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Abstract

We propose an approach to overcome the two main chal-

lenges of 3D multiview object detection and localization:

The variation of object features due to changes in the view-

point and the variation in the size and aspect ratio of the

object. Our approach proceeds in three steps. Given an

initial bounding box of fixed size, we first refine its aspect

ratio and size. We can then predict the viewing angle, un-

der the hypothesis that the bounding box actually contains

an object instance. Finally, a classifier tuned to this par-

ticular viewpoint checks the existence of an instance. As a

result, we can find the object instances and estimate their

poses, without having to search over all window sizes and

potential orientations.

We train and evaluate our method on a new object

database specifically tailored for this task, containing real-

world objects imaged over a wide range of smoothly vary-

ing viewpoints and significant lighting changes. We show

that the successive estimations of the bounding box and the

viewpoint lead to better localization results.

1. Introduction

Most state-of-the-art approaches to detecting and local-

izing objects of a particular category rely on searching over

all possible image windows and on using a classifier to de-

cide whether or not the object is present in individual win-

dows. This raises two difficult issues: First, for most ob-

jects, the bounding box aspect ratio and size can vary signif-

icantly, thus forcing the algorithm to explore a whole range

of location and size parameters. Second, to achieve good lo-

calization performance, the classifier must be able to reject

windows that only partially overlap with the object while at

the same time being insensitive to object pose.

The first problem severely increases the computational

burden of these approaches. The second is potentially even
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more serious because good performance rests on two con-

flicting demands: Good localization requires sensitivity to

errors in bounding box location while robustness to view-

point changes requires insensitivity to the changing feature

statistics. As a result, even though standard histogram-

based approaches offer some measure of pose invariance,

their localization performance is often poor.

In this paper, we propose a layered approach to object

detection that addresses both these issues and greatly in-

creases localization performance. First, we train an estima-

tor for the bounding box dimensions, which then allows us

to run our classifier only on windows with the estimated

size instead of looping through ranges of different sizes.

We then achieve view invariance by training a second es-

timator to return the viewpoint under which the object was

imaged, which allows us to use a classifier trained for that

viewpoint. This approach is similar in spirit to the one used

in keypoint descriptors such as SIFT [12] to achieve scale

and rotation invariance. Furthermore, as in the case of key-

point descriptors, we do not require our size and viewpoint

estimates to be perfect. Approximate values are sufficient

because we rely on histogram based representations that are

largely invariant to small changes in bounding box size and

view angle.

To quantify the performance increase our approach

yields, we introduce a database of images acquired at a car

show. They were taken as the cars were rotating on a plat-

form and cover the whole 360 degree range with a sample

every 3 to 4 degrees. There are around 2000 images in the

database belonging to 20 very different car models and Fig-

ure 1 depicts some sample frames together with detection

and pose estimation results. Using the first 10 sequences

for training purposes and the rest for testing purposes, we

will show that our approach results in substantial improve-

ments.

2. Related Work

Object detection and localization from multiple views

has recently gained more attention with the adoption of
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Figure 1. Sample detections from the test set. The green rectangle depicts the recovered bounding box and the estimated viewpoint is

indicated inside the green circle at the top-right corner. A front facing car is indicated by a downward pointing line. Despite the challenging

lightning conditions and changing backgrounds our approach can correctly localize cars and estimate their pose.

more challenging datasets containing images of objects

seen from arbitrary views [4, 8, 5, 3]. To handle the

increased variance in the object appearance and to close

the gap between classification and localization, recent

approaches either integrate stronger part location statis-

tics [2, 7, 5] or rely on more complex classification machin-

ery [14, 3]. However these approaches do not handle the 3D

nature of the problem and rely on the classifier to discover

an invariant representation using a training set that contains

different objects of the same category seen from disparate

views.

An alternative approach is to directly model the 3D view-

point [16, 19, 18]. Recently, [15] showed that it is possible

to learn a 3D part based representation that explicitly in-

cludes the viewpoint, which is also recovered as part of the

detection process. Although we share the same goal, our

multi-step approach is more flexible and can be used in con-

junction with any existing method for object classification,

which can be used to perform the final step. We demon-

strate that decoupling the multi-view aspect of the problem

from object classification yields better object localization.

Improved localization performance also depends on re-

jecting windows that only partially overlap with the object.

[3] addresses this problem by training an object detector that

learns a mapping from input features to the output label and

bounding box. However this approach is dependent on the

ability to compute a bound on the classification score for

rectangle sets, which is a restrictive assumption. By con-

trast, we learn a separate mapping for bounding box esti-

mation hence do not need to impose constraints on the form

of the classification score.
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Figure 2. Image features. (a) Original image. (b) Cluster label

map. A descriptor is computed at every point and assigned a clus-

ter number. (c) Histogram pyramid. The cluster map is divided

into increasingly finer regions and for each region a histogram of

cluster numbers is built. Contribution of each pixel is weighted by

a Gaussian to achieve invariance to small translations.

3. Three-Step Object Localization

We present an object localization framework inspired by

current approaches that formulates viewpoint invariant in-

terest point descriptors and show that it leads to improved

object localization. Our framework involves three steps.

The first two assume that an object is present in the vicin-

ity of the test location and estimate the bounding box size

and object pose under this assumption. The final step con-

firms the existence of an object within the estimated bound-

ing box, which is done using a single classifier tuned to the

estimated viewpoint.

We first introduce the joint feature space for all three

steps and give the details of our approach to viewpoint and

bounding box estimation.

3.1. Image Features

Given a bounding-box that defines an image window, we

describe it in terms of histogram-based features, which have

become the norm in object detection due to their ability to

handle large intra-class variation and to provide robustness

against errors in bounding-box size and location. In prac-

tice, to create these features, we first compute at every pixel

a SIFT-like descriptor that has recently been introduced and

is designed for dense computation [17]. We then assign to

each pixel a cluster number to create label maps such as

the one of Figure 2(b). The clusters centers are estimated

in the training phase using K-Means. Finally, we create a

spatial pyramid of histograms [11] that represents the label

frequencies in smaller and smaller regions. We provide the

precise parameters we used in Section 4.

Given these features, final step of our algorithm is to train

Support Vector Machines (SVMs) to decide whether or not
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Figure 3. Pose estimation. (a) From top to bottom, frames 1, 20,

40, 60 and 81 of an image sequence from the test set depicting a

slowly rotating car.(b) Estimated pose distributions for all frames

of the sequence. The red stars indicate the pose bin with max-

imum probability. The estimated pose values is mostly in sync

with the motion of the car. Note the ambiguity of the estimated

pose between the front and back facing object pose bins P0 and

P8, which is the sole source of wrong estimates that are off the

diagonal that represents the true car motion.

a specific object is present within the bounding-box. We

show below that these features are also effective for bound-

ing box size and pose estimation.

3.2. Viewpoint Estimation

We model the viewpoint by a single angle representing

the rotation parallel to the ground plane as it is the dominant

factor as far as feature statistics are concerned. It is quan-

tized into 16 pose bins. The ith bin is denoted by Pi and P0

represents a front facing object. We assume that the cars in

our database rotate at constant angular velocity and recover

its value by using the time of capture of a full rotation. Us-

ing this information we compute the rotation angle for each

image with respect to the front facing reference pose, to be

used in the training and also as ground truth for testing.

We then use a Naive Bayes classifier to learn the map-

ping from spatial pyramid histograms to the probability of

each pose bin,

P (Pi|H), (1)

where H represents the spatial pyramid histograms com-

puted in the given bounding box. It is obtained by concate-

nating the histograms from all regions inside the bounding

box,

H = [H1,H2,H3, · · · ,HNk ], (2)

where H1 is the histogram covering the whole bounding

box, H2 to H5 are the four histograms that are computed

on the second level, and so on.
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Since some of the information present in the histograms

is irrelevant for viewpoint estimation, we first define binary

features on the histograms and select the ones that carry

high mutual information with the pose bin value. We use

binary features that compare two cluster label frequencies

within the same region in the pyramid. We take the feature

value to be

ρk
i,j(H) =

{

0 ifHk
i < Hk

j

1 otherwise
, (3)

whereHk
i denotes the frequency of the ith cluster in the kth

region in the pyramid.

We generate an initial feature set, denoted by F , that

contains a large number of features with randomly chosen

parameters. Then a much smaller feature set is selected to

be used in the pose estimation and we denote it by FS. In

practice, there are 10000 features in F and 150 in FS. The

feature selection algorithm is based on conditional mutual

information maximization[6] (CMIM), which sequentially

picks features that carry high mutual information with the

pose bin value, while avoiding features that are too simi-

lar to already picked ones. More exactly, we start with an

empty set FS and select M features by repeatedly picking

a feature ξ̂i from F in the ith selection round, removing it

from F and adding to FS . Denoting candidate features in

F by ξ, and already selected ones in FS by ξ∗, ξ̂i satisfies

ξ̂i = argmax
ξ∈F

min

{

I(P ; ξ), min
ξ∗∈FS

I(P ; ξ|ξ∗)

}

, (4)

where I(P ; ξ) is the mutual information between the object

pose and a feature considered for selection, and I(P ; ξ|ξ∗)
is the value of the same quantity conditioned an already se-

lected feature. They are both estimated using the training

set.

We can visualize the relative importance of the different

histograms for pose estimation by comparing the number of

selected features that use each histogram as shown in Fig-

ure 5. The selected features almost never use the single his-

togram on the first level since it is too coarse. The remain-

ing 3 levels contain 15, 44, and 38 percent of the features,

respectively.

Since the selection process ensures only weak depen-

dency between features, we approximate the mapping be-

tween the pyramid histograms and the object pose by

P (Pi|H) ≈ P (Pi|FS(H)) (5)

≈

M
∏

j

P (Pi|ξ
∗
j (H)), (6)

where FS(H) represents the binary values of the features in
FS and ξ∗j (H) the value of the j th feature, all computed

Figure 5. Histogram relevance for pose estimation. The brighter

regions in the histogram pyramid denote higher importance. Fea-

ture selection has captured the importance of the lower parts of the

bounding box. By contrast, the coarse first level and the corners in

the upper part do not contribute to pose estimation.

from the pyramid histograms. The feature probabilities

P (Pi|ξ
∗
j (H)) are again estimated from the training set.

At run-time, given a bounding box in the image we com-

pute the pyramid histograms and then use the learned map-

ping to estimate a distribution on the pose bins. For simplic-

ity, we take the object pose to be the one that maximizes the

probability for the corresponding bin. However, it would

be straightforward to extend our approach to include multi-

ple pose hypotheses using the pose probability distribution.

Figure 3 depicts the estimated distributions over pose bins

for an image sequence from the test set. The pose estima-

tion is performed on the ground truth boxes. In Section 4,

we show that partial overlap with ground truth is sufficient

for reliable pose estimation.

3.3. Bounding Box Estimation

Bounding box estimation follows the same philosophy as

pose estimation but involves estimating two variables, the

bounding box aspect ratio and area. A straightforward ap-

proach would be to quantize their joint space into bins and

estimate the correct bin from image features , exactly as

above. However, the size of the joint space is large, which

can bias the estimation in regions that receive a small num-

ber of training examples. To avoid these problems, we take

a two step approach and treat the aspect ratio and area in-

dependently. We learn the distributions for both using the

training set bounding boxes and divide the obtained value

ranges into 20 equal bins.

We first learn an estimator for the aspect ratio using pyra-

mid histograms from windows of fixed size, 150× 150 pix-

els in our experiments. These windows are placed in the

image so that their top left corners coincide with that of the

training bounding boxes. The estimator for the bounding
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Figure 4. Bounding box estimation. (a) Histogram of the overlap ratios of the randomly sampled windows in the vicinity of the correct top

left corner. (b) Histogram of the overlap ratios after bounding box estimation. The overlap ratio with the object has been greatly increased.

(c) Ratio of windows that have larger overlap than a threshold, as the threshold is varied. Note that even for a conservative ratio of 0.7,

most of the estimated windows can be considered as positive samples.

box area is trained in the same way but using windows with

the same aspect ratio as the training bounding boxes and of

fixed height, taken to be 150 pixels in the experiments.

During testing, we use the trained estimators to select

a single bounding box size with higher degree of overlap

with the object than can be obtained by random sampling.

To illustrate this, for each one of the 1000 test images, we

sample 100 windows with random dimensions and top left

cornerswithin±10 pixels of the ground truth. The sampling

distribution for the window size is computed from dimen-

sion statistics of the training set bounding boxes, and offset

of the top left corner is uniform. The quality of a sampled

window is measured by its overlap ratio (r) with the ground

truth bounding box, which is computed in the standard way

as

r =
|BG ∩ B|

|BG ∪ B|
, (7)

where B represents the region covered by the sampled win-

dow and BG by the ground truth. We then measure the over-

lap ratio after resizing the windows to the dimensions ob-

tained by bounding box estimation. First a fixed sized win-

dow is used to infer the aspect ratio. We then scale the width

of the window to match the estimated value and update the

pyramid histograms. The final window dimensions are ob-

tained by estimating the area and by resizing the window

to the estimated value. Figure 4 shows that the quality of

the estimated dimensions is much better than random sam-

pling and the bounding box estimator can reliably replace

the exhaustive evaluation of all possible dimensions since it

almost always finds a box of adequate size.

4. Experiments

We compare our estimators against a baseline implemen-

tation that uses a single SVM. The classifier uses spatial

pyramid histograms that are built as follows. We extract

DAISY descriptors[17] at every pixel in the training images.

We randomly sample 100000 descriptors from the training

images that are inside the object bounding boxes and ob-

tain 100 cluster centers using K-Means. For each training

image we compute 4 levels of spatial pyramid histograms

as described in Section 3.1. Each pyramid contains 30 his-

tograms, adding up to a 3000 dimensional representation.

The training set encompasses all images from the first

10 sequences, around 1000 images. In each one, we ran-

domly pick 20 bounding boxes in addition to the ground

truth box. These sampled boxes are labeled as positive or

negative samples according to their overlap ratio defined

by Equation 7. We further sample 9000 negative bound-

ing boxes from 300 negative images that do not contain

any cars. Using this training set, we train the viewpoint

and bounding box estimators described in Section 3 and

the baseline SVM. 16 view-tuned SVMs are then trained,

each with positive samples only from a restricted viewpoint

range but all the negative training set. In both cases, the

SVM complexity parameters are found by cross-validation,

training on 6 sequences and using the remaining 4 together

with the 300 negative images as validation set.

Baseline approach. We detect cars in the test images

by sliding windows and randomly sampling the window di-

mensions using the learned statistics from the training set.

Each window is given a classification score by the baseline

SVM and the non-maxima suppression removes windows

that overlap with another window that received a higher

score.

Our approach. To measure the performance of the

viewpoint estimation we repeat the same process but this

time we estimate the viewpoint for each sampled window

using the Naive Bayes classifier and then compute the clas-

sification score with the selected view-tuned SVM. Finally,
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Figure 6. Precision/Recall curves comparing localization using only SVMs, using viewpoint estimation followed by a view-tuned SVM

(Pose+SVM), and finally with the addition of bounding box estimation (BBox+Pose+SVM). (a) Curves when 0.5 bounding box overlap is

accepted as positive detection, which is the standard threshold used in the literature. Adding viewpoint estimation improves the results and

bounding box estimation leads to improved precision. (b) Curves when 0.7 bounding box overlap is required to be considered as a positive

detection, which entails increased localization accuracy. Since boxes with smaller overlap can receive higher classification scores than

boxes with more than 0.7 overlap, all curves degrade. However the degradation is much less severe when pose and window size estimation

are turned on. In this more demanding context, it therefore yields even more clearly superior performance.
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Figure 7. Accuracy of pose estimation. (a) Histogram that shows the distribution of the error in the estimated pose in degrees. The small

peak around 180 degrees is caused by the similarity in car appearance when seen from exactly opposite sides. (b) The confusion matrix

showing the errors separately for each pose bin. As evidenced by the pose distributions from Figure 3, the pose errors are mostly due to

the similarity of the front and back facing cars rather than due to confusion of side views. This is what produces the off diagonal terms in

the confusion matrix.

we also resize each sampled box to the dimensions given

by the bounding box estimator and compute the score by

view-tuned SVMs.

The bounding box estimator computes features within

two extra windows compared to using the sampled box di-

mensions, one fixed size and another one with fixed height.

Hence, to even out the amount of computation required by

each experiment we sample three times as many windows

when bounding box estimation is disabled.

Figure 6 depicts the precision/recall curves drawn for the

test set containing 10 sequences of car images and 1000

images that do not contain any cars. The pose estimation
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yields a much improved curve compared to a single SVM

and the bounding box estimation improves localization. The

effect of bounding box estimation is more pronounced as

higher accuracy is desired in bounding box dimensions.

We also test the accuracy of the pose estimation. During

testing, for each bounding box that has overlap ratio with

the ground truth greater than 0.5, we record the estimated

pose value and compare it to the ground truth. Figure 7

shows the histogram of errors and the confusion matrix for

the estimated pose bin.

By setting the threshold on the classification score to be

the one that yields equal precision and recall, we obtain the

detection results shown in Figure 1. We then ran our car de-

tector on images acquired at the car show including cars not

on rotating platforms and the results are depicted by Fig-

ure 8. We also tested our detector on the database provided

by [15] and we show some representative detection results

in Figure 9. On the binary car detection task, we achieve

performances that are roughly equivalent to those reported

in [15] even though we did not retrain our system for this

case. This demonstrates that our estimators generalize well

to images taken under much more generic conditions than

those we trained for.

5. Conclusion

We have presented a multi-step object detector that first

selects candidate bounding-box size and viewpoint , and

then rely on a view-specific classifier to validate these hy-

potheses and decide whether or not an object is present. We

have used two databases of car images acquired under very

different conditions to validate our approach and demon-

strate that it brings a substantial improvement over a more

standard one-step approach that reflects what state-of-the-

art methods do. In spirit, this is related to the approach used

by current interest-point extractors and matchers to achieve

orientation and scale invariance [13].

Although we focused on improving localization per-

formance, reliable pose estimation opens up many excit-

ing possibilities such as enforcing temporal consistency in

video sequences and spatial filtering of results. Such con-

text sensitive object detection is becoming more common

to improve robustness to clutter and noise [9, 1, 10] and we

will explore it in future work.
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Figure 8. Detections from the car show environment. We show correct detection results except in the last column which contains some

false positives.

Figure 9. Detections on the database of [15]. The last column again contains false detections that can be attributed to failure in the bounding

box estimation or to the fact that the scale of the cars is very different from the ones we used to train our SVMs.
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