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Abstract

The ambiguity inherent in a localized analysis of events

from video can be resolved by exploiting constraints be-

tween events and examining only feasible global explana-

tions. We show how jointly recognizing and linking events

can be formulated as labeling of a Bayesian network. The

framework can be extended to multiple linking layers, ex-

pressing explanations as compositional hierarchies. The

best global explanation is the Maximum a Posteriori (MAP)

solution over a set of feasible explanations. The search

space is sampled using Reversible Jump Markov Chain

Monte Carlo (RJMCMC). We propose a set of general move

types that is extensible to multiple layers of linkage, and use

simulated annealing to find the MAP solution given all ob-

servations. We provide experimental results for a challeng-

ing two-layer linkage problem, demonstrating the ability to

recognise and link drop and pick events of bicycles in a rack

over five days.

1. Introduction

The visual analysis of events is often ambiguous when

performed locally in isolation from other events. A global

analysis will generally provide a more reliable solution, ex-

ploiting constraints that exist between the different things

happening during a given period. We propose a general

framework for exploiting such constraints.

The term ‘event recognition’ refers to mapping an ob-

servation into previously modeled event types. Assuming

independence from surrounding events, each observation is

normally assessed separately, and the event type that best

explains the observation is chosen as the recognized event.

Linking events is the process of grouping related events

to represent high-level explanations. Often events are re-

lated if they involve the same agent or the same object.

Global constraints such as arity and temporal ordering gov-

ern the linking process. For example, linking the event of a

person entering a room to the departure event of the same

person provides a high-level explanation about the complete

act and its duration. A one-to-one correspondence (arity)

constraint is expected and the first event must occur before

the second. A feasible explanation is one that does not vio-

late these constraints.

Event recognition and linkage could be performed sepa-

rately where the event is first recognized for each observa-

tion, and the linkage can be decided next. In this paper, we

propose simultaneously (i.e. jointly) recognizing and link-

ing events into complete explanations. We apply joint event

recognition and linkage to the Bicycles problem, first intro-

duced in [4]. The complexity of this problem demonstrates

the generality and capabilities of the framework. We refer

to the act of leaving the bicycle in the rack as a ‘drop’, and

the act of retrieving the bicycle as a ‘pick’. The task is to

correctly associate people to the bicycle they have dropped

or picked, and to link picks to earlier drops. Two types of

detections are considered; the first is of people entering and

leaving the rack area, and the second is of changes within

the racks that indicate the appearance and disappearance of

bicycles, and are referred to as ‘bicycle clusters’, as each

may contain multiple bicycle detections.

Ambiguities in the recognition process increase with oc-

clusion when multiple individuals approach the racks. We

refer to these time intervals, during which one or more

people are simultaneously inside the rack area, as “activity

units” [5]. Figure 1 illustrates an example of an activity unit

by highlighting the people and the bicycle clusters. Each

Figure 1. An example of an activity unit showing 5 individuals

(left) and several bicycle clusters (right).
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activity unit is an event recognition and linkage problem.

The linking is constrained so each person is linked to one

bicycle cluster at most. This emerges from the natural con-

straint that a person cannot drop/pick more than one bicycle

per visit to the racks. We further link drops to subsequent

picks forming a ‘higher-level’ linkage problem. Each drop

can be connected to one pick at most from a later activity

unit, and vice versa.

Searching the space of feasible explanations is of expo-

nential complexity. We need a method to enumerate these

explanations and assess their posterior probabilities given

the observations. To avoid confusion, events that are ob-

served directly from a single detection are called ‘atomic

events’, while high-level explanations are referred to as

‘compound events’ as they arise from linking other events.

We propose a novel framework and argue it can be used

whenever,

• The task is to recognize and link related events.

• These linkages can be represented as a hierarchy of

(compound) events.

• The labeling of each atomic event can be assessed

given an associated observation.

• Links between events are scored, favoring some links

over others, and are governed by natural constraints.

Related work is reviewed next, and Section 3 details

the method. Section 3.1 explains how a dynamic Bayesian

network can be built to model the posterior dependencies.

Section 3.2 reviews Markov chain Monte Carlo (MCMC)

sampling, and is followed by explaining how reversible

moves can traverse the space of feasible explanations in

Section 3.3. The selected features and the collected dataset

for the Bicycles problem are explained in Section 4.1. The

results (Section 4.2) demonstrate that maximizing the joint

posterior using this proposed framework improves the ac-

curacy over separately recognizing and then linking the

events.

2. Related Work

Explaining and linking observations by proposing global

feasible explanations and assessing those explanations has

been previously applied to several domains. Multi-target

tracking in radar surveillance was first tackled by Reid [13]

in a Bayesian framework. At each scan, the radar detects

noise and target measurements. The problem is to simulta-

neously associate target measurements into trajectories and

discard noisy measurements. Reid searched the space of ex-

planations using the Multiple-Hypotheses Tree (MHT) al-

gorithm, where alternative explanations are explored within

a tree structure. Oh et. al. [11] use an MCMC approach

to sample from the solution space and find the Maximum a

Posteriori (MAP) explanation. This work demonstrated the

remarkable performance of MCMC over MHT.

Visual tracking resembles radar tracking, as broken tra-

jectories, tracklets and noisy observations have to be con-

nected into complete trajectories. Traditionally, observa-

tions are associated by considering a couple of frames. A

recent trend towards global solutions, despite the combina-

torial complexity, uses approaches such as Bayesian net-

work inference [8], structural EM [17] and linear program-

ming [14]. MCMC finds an approximate solution and has

been increasingly employed in visual tracking of pedestri-

ans [1, 15, 16] but also for ants and bees [9]. Smith [15]

tracks an unknown number of objects using RJMCMC. A

derived work by Yu et. al. [16] combines segmentation

along with tracking. They model both spatial and temporal

moves (extending those of Smith), and search the space of

possible explanations within a sliding window. One of the

earliest similar problems in visual tracking was introduced

by Huang and Russell [7], as part of ‘Roadwatch’ for track-

ing cars across wide-area traffic scenes. They assign each

car seen upstream to its corresponding observation down-

stream, allowing for on-ramp and off-ramp observations.

Their solution uses MHT, thus it cannot scale to tracking

cars between more than two cameras due to the growing

complexity. An MCMC sampling approach is proposed for

a scalable solution [12].

Similar reasoning can be used to recognize and link

events. Gong and Xiang learn the links between events us-

ing Dynamic Multi-linked HMMs [5]. They learn causal

and temporal relationships from videos of loading and un-

loading planes. Their work assumes all parallel events can

be dependent and can not link events with temporal gaps or

enforce global constraints. Chan et. al. argue that recogniz-

ing and linking events provide the most likely events along

with the best track fragment linkage [3]. Applied to recog-

nizing plane re-fueling event sequences, their approach is

confined to brute force search as a proof of concept. Our

previous work searches the space of feasible explanations

for linking dropping and picking bicycles using MHT [4],

where the branch with the minimum cost represents the best

explanation.

In this paper, we propose a novel framework for jointly

recognizing and linking related events. Unlike [5], we focus

on causal relationships allowing events to be linked across

temporal gaps. Our framework assumes a natural hierar-

chy of events is known, and partitions the observations into

plausible explanations governed by related constraints. We

finally use the power of RJMCMC [6] (successfully applied

in other domains [11, 15]) to sample the posterior distribu-

tion. We re-formulate the Bicycles problem as two-layers of

event recognition and linkage, and present results that show

RJMCMC with simulated annealing can better search the

space when compared to greedy and MHT searches.
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3. The Method

For a chosen scene domain, we suppose the composition

of events forms a hierarchy. The base of the hierarchy is

a set of atomic events that are detected directly. Higher-

levels are compound events composed by linking a pair of

simpler events (atomic or compound), providing a higher

level explanation.

Figure 2 illustrates two examples of the hierarchy of

events for the Bicycles problem. The hierarchy shows two

atomic event types: people (x) and bicycle clusters (y), and

two layers of linkage. The first layer links people to bicycle

clusters. The link (z) can explain a drop or a pick compound

event (shown in brackets), then two such linking nodes are

combined into a higher-level link, that explains the drop-

pick (dp) compound event.

Figure 2. The basic unit for an explanation of the Bicycles problem

(left) and a sample feasible explanation (right) for 5 people (x) and

4 bicycle clusters (y). Dotted frames surround activity units.

To explain our method, we first detail how a Bayesian

network can be built for a sequence of detections based on a

given event hierarchy. The complete set of labelings of the

Bayesian network corresponds to the set of explanations.

Though the Bayesian network is completely general and can

in principle be used to discover optimal explanations, we

need a tractable way to search through the set of feasible

explanations for the MAP solution. We search the space of

explanations using MCMC with simulated annealing. The

last part of this section introduces general move types that

can traverse the space of event linkages.

3.1. The Posterior Probability

We start by transforming the set of atomic events into

a single Bayesian network that represents all possible ex-

planations. We first present a simple example for recog-

nizing and linking a pair of atomic events within a single

layer of linkage. Figure 3 (left) shows a Bayesian network

with three observations; ox, oy and s, where s is the score

of linking events x and y. Three hidden random variables,

(x, y, z), explain the first and the second event types, and

whether the two events are linked, respectively. The joint

probability is factorized so the compound event is depen-

dent on its constituent events.

For the Bicycles problem, suppose we have observed n

people and m bicycle cluster events, then Figure 3 (right)

shows a plate representation linking each x event to all pos-

sible y events according to the domain’s event hierarchy.

Figure 3. Directed graph linking two events (left) and a plate rep-

resentation for multiple events (right).

Figure 4 is an unrolled example for n = 3 and m = 2. The
different kinds of nodes in the Bayesian network are labeled

on the left hand side. Each detection is represented by an

observed Random Variable (RV) connected to a hidden RV.

The x atomic events represent tracked people and can be la-

beled as dropping (e1), picking (e2) or passing through (e3).

Each bicycle cluster is represented by a y atomic event and

can be labeled as dropped (g1), picked (g2) or noise (g3).

Each pair of x and y detections parents a linking node z,

that can be labeled by a drop (d), pick (p) or be unlinked

(f ). A ‘d’ state, for example, indicates the person dropped

a bicycle into the associated cluster. Although the labels

may seem partly redundant, they will enable us to combine

evidence from observations associated with each event in a

consistent fashion. The linking nodes are governed by nat-

ural constraints, represented by the deterministic node c. In

the Bicycles problem, for example, a maximum of one link-

ing node relating the same person can be labeled as a drop

or a pick within the explanation. Figure 5 shows a labeled

Bayesian network corresponding to the first activity unit in

the sample explanation of Figure 2.

We aim to find the MAP explanationω⋆ (a labeling of all

Figure 4. An unrolled Bayesian network for multiple events

Figure 5. A sample explanation (left) and its corresponding label-

ing of the Bayesian network (right). The deterministic function

evaluates to 1 for feasible explanations only.
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hidden RVs) given all observed RVs Y where

ω⋆ = argmax
ω

p(ω|Y ) (1)

For the graph in Figure 4, the posterior can be re-arranged as

p(ω|Y ) = 1

Z

Q

i

p(xi|oxi
)

Q

j

p(yj |oyj
)

Q

ij

p(zij |xi, yj , sij)p(c|{zk})

(2)

whereZ is the normalizing factor that need not be evaluated

when searching for the maximum. p(c|{zk}) is a determin-

istic function that evaluates the labels of all z linking nodes,

and equals 1 if the explanation is feasible.

Unfortunately, the number of linking nodes in the con-

structed Bayesian network increases exponentially with the

number of atomic events, while the number of feasible links

increases only linearly. The product
∏

i p(zi|x, y, s), from
the posterior in (2), can be replaced by a proportional ex-

pression that is independent of all links labeled f as follows

(We abbreviate p(zi|x, y, s) into p(zi|o) in the derivation).

∏
i

p(zi|o) =
∏

i:zi=f

p(zi = f |o)
∏

i:zi=t

p(zi = t|o) (3)

=
∏

i:zi=f

p(zi = f |o)
∏

i:zi=t

p(zi = t|o)

Q

i:zi=t

p(zi=f |o)

Q

i:zi=t

p(zi=f |o)

=
∏
i

p(zi = f |o)
∏

i:zi=t

p(zi=t|o)
p(zi=f |o) (4)

∝
∏

i:zi=t

p(zi=t|o)
p(zi=f |o) (5)

After presenting the Bayesian network for the first layer,

we present the complete Bayesian network for the Bicycles

problem. Figure 6 represents this two-layered linkage prob-

lem for n = m = 3. Two activity units (dotted frames) are

shown in the unrolled example. Notice that we only hypoth-

esize and mutually constrain links between people and bi-

cycle clusters within the same activity unit, thereby greatly

reducing the number of possible explanations. For the sec-

ond layer, the linking node v connects z nodes from differ-

ent activity units, and can represent a drop-pick compound

event (dp) or be unlinked (f ). The linking score assesses

the likelihood of linking a drop to a pick event. An ad-

ditional random variable z0 represents unobserved events.

Some drops remain unlinked indicating the bicycle is still

within the racks, and some picks are related to drops that

occurred before the observation period. The posterior prob-

ability can be retrieved from the graphical model, where dif-

ferent explanations imply different labelings. The posterior

at both linking layers is rewritten according to Equation 5

to be independent of false links.

This section has shown how a Bayesian network can

be constructed for two levels of event linking. The same

method of construction could be used for any binary hierar-

Figure 6. An unrolled Bayesian network for the Bicycle Problem

showing 2 activity units. Detected people (x) and bicycle clus-

ters (y) are linked within activity units to explain drops and picks.

Events are linked in a second layer to explain drop-picks. Expla-

nations at each layer are constrained by deterministic RVs c1, c2.

chy of atomic and compound events, given a different set of

labels and constraints that arise from the domain.

3.2. MCMC

Instead of exhaustively searching the space, MCMC

samples the posterior distribution using a Markov chain.

The set of possible states in the Markov chain Ω is the set

of all feasible explanations, and a conditional proposal dis-

tribution q(ω, ω′) defines the probability of proposing state
ω′ given the current state is ω. After a state is proposed

using q, the move to that state is made with the probabil-

ity α(ω, ω′) known as the ‘acceptance probability’. A thor-

ough review of MCMC techniques can be found in [2]. We

use the Metropolis-Hastings algorithm and define the ac-

ceptance probability α as proposed by Green’s Reversible

Jump MCMC (RJMCMC) [6], where the proposal distribu-

tion is split into two steps: jm for selecting a move type and

gm for selecting a specific move within that type. Green’s

formulation allows introducing a pair of reversible moves

instead of self-reversible moves only, maintaining the de-

tailed balance for convergence.

For finding the MAP solution, adding simulated anneal-

ing is in principle a better alternative [2], although previous

related work has not used this [1, 9, 11, 15, 16]. MCMC is

a sampling technique that is not designed to search for the

global maximum. Adding annealing is a minor modifica-

tion where the Markov chain is non-homogeneous and its

invariant distribution ϕ at each step i in the chain depends

on a ‘temperature’ T that is decreased according to a ‘cool-

ing schedule’ ϕ(ω) = π(ω)
1

Ti .

3.3. Designing Markov Chain Moves

When using RJMCMC to traverse the space of feasible

explanations, a different explanation is proposed at each

step along the Markov chain based on the current one. For

discrete search spaces, multiple types of moves are needed
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to traverse the search space [6]. We designed 4 move types

to traverse the search space (Figure 7). These connect or

disconnect a link, change one of the linked events or switch

two links. It should be noted that this is not the minimal

set of move types. A change move for example can be

constructed from a disconnect move followed by a connect

move. Disconnecting would decrease the posterior prob-

ability significantly, which makes it a less probable move

along the chain. Accordingly, change and switch move

types enable efficient search of the space and faster con-

vergence. Other complex changes can be constructed from

a sequence of these moves.

Figure 7. Four moves are proposed to link events, break links,

change linked events and switch linkages.

The Bicycles example uses the designed 4 move types

for each layer. In the initial explanation ω0, all people are

passing through and all detected clusters are noise. This is

a valid explanation, though unlikely to be the best. At each

step of the Markov chain, a move is applied to the current

explanation. Figure 8 shows a sequence of moves applied

successively. Each applied move creates a new feasible ex-

planationω′, and can changemultiple labels in the Bayesian

network. Moves of type ‘change drop’, for example, change

the states of two hidden RVs of type v: (dp → f, f → dp).

We now discuss how we propose a move at each step

of the Markov chain q(ω, ω′). RJMCMC splits proposing

a new explanation into two steps: choosing the move type

jm then choosing a specific move gm. Randomly choosing

a move type does not efficiently search the space of expla-

nations. We thus estimate the number of distinct moves of

each type that can be applied to the current explanation. For

example, the number of possible ‘disconnect’ moves in the

first layer equals the number of dropping and picking people

in the current explanation. These counts are used as weights

in choosing the move type. Weighting increases the accep-

tance rate ρaccept and speeds convergence as will be shown

in the experiments. The acceptance rate ρaccept is the ra-

tio of the number of accepted moves to the length of the

Markov chain.

Next, a specific move of that type is chosen and applied

to the current explanation. This ‘within-type’ choice can

also be performed uniformly at random. Alternatively, we

can design a customized ‘within-type’ proposal distribution

for each proposedmove type. These are application-specific

and depend on the expected ambiguities in the observations.

We use a distance measure for each move type that weights

the preference for choosing moves. For example, the ‘con-

nect’ move type in the first layer prefers connecting people

to bicycle clusters without alternative links. Assume B(xi)
yields the set of clusters that could be connected to person

xi, while T (yj) yields the set of people that could be con-

nected to cluster yj , then the distance measure for this move

type δconnect is defined in Equation 6.

δconnect(xi) =
∑

yj∈B(xi)

1

|T (yj)|
(6)

We do not explain the proposed distance measures for the

other move types due to space limitation. These are domain

specific and their choices do not affect the framework.

4. Experiments and Results

Three aspects of the framework are evaluated. We in-

vestigate the advantage of jointly recognizing and linking

events versus performing each task alone. We also com-

pare three search techniques for finding the MAP solu-

tion: MHT, MCMC and MCMC with the addition of simu-

lated annealing. Then, the MAP solution is compared with

ground-truth revealing the ability of the complete frame-

work to explain all observations. We first discuss how the

visual features were obtained and introduce the dataset.

4.1. Features and Dataset

In the Bicycles scenario two types of detections are iden-

tified from a CCTV cameramounted high above the ground:

people trajectories (x) and bicycle clusters (y). Trajec-

tories were retrieved by an off-the-shelf background sub-

traction tracker [10]. Changes to the bicycle rack before

the person approaches it and after departing are grouped

into connected components representing bicycle clusters.

Four observations and linking scores are required: p(x|ox),
p(y|oy), p(z|sz) and p(v|sv) (see Figure 6). Supervised

training is used to estimate Gaussian class conditional den-

sities for each likelihood.

p(x|ox) assesses whether the person is dropping, picking
or passing through by comparing the blob size before enter-

ing and after exiting the racks. An increase in the blob size

signifies a pick and vice versa. Noise or broken trajectories

will produce poor assessments.

p(y|oy) is measured by comparing the number of pixels

representing new and removed edges. Assuming the back-

ground is relatively free of edges, a significant increase in

edges within the changed pixels indicates a dropped bicy-

cle, and vice versa. The remaining clusters are expected to

be heterogeneous or noise clusters.

p(z|sz) assesses the linkage of a person to a bicycle clus-
ter by measuring the maximum degree of overlap between
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Figure 8. A sequence of {connect drop-pick→ connect drop→ change drop→ disconnect pick}moves was applied. The last move affects

both layers as disconnecting a pick cancels the drop-pick linked to that pick. The subscript next to the move type indicates the layer at

which the move is applied.

the bounding box of the cluster and the bounding boxes of

the foreground regions representing the person across the

whole trajectory.

The pixel matches between the dropped and picked clus-

ters is used to compute p(v|sv). It assumes bicycles do not

change their shape or position between being dropped and

picked. Figure 9 shows how these matches are established.

The ratio of the intersection of the two areas to the mini-

mum area is used to estimate Gaussian conditional densities

for correct and incorrect links. We use this new estimate of

the bicycle’s bounding box to refine p(z|sz).
The dataset consists of 7 sequences collected from two

sites (1-5: first site, 6-7: second site). Sequences 1-3 are

those used in our previous work [4]. Sequences 6-7 are

recorded by a CCTV camera outside a busy UK train sta-

tion, and are more challenging with a much greater level

of activity and uncertainty (Figure 10). The rack area was

manually delimited with a polygon. Table 1 summarizes

statistics of these sequences. Priors and conditional proba-

bilities were estimated from the first sequence and the cor-

responding hand-generated ground truth. These were kept

constant for all other sequences across both sites (Table 2).

Supervised training of the likelihoods was also performed

using the first sequence and fixed for all the sequences, as

all the features are designed to be scale and viewpoint inde-

pendent.

(a)

(d)

(b)

(e)

(c)

(f)

(g)

Figure 9. Two images of the racks (a) and (b) are compared to re-

veal changes (c) representing a dropped bicycle, and a noise cluster

due to lighting changes. Later, two consecutive reference images

(d) and (e) are also compared to reveal two picked bicycles (f). By

matching dropped (yellow) and picked (pink) clusters (g), white

pixels signify the match.

Figure 10. The two sites of the Bicycles dataset. Manually labeled

polygons delimit the rack area

Dataset Sequences

1 2 3 4 5 6 7
Duration 1h 1h 11h 12h 12h 15h 15h

|X| 58 27 128 126 137 112 197

|Y | 59 25 72 175 128 206 1847

|Drops| 24 11 20 20 14 28 39

|Picks| 20 12 19 20 13 17 41

|Drop-Picks| 20 11 18 20 13 14 22

avg(exp/x) 21.7 8.3 19.6 3.2 1.7 10.21 63.4

max(exp/x) 76 24 83 83 50 56 197

Table 1. Dataset statistics; |X|: number of detected people, |Y |:
number of detected bicycle clusters, exp/x: number of different

explanations involving each person, and gives a measure of the

dataset’s inherent ambiguity.

p(x = e1) = p(x = e2) = 0.495
p(x = e3) = 0.01
p(z = d|x = e1, y = g1) = 0.5
p(z = f |x = e1, y = g1) = 0.5
p(z = p|x = e2, y = g2) = 0.5
p(z = f |x = e2, y = g2) = 0.5
p(v = dp|z1 = d, z2 = p) = 0.4
p(v = dp|z1 = d, z2 = u) = 0.2
p(v = dp|z1 = p, z2 = u) = 0.05

Table 2. Estimated priors and conditional probabilities.

4.2. Results

The framework proposes a set of move types and

weighted choices of these move types to search the space.

We first compare convergence using the minimal set of

move types (connect and disconnect moves only) to that us-

ing the full set. For the 7 sequences, the mean of ρaccept,

over 100 Markov chains, increased by a factor of between

1.9 and 7.4 when incorporating the switch and change

moves. This is because both move types enable larger jumps

within the search space. Next, we compare weighted versus

uniform choice of moves. Figure 11 shows the performance

of one MCMC chain (3rd sequence) under different choices

of proposal distributions. ρaccept increases from 0.2 for uni-

formly selected move types to 0.4 for weighed choices, and
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Figure 11. Convergence under various uniform and weighted

move-type proposal distribution (jm) and ‘within-move’ proposal

distribution (gm) using MCMC.

convergence is significantly faster.

We compare MCMC alone with adding annealing using

both exponential and linear cooling schedules showing two

chains of each case (Figure 12). The temperature was re-

duced from 4 to 0.01 along all annealing chains.
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Figure 12. From the 4th sequence, two runs of standard MCMC,

two runs of exponential annealing and two runs of linear annealing

are compared. One linear annealing and one standard run achieved

the best performance.

Table 3 compares the negative log of the MAP solu-

tion across the different techniques for all the recorded se-

quences. Each run consists of 10 parallel and independent

chains (nmc = 5000), where the MAP solution is the max-

imum of the MAP solutions across chains. We ran each

40 times and recorded the mean and standard deviation of

the MAP. The table reveals that adding annealing enables

finding a higher or equal posterior (lower -log(p)) for all 7

sequences. Linear cooling was used for annealing. The ta-

ble shows the advantage of jointly sampling the space of

event recognition and linkage over performing each task

separately. The baseline greedy approach maximizes each

observation locally and then selects the best link based on

the linking scores iteratively, keeping the solution feasible,

until the posterior can no longer be increased.

The MAP solution is then compared to a manually ob-

tained partial ground truth. The ground truth labels each

person with the type of event accomplished, and records

drop-pick pairs. The accuracy is defined as the ratio of cor-

rectly labeled events to the overall number of tracked peo-

Greedy MHT MHT MCMC MCMCM-SA

k=50 k=500 µ σ µ σ

1 102.25 58.78 57.86 57.90 0.11 57.86 0.00

2 23.54 4.64 4.64 4.64 0.00 4.64 0.00

3 609.66 493.18 468.80 429.30 3.23 423.98 2.36

4 6272.69 6149.95 6144.30 6079.88 3.43 6078.40 3.23

5 5034.46 4998.39 4975.82 4943.71 3.59 4939.33 1.87

6 860.37 812.96 812.96 814.71 1.69 811.50 2.36

7 934.36 608.92 - 451.92 9.29 433.50 7.76

Table 3. − log(p) compared across greedy, MHT, 40 runs of

MCMC and 40 runs of MCMC with simulated annealing. The

result was not available for the last MHT search (k=500) due to

our implementation running out of memory.

ple. It was noticed that the MAP solution might not result in

the highest-possible accuracy. This could result from an in-

correct modeling of the posterior and the priors, or noise in

the features selected. Table 4 compares the accuracy values

for the MAP solutions presented in Table 3. It is expected

that the accuracies for sequences (6-7) are lower due to the

increase in clutter. The 7th sequence suffers from frequent

abrupt lighting changes that result in bicycle clusters being

poorly detected. Figure 13 gives some examples of recog-

nized and linked drop and pick events across the dataset.

Greedy MHT MHT MCMC MCMC-SA

k=50 k=500 µ σ µ σ

1 72.41 91.38 91.38 88.36 1.09 87.46 1.79

2 85.19 100.00 100.00 100.00 0.00 100.00 0.00

3 58.59 84.38 84.38 87.68 0.89 83.36 1.65

4 73.81 74.60 75.40 83.93 1.09 83.15 1.31

5 89.05 82.48 88.32 91.90 0.79 92.65 0.90

6 66.07 60.71 60.71 68.53 1.68 70.98 1.04

7 45.69 44.67 - 47.28 1.18 47.61 0.88

Table 4. The accuracy results (%) for the MAP solutions.

Even though all the results presented above utilize the

data in a batch mode, an online version of the solution has

been developed. This runs a shorter chain at the end of each

activity unit, and finds the best explanation for all the ob-

servations up to the current time stamp. The MAP solution

initializes the Markov chain for the next activity unit.

5. Conclusion and Future Work

This paper proposes a novel framework for jointly

recognizing and linking visually ambiguous events. The

approach combines observations along with linkage and

global constraints in one probabilistic graphical model. We

propose a set of reversible moves to traverse the search

space using RJMCMC. Adding annealing and weighted

proposal distributions assists in finding the MAP solution.

The framework can in principle be extended to multiple

layers of linkage. We have evaluated the approach on

the Bicycles problem for a challenging dataset. The same

approach could be applied to other domains for linking

relates events with a wide temporal gap. We are currently

evaluating the method to recognize and link people entering
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Figure 13. Five examples of connected events. The first four are correctly connected. The fourth column represents a simulated theft. The

fifth example shows an incorrect connection. Recall that no clothing color comparison is performed. Individuals are connected by linking

the person to a cluster and correctly linking dropped to picked bicycle clusters.

a building to those departing.
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