. In our setting, the conditional
probability of an example x ∈ <d belonging to one of its
ambiguous labels a ∈ Y is normally distributed. We use
the expectation-maximization (EM) algorithm to learn the
parameters of the Gaussians (mean µa and diagonal covari-
ance matrix Σa = diag(σa) for each label).
Discriminative EM. We compare with the model proposed
in [13], which is a discriminative model with an EM proce-
dure adapted for the ambiguous label setting. The authors
minimize the KL divergence between a maximum entropy
model P (estimated in the M-step) and a distribution over
ambiguous labels P̂ (estimated in the E-step):

J(θ, P̂ ) =
∑
i

∑
y∈Y

P̂ (y|xi) log

(
P̂ (y|xi)
P (y|xi, θ)

)
(12)

k-Nearest Neighbor. Following [12], we adapt the k-
Nearest Neighbor Classifier to the ambiguous label setting
as follows:

gk(x) = arg max
y∈Y

k∑
i=1

wi1(y ∈ Yi) (13)

where xi is the ith nearest-neighbor of x using Euclidean
distance, and wi are a set of weights. We use two kNN
baselines: kNN assumes uniform weights wi = 1 (model
used in [12]), and weighted kNN uses linearly decreasing
weights wi = k − i + 1. We use k = 5 and break ties
randomly as in [12].
Naive model. This is introduced in (6). After training, we
predict the label with the highest score (in the transductive
setting): y = arg maxa∈Y ga(x).
Supervised models. Finally we also consider two baselines
that ignore the ambiguous label setting. The first one, de-
noted as supervised model, removes from (6) the examples
with |Y | > 1. The second model, denoted as supervised
kNN, removes from (13) the same examples.

5.2. Faces in the Wild

We experiment with a subset of the publicly available
Labeled Faces in the Wild [10] dataset. We take the first
50 images of the top 10 most frequent people, yielding a
balanced dataset for controlled experiments.
Features. We use the images registered with funneling, and
crop out the central part corresponding to the approximate
face location, which we resize to 60x90. We project the
resulting grayscale patches (treated as 5400x1 vectors) onto
a 50-dimensional subspace using PCA1.
Experimental setup. For each method and parameter set-
ting, we report the average test error rate over 20 trials, and
report the corresponding standard deviation as error bars in
Figure 4. In the 2 left plots of Figure 4, we vary the ambi-
guity size: the number of extra labels associated with each
example, normalized by the total number of labels to lie in
the range [0,1]. In this setting, the ambiguous labels in the
training set are generated uniformly without replacement.

In the right plot, we vary the ambiguity degree ε, de-
fined in Equation 1, in the range [0,1]. This is achieved
by first choosing at random for each label a dominant co-
occurring label which is sampled with probability ε; the
rest of the labels are sampled uniformly with probability
(1− ε)/(L− 2) (there is a single extra label per example).

We compare our proposed loss (labeled as method mean
in the Figure 4) to the baselines described in Section 5.1. In
the inductive experiments, we randomly split the instances
into equally-sized test and ambiguously-labeled training

1We kept the features simple by design; more sophisticated part-based
registration and representation and would further improve results, as we
will see in section 6
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sets. In this setting the test set is considered unlabeled, so
the classifier votes among all possible labels. In the trans-
ductive experiments there is no test set; we report error
rate for disambiguating the labels. Also, the classifier votes
only among each example’s ambiguous labels.

There are several clear trends in Figure 4. Our
method dominates in all settings, always followed by the
naive model. As is expected, increasing ambiguity size
monotonously affects error. We also see that increasing ε
significantly affects error, even though the ambiguity size
is constant, consistent with our bounds in Section 3. For a
more thorough analysis varying ambiguity size, ambiguity
degree, distribution of labels, number of labels, and dimen-
sionality, please refer to our technical report [5].

6. Ambiguously Labeled Faces on TV

We now return to our introductory motivating example,
naming people in TV shows (Figure 1). Our goal is to
identify characters given ambiguous labels derived from the
screenplay. Our data consists of 100 episodes (∼ 75 hours)
of LOST and CSI, from which we extract ambiguously la-
beled faces to learn models of common characters. We use
the same features, learning algorithm and loss function as
in section 5.2. We also explore using additional person- and
movie-specific constraints to improve performance.
Data Collection. We adopt the following filtering pipeline
to extract face tracks, inspired by [7]:

(1) Run the off-the-shelf OpenCV face detector over all
frames, searching over rotations and scales. (2) Run face
part detectors2 over the face candidates. (3) Perform a 2D
rigid transform of the parts to a template. (4) Compute the
score of a candidate face s(x) as the sum of part detector
scores plus rigid fit error, normalizing each to weight them
equally, and filtering out faces with low score. (5) Assign
faces to tracks by associating face detections within a shot
using normalized cross-correlation in RGB space, and using
dynamic programming to group them together into tracks.
(6) Subsample face tracks to avoid repetitive examples. In
the experiments reported here we use the best scoring face
in each track, according to s(x).

Concretely, for a particular episode, step (1) finds ap-
proximately 100,000 faces, step (4) keeps approximately
10,000 of those, and after subsampling tracks in step (6)
we are left with 1000 face detections.
Ambiguous Label Selection. Screenplays for popular TV
series and movies are readily available for free on the web.
Given an alignment of the screenplay to frames, we have
ambiguous labels for characters in each scene: the set of
speakers mentioned at some point in the scene, as shown in
Figure 1. Alignment of screenplay to video uses methods

2Boosted cascade classifiers of Haar features for the eyes, nose and
mouth
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Figure 6. Left: Label distribution of top 16 characters in LOST.
Element Dij represents the proportion of times class i was seen
with class j in the ambiguous bags, and D1 = 1. Right: Confu-
sion matrix of predictions (without the additional cues) . Element
Aij represents the proportion of times class i was classified as
class j, and A1 = 1. Class priors for the most frequent, the me-
dian frequency, and the least frequent characters in LOST are Jack
Shephard, 14%; Hugo Reyes, 6%; Liam Pace 1%.

presented in [4, 7], linking closed captions to screenplay.
We use the ambiguous sets to select face tracks filtered

through our pipeline. We prune scenes which contain char-
acters other than the set we choose to focus on for experi-
ments (top {8,16,32} characters), or contain 4 or more char-
acters. This leaves ambiguous bags of size 1, 2 or 3, with
an average bag size of 2.13 for LOST, and 2.17 for CSI.

6.1. Results with the basic system

Class-confusion matrices for the top 16 characters in
LOST are shown in Figure 6, before and after applying our
ambiguous naming system. The most difficult classes are
the ones in which another class is strongly correlated in the
ambiguous label confusion matrix. This is consistent with
the theoretical bounds we obtained in Section 3, which es-
tablish a relation between the class-specific error rate and
the class-specific degree of ambiguity ε.

Quantitative results are shown in Table 1. We measure
error according to average 0-1 loss with respect to hand-
labeled groundtruth labeled in 8 entire episodes for LOST.
Due to space constraints, results on CSI are left to our tech-
nical report [5]. Our model does significantly better than
all baseline methods. However, we can achieve further im-
provement by considering additional cues for naming.

6.2. Additional constraints

We investigate using additional constraints to further im-
prove the performance of our system: mouth motion, group-
ing constraints and gender. Final misclassification results
are reported in Table 1.
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Figure 4. Results on Faces in the Wild. Our proposed method is denoted as mean. Left: increasing ambiguity size, inductive setting.
Middle: increasing ambiguity size, transductive setting. Right: increasing ambiguity degree (Eqn. 1). See Section 5.2 for details. In all
settings, our method outperforms the baselines and previously proposed approaches.

Figure 5. Predictions on LOST and CSI. Incorrect examples are: row 1, column 3 (truth: Boone); row 2, column 2 (truth: Jack).

LOST (#labels, #eps.) (8,16) (16,16) (32,16)
Naive 14% 16.5% 18.5%

ours (“mean”) 10% 14% 17%
ours+constraints 6% 11% 13%

Table 1. Misclassification rates of different methods on TV show
LOST. For comparison, other baseline methods’ performances for
(#labels, #eps.) = (16, 16) are knn: 30%; Model 1: 44%; chance:
53%. Results on CSI are in our technical report, [5].

Mouth motion. We use a similar approach to [7] to detect
mouth motion during dialog and adapt it to our ambiguous
label setting3. For a face track x with ambiguous label set
Y and a temporally overlapping utterance from a speaker
a ∈ {1..L} (after aligning screenplay and closed captions),
we restrict Y as follows:

Y :=

8><>:
{a} if mouth motion
Y if refuse to predict or |Y | = {a}
Y − {a} if absence of mouth motion

(14)

Gender constraints. We introduce a gender classifier (de-
scribed in our technical report [5]) to constrain the ambigu-
ous labels based on predicted gender:

Y :=

8><>:
Y if gender uncertain
Y − {a : a is male} if gender predicts female
Y − {a : a is female} if gender predicts male

(15)

3Motion or absence of motion are detected with a low and high thresh-
old on normalized cross-correlation around mouth regions in consecutive
frames.

Grouping constraints. We propose a very simple must-
not-link constraint, which states yi 6= yj if face tracks xi, xj
are in two consecutive shots (modeling alternation of shots,
common in dialogs). This constraint is active only when
a scene has 2 characters. Unlike the previous constraints,
this constraint is incorporated as additional terms in our loss
function, as in [16].
Ablative analysis. We evaluate with a refusal to predict
scheme inspired by [7]. For a given recall rate r ∈ [0, 1],
we extract the r ·mmost confident predictions and compute
error rate on those examples. The confidence is defined as
the difference between the best and second best label scores.

Figure 7 is an ablative analysis, showing error rate vs
recall curves for different sets of cues. We see that the con-
straints provided by mouth motion help most, followed by
gender and link constraints. The best setting (without using
groundtruth) combines the former two cues. Also, we no-
tice, once again, a significant performance improvement of
our method over the naive method.

6.3. Qualitative results and Video demonstration

We show in [5] examples with predicted labels and cor-
responding accuracy, for various characters. Full-frame
detections can be seen in Figure 5. We also propa-
gate the predicted labels of our model to all faces in the
same face track throughout an episode. Video results of
several episodes can be found at the following website
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Figure 7. Ablative analysis. x-axis: recall; y-axis: error rate for
character naming across 16 episodes of Lost, and the 8 most com-
mon labels. We compare our method, mean, to the naive model
and show the effect of adding constraints to our system: gender,
mouth motion, and linking constraints (along with their perfect,
groundtruth counterparts), described in Section 6.2.

Figure 8. Examples classified as Kate in the LOST data set using
our method. Results are sorted by classifier score, in column ma-
jor format; this explains why most of the errors occur in the last
columns. The precision is 97.5%.

http://www.youtube.com/user/AmbiguousNaming.

7. Conclusion
We have presented an effective approach for learning

from ambiguously labeled data, where each instance is
tagged with more than one label. We show bounds on the
classification error, even when all examples are ambigu-
ously labeled. We compared our approach to strong com-
peting algorithms on 2 naming tasks and demonstrated that

our algorithm achieves superior performance. We attribute
the success of our approach to better modeling of the mu-
tual exclusion between labels, compared to the naive multi-
label approach. Moreover, unlike recently published tech-
niques that address similar ambiguously labeled problems,
our method does not rely on heuristics and does not suffer
from local optima of non-convex methods.
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