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Abstract

In this paper we exploit normalized mutual informa-

tion for the nonrigid registration of multimodal images.

Rather than assuming that image statistics are spatially

stationary, as often done in traditional information-

theoretic methods, we take into account the spatial vari-

ability through a weighted combination of global nor-

malized mutual information and local matching statis-

tics. Spatial relationships are incorporated into the reg-

istration criterion by adaptively adjusting the weight ac-

cording to the strength of local cues. With a continuous

representation of images and Parzen window estimators,

we have developed closed-form expressions of the first-

order variation with respect to any general, nonpara-

metric, infinite-dimensional deformation of the image

domain. To characterize the performance of the pro-

posed approach, synthetic phantoms, simulated MRIs,

and clinical data are used in a validation study. The

results suggest that the augmented normalized mutual

information provides substantial improvements in terms

of registration accuracy and robustness.

1. Introduction

Exploratory medical studies are most informative

when they probe tissues and organs with different

modalities, each providing complementary anatomical

or physiological information. Before any integrated

analysis can be applied, imaging data generated by each

modality must be related to a common reference, which

poses a challenge to current image registration algo-

rithms. Multimodal registration has been the subject of

a considerable amount of research, since the pioneering

work of Maes et al. [6] and Viola et al. [26], among oth-

ers [18]. The idea is not to compare image intensities di-

rectly, but instead to compare their distributional proper-

ties. Because such distributions are estimated from pixel

samples collected in image domains, the joint statistics

between two deformed images are extremely sensitive to

their region of overlap. This has been recognized in the

past, and various methods have been proposed to address

the problem, including normalized mutual information

[25], entropy correlation coefficients [10], etc.

On the other hand, one could forgo intensity statistics

altogether, and instead look at the spatial relationships

between points in the image domain that are selected us-

ing some extremal mechanism [2, 4, 13], also known as

a “feature detector.” The simplest methods assume that

images are affinely or projectively deformed versions of

a common template. This is not general enough to cap-

ture the subtleties of inter-subject anatomical variations,

and one has to consider more general, nonparametric,

infinite-dimensional deformations.

While deformable registration based on intensity

statistics is now commonplace, only parametric, finite-

dimensional transformations have been considered in

normalized mutual information based registration, either

affine [11, 14, 25, 28] or splines [12, 14, 21, 28]. This

may be partly to blame on the fact that analytically com-

puting the gradient of normalized mutual information

with respect to free-form deformations is non-trivial.

In this paper we present1 the analytical expression of

the functional gradient of normalized mutual informa-

tion with respect to a general, nonparametric, infinite-

dimensional deformation, and illustrate its application

in nonrigid multimodal registration. We demonstrate

the performance of an ensuing registration algorithm on

synthetic, simulated, and clinical images.

1Two of the work related to our research are proposed by

D’Agostino [7] and Hermosillo et al. [8]. The authors derived the

analytical expression of the mutual information gradient in continu-

ous case. However, in their formulation the variation of the region

of overlap is not counted and therefore the derivative is only a first-

order approximation. Moreover, it only considers mutual information,

but not normalized mutual information. Contrarily, we calculated the

correct derivative of the gradient of normalized mutual information.
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More importantly, we address another shortcom-

ing of normalized mutual information and other

information-theoretical discrepancy measures for regis-

tration, by introducing spatial constraints in the match-

ing, via an adaptive weighting of local and global statis-

tics. Where the latter are sufficient to support registra-

tion, they are used to guide the local structure of the de-

formation field. Elsewhere, local statistics take over.

1.1. Relation to prior work

A number of extensions have been explored to in-

clude spatial information since the introduction of (nor-

malized) mutual information [18]. The simplest is

to consider local features, such as region labeling by

Studholme et al. [24], local gradients by Pluim et al.

[17], or shape information by Yi and Soatto [29]. An

alternative strategy is to consider neighboring pixels in-

stead of a single pixel in the formulation of informa-

tion theoretical measures, such as Jumarie entropy by

Rodriguez and Loew [19], second-order mutual infor-

mation by Rueckert et al. [20], and region mutual in-

formation by Russakoff et al. [22] and Bardera et al.

[1]. Improved robustness has been reported for the aug-

mented measures over standard ones. Despite the gen-

eral promising results, the aforementioned approaches

are still based on the assumption of spatial stationar-

ity; they assume that the intensity distribution in the

given images are spatially invariant; therefore, the same

global statistics, computed on the entire image domain,

are used to guide the registration process. This is often

an unrealistic assumption in medical images.

In this paper, we seek a different approach to incor-

porate spatial information by examining the spatial vari-

ability of local statistics in both images jointly. Com-

puted within a neighborhood of corresponding pixels,

local statistics are specific for each pixel pair. They en-

code the neighborhood information and are useful cues

for registration. However, previous efforts to exploit lo-

cal statistics [8, 9, 23, 27] have shown some drawbacks:

Local statistics are not effective beyond a pre-selected

scale, and thus the registration process is likely to be

trapped in local minima. Also, local statistics are of-

ten estimated from a small sample size, and therefore

more sensitive to noise and outliers. We propose to in-

corporate spatial information by a weighted combina-

tion of the global matching functional on the whole do-

main, and of the local statistics around individual pixels.

Registration is then performed by densely blending the

normalized mutual information of local neighborhoods

with that of the global images, according to how strong

local cues are in that neighborhood.

In Sect. 2, under the general framework of

information-theoretical image registration, we justify

the need to combine global and local statistics for multi-

modality registration (§2.1), which leads to the formula-

tion of weighted normalized mutual information (§2.2).

A probabilistic interpretation of our approach is also

provided (§2.3), followed by the mathematical deriva-

tion of its first order variation (§2.4). Then we test the

proposed model on various data sets (see Sect. 3) in-

cluding synthetic phantoms (§3.1) and simulated MRIs

(§3.2) with known transformations, as well as clinical

images (§3.3) with unknown deformations.

2. Methodology

Each (normalized) image I : D 7→ [0, 1] is associ-

ated with a probabilistic model by introducing a loca-

tion random variable X , which is uniformly distributed

in D, and its related intensity random variable I(X).
Given two images, a template I1 : D1 7→ [0, 1] and a

target I2 : D2 7→ [0, 1], a deformation is represented by

a mapping w : D2 7→ D1 which belongs to a Hilbert

space. The joint intensity distribution of I1(w(X)) and

I2(X) in the overlap region V = D2 ∩w−1(D1) can be

estimated from the pixel samples using a Parzen window

p(i1, i2; w) =
1

|V |

∫

V

Gσ(i1 − I1(w(x)), i2 − I2(x)) dx,

(1)

where Gσ denotes the isotropic Gaussian kernel with a

standard deviation of σ. Commonly used information-

theoretical discrepancy measures include the joint en-

tropy H, mutual information (MI) M, normalized mu-

tual information (NMI) N , etc.

H(I1, I2; w) = −

∫∫

p(i1, i2; w) log p(i1, i2; w) di1di2,

M(I1, I2; w) = H(I1; w) + H(I2; w) −H(I1, I2; w),

N (I1, I2; w) =
H(I1; w) + H(I2; w)

H(I1, I2; w)
.

(2)

To register I1◦w with I2, H is to be minimized, while

M and N are to be maximized. It has been pointed out

[18, 24] that NMI is less sensitive than MI to changes in

the region of overlap. So in this paper we choose NMI as

the candidate discrepancy measure. For simplicity, we

drop I1, I2 in all formulae and use a subscript to denote

marginal entropies. For example,H(w)
.
= H(I1, I2; w),

while H1(w)
.
= H(I1; w).

2.1. Global vs. Local Statistics

Global statistics are computed in the region where the

target and the deforming template images overlap. They
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change during registration, and thus can be used to esti-

mate current transformations. However, global statistics

only characterize the general trend (image level) of in-

tensity dependence, therefore are unaware of the spatial

variability (patch level) of overlap statistics. For the very

reason, we need also to look at local statistics.

Local statistics are calculated in the same way as

global ones, except that the region of overlap is reduced

to a local window centered at each pixel. Global statis-

tics are coarse but robust, whereas local statistics encode

the structure of the distribution on a finer granularization

of the domain. We illustrate the power of local statis-

tics through a registration example. Shown in Fig. 1

are aligned synthetic phantoms (similar to those used

in [13]) where both images contain an elliptical region.

We examine the changes of global NMI and mean lo-

cal NMI with respect to horizontal translations. It can

be seen clearly that global NMI is useless for registering

the given images, while mean local NMI shows a clear

peak corresponding to the ground truth registration.
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Figure 1. Comparison between global and local Statistics:

(left) aligned synthetic phantoms, (middle-right) changes of

global and mean local NMI with horizontal translations. No-

tice that the global NMI keeps decreasing when the given im-

ages are brought into alignment, while mean local NMI has a

unique peak corresponding to the correct registration.

As we have already pointed out, local statistics have

their own drawbacks: They are aggregated on regions

of a certain scale, and therefore they are not affected

by deformations at different scales, making the result-

ing registration algorithm more sensitive to local min-

ima. Therefore, we propose to combine global and local

statistics, instead of employing only one or the other.

2.2. Weighted NMI

To integrate local cues into a global discrepancy cri-

terion, we employ a simple weighting scheme. Let Ng

denote the global NMI, Nl(x) denote the local NMI as-

sociated with pixel x, then the weighted NMI is defined

as

N+ =
1

|V |

∫

V

(1 − α)Ng + αNl(x) dx, (3)

where the parameter α ∈ [0, 1] trades off local and

global NMI. The extreme cases α = 0, 1, correspond

to global and local NMI respectively.

The choice of α is a matter of modeling, and there is

no right or wrong answer; it should depend on the spatial

variability of overlap statistics. Instead of assuming α to

be a constant, we spatially adjust it according to how

strong local cues are present in both images. Since NMI

by definition is bounded between 1 and 2, local NMI

can be adapted to be the weight, i.e., α(x) = Nl(x)− 1.

Thus, (3) becomes

N+ =
1

|V |

∫

V

(2 −Nl(x))Ng + (Nl(x) − 1)Nl(x) dx.

(4)

Note that not only Ng, but also Nl(x) are functionals of

the deformation w. If during registration the change in

V can be neglected, the variation of N+ equals

δN+

δw
= (2 −Nl(x))

δNg

δw
+ (2Nl(x) − 1 −Ng)

δNl(x)

δw
.

(5)

The idea underlying this model is that, when local statis-

tics provide strong cues for matching the neighborhood

of a pixel, say x, i.e., when Nl(x) is close to 2, we use

them to drive the registration around x. On the other

hand, when local statistics are weak, i.e., Nl(x) is close

to 1, global statistics are employed as an alternative reg-

istration criterion. By adaptively adjusting the weight-

ing spatially, we are able to accommodate large spatial

variations of overlap statistics.

2.3. Probabilistic Interpretation

In formal terms, our goal can be stated as maximizing

the posterior distribution of the diffeomorphic warping,

that is
ŵ

.
= arg sup

w

log p(w|I1, I2)

= arg sup
w

log p(I1, I2|w)p(w).
(6)

The second term, log p(w), can be easily recognized

as the generic regularization R(w), in our model the

fluid regularizer [3, 7]. So we concentrate on the log-

likelihood term log p(I1, I2|w). This can be obtained via

p(I1, I2|w) = p(I1|I2, w)p(I2). To this end, the models

proposed by [15] could be employed, so what we need

to compute is p(I1|I2, w). Again in purely formal terms,

we could represent the probability of matching given im-

ages using local statistics as P (L); then what we wish

to compute becomes

p(I1|I2, w) =

p(I1|I2, w,L)P (L) + p(I1|I2, w, 6 L)(1 − P (L)).
(7)

Now, this is just formal notation. The difficulty comes in

when we try to write explicitly the probabilities above,

because the condition L (indicating that local statistics
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should be used to guide registration) is specific to each

pixel x. We have to specify the spatial statistics of

the image, which would lead to an inference problem

where all possible combinations of states are possible

and time-consuming Monte Carlo methods become nec-

essary rather than simple local descent algorithms.

So, instead of attempting to compute the above like-

lihood, we will approximate it by assuming that all pix-

els are independent, and computing an average (expec-

tation) over pixels of the probability

p(I1|I2, w) =
∏

x∈D2

p(I1(w(x))|I2(x), w(x))

∝
∏

x∈D2:L

e
Nl(I1(w(x)),I2(x))

∏

x∈D2: 6L

e
Ng(I1(w(x)),I2(x))

,

(8)

which, modulo technicalities, should converge to (3).

2.4. Variation of NMI

There is still one question remaining, i.e., how to

calculate
δNg

δw
, δNl

δw
in (5). To the best of our knowl-

edge, the use of NMI has been limited to parametric,

finite-dimensional transformations [11, 12, 14, 21, 25],

while the variation of NMI w.r.t. a general, nonpara-

metric, infinite-dimensional deformation has never been

reported before. To derive it, we follow similar steps to

the calculation of the gradient of MI in [7, 8], and obtain

the Gateaux derivative

∂N (w + ǫu)

∂ǫ

∣

∣

∣

∣

ǫ=0

=
1

H(w)

∫∫

∂p(i1, i2; w + ǫu)

∂ǫ

∣

∣

∣

∣

ǫ=0

· L(i1, i2; w) di1di2

(9)

where L(w) = log p(i1,i2;w)N(w)

p(i1;w)p(i2;w) , and p(i1; w), p(i2; w)

are the marginal intensity distributions. The expansion

of the first term of the integrand in (9) will require a

level set representation [16] for the region of overlap.

Interested readers may refer to the appendix for details.

Here we only present the final formula

∂N (w + ǫu)

∂ǫ

∣

∣

∣

∣

ǫ=0

=
1

|V |H(w)

∫

D2

{ [

∂Gσ

∂i1
∗ L

]

(I1(w(x)), I2(x)) · ∇I1(w(x))·

· (1 − H(φ1(w(x)))) − [Gσ ∗ L] (I1(w(x)), I2(x))·

· ∇φ1(w(x)) · δ(φ1(w(x)))

}

· u(x) dx.

(10)

There are two terms in the above derivation. The first

one reflects changes in the joint intensity statistics, while

the other is caused by changes in the overlapping do-

main. The variation of N w.r.t. w thus becomes

δN (w)

δw

=
1

|V |H(w)

{ [

∂Gσ

∂i1
∗ L

]

(I1(w(x)), I2(x))∇I1(w(x))·

· (1 − H(φ1(w(x)))) − [Gσ ∗ L] (I1(w(x)), I2(x))·

· ∇φ1(w(x)) · δ(φ1(w(x)))

}

.

(11)

3. Results

In this section, three sets of experiments are car-

ried out. First, synthetic phantoms are shown where

global NMI fails to yield successful registration, while

weighted NMI does. This illustrates the advantage of

our approach to accommodate large spatial variations in

joint intensity statistics. Then we apply our approach

to simulated MR images of human brains where ground

truth transformations are available. A comparison is

conducted to assess the accuracy and robustness of our

approach relative to standard ones. Finally, we present

a real world application on multimodality registration of

MR and gene expression mouse brain images.

3.1. Synthetic Phantoms

The synthetic phantoms are similar to Fig. 1 except

that the top and bottom of the ellipse are non-rigidly

deformed to straight edges. As shown in Fig. 2, the

weighted NMI correctly exploits the local cues near the

edge, therefore can successfully capture the stage of

alignment, while the global NMI is adversely affected

by the strong intensity gradation in the target image and

leads to a spurious registration. Though weighted NMI

outperforms global NMI in this case, we should also

point out that the rightmost part of the ellipse cannot be

matched perfectly. This is expected due to the lack of

local cues in this region.

3.2. Simulated MRIs

We validate the accuracy of our approach on sim-

ulated MR brain images, obtained from the BrainWeb

MR simulator [5] with slice thickness 1mm, noise level

3% , and intensity non-uniformity 20%. Triplets of pre-

registered T1/T2/PD images are selected, where we ar-

tificially deform all T1 images according to randomly

generated transformations w∗. To ensure regularity, w∗

is smoothed by a Gaussian kernel with standard devia-

tion σ = 16, followed by a normalization step to set the

maximal displacement to 6 pixels. Fig. 3 shows repre-

sentative cases prepared for validation.
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Figure 2. Comparison between global (top) and weighted (bot-

tom) NMI on synthetic phantoms. The left column shows the

images of template and target, while the other columns present

the results of deformed templates (middle-left), deformation

fields (middle-right), and NMI values (right), respectively.

Figure 3. Representative cases prepared for validation. Each

row from left to right corresponds to preregistered T2/PD im-

ages (templates), artificially deformed T1 images (targets), and

the ground truth transformations, respectively.

Registration is then performed by choosing T2/PD

images to be the templates, and the deformed T1 im-

ages to be the targets. The recovered deformations ŵ are

compared with the ground truth transformations w∗ by

the root mean squared (RMS) error within the brain re-

gion. We test the global, local, and weighted NMI on 11

triplets and obtain the following table (Tab. 1). It is clear

that our approach quantitatively achieves more accurate

(i.e., mean RMS error smaller) and robust (i.e., small

RMS error in most cases) registration than the standard

ones. Note that for T2-T1 registration, the improvement

(up to 1.2 pixels) is naturally smaller than that of PD-T1

registration (up to 1.6 pixels) since there is less spatial

variability of overlap statistics.

Case
T2-T1 PD-T1

GNMI LNMI WNMI GNMI LNMI WNMI

01 1.107 0.888 0.657 1.686 1.016 0.819

02 0.946 0.705 0.590 2.273 0.762 0.673

03 1.080 0.833 0.868 2.063 1.043 1.013

04 1.108 1.368 0.875 1.629 1.214 0.924

05 0.920 0.843 0.649 0.897 0.873 0.799

06 0.886 0.722 0.648 0.914 1.113 0.730

07 0.945 0.818 0.745 0.900 1.159 0.777

08 0.632 0.539 0.470 0.907 0.575 0.576

09 0.844 0.816 0.735 1.098 0.674 0.665

10 1.275 1.203 1.006 2.473 1.127 1.051

11 1.898 0.799 0.725 2.393 0.791 0.931

Mean 1.058 0.867 0.724 1.567 0.941 0.814

Table 1. RMS error in pixels between ground truth and recov-

ered deformations within the brain region. 11 triplets are se-

lected on which two types of multimodal registration are con-

ducted. In almost all cases, weighted NMI yields a lower RMS

error than both global and local NMI.

Level
T2-T1 PD-T1

GNMI LNMI WNMI GNMI LNMI WNMI

0% 0.970 0.900 0.700 1.217 0.966 0.730

20% 1.058 0.866 0.724 1.567 0.936 0.814

40% 1.234 0.881 0.788 2.356 0.988 0.972

Table 2. Improvement of average RMS error at different non-

uniformity levels. As the non-uniformity level increases, the

improvement over global NMI also gets bigger. Local NMI

generally behaves better than global NMI in the presence of

non-uniformity, however, it is still worse than our approach

especially when there is low non-uniformity.

A registration example (case 04 PD-T1) is presented

in Fig. 4 to illustrate the quality of our approach. We

apply the recovered deformation, whose magnitude is

visualized in fake colors, to the original T1 image. Then

this deformed copy is subtracted from the given T1 tar-

get to obtain a final estimate of the difference after regis-

tration, also visualized in fake colors. As it can be seen,

we achieve a difference image exhibiting less structure

as well as a displacement map closer to the ground truth

transformation by using weighted NMI, which suggests

a qualitative improvement over both global and local

NMIs.

To further demonstrate the performance of our ap-

proach, we test it on the same data with different non-

uniformity levels 0%, 40%, and obtain the average RMS

error in Tab. 2. Since our approach is motivated to ac-

commodate large spatial variations of overlap statistics,

the improvement of the average RMS error over global

2204



 

 

0

1

2

3

4

5

6

7

 

 

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

 

 

0

1

2

3

4

5

6

7

Figure 4. Comparison between global (left), local (middle),

and weighted (right) NMI on simulated MRIs. The top row

corresponds to images of template, target, and ground truth

displacement magnitude, while the other rows present the re-

sults of deformed templates (middle-top), difference images

(middle-bottom), and displacement magnitudes (bottom), re-

spectively. Both difference images and displacement mag-

nitudes are visualized in fake colors, with green/blue-red

representing small/large difference and blue/red representing

small/large displacement.

NMI increases with the level of non-uniformity. Local

NMI generally behaves better than global NMI in the

presence of non-uniformity, however, it is still worse

than our approach especially when there is low non-

uniformity. Moreover, local NMI is not robust and may

fail in some cases (see case 04 T2-T1 and case 07 PD-T1

in Tab. 1 for example).

3.3. Clinical Data

We also apply our approach to clinical data where

anatomical MR and gene expression mouse brain im-

ages need to be registered. The results are shown in

Fig. 5, together with those obtained by a standard ap-

proach. Since the input images are obtained indepen-

dently of each other, ground truth transformations are

not known. Therefore, we propose to validate the ac-

curacy of registration in three ways: visual observation,

landmark tracking, and Jacobian calculation.

 

 

0.5

1

1.5

2

2.5

3

Figure 5. Comparison between global (left) and weighted

(right) NMI on clinical data. The top row corresponds to im-

ages of MR template and gene expression target, while the

other rows present the results obtained by each registration,

including deformed templates (middle-top), deformation fields

(middle-bottom), and Jacobian maps (bottom). For better vi-

sualization, we delineate the underlying anatomies in each im-

age by green masks. The manually placed point landmarks are

marked by ⋆, while the forward-traced ones are marked by ◦
for global NMI and ⋄ for weighted NMI. The Jacobian maps

are visualized in fake colors, with red representing values close

to zero (singular), and yellow-green close to one (regular).

By visually inspecting the deformed template images
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(especially within the superimposed green masks), we

can see that there are some undesired distortions by us-

ing the global NMI as a registration criterion. How-

ever, these artifacts are diminished if we switch to the

weighted NMI criterion. To further examine the qual-

ity of both approaches, several corresponding pairs of

point landmarks are manually placed on the template

and target images according to photometrically or geo-

metrically strong cues. Then we trace those on the target

image back to the template image by applying the recov-

ered deformations from registration. Distances between

the obtained landmarks and their desired locations are

calculated in pixels, with a RMS error of 6 pixels for our

approach compared to nearly 7 pixels for the standard

approach. More importantly, our approach achieves a

deformation field with much better quality (smoother

and more regular). This can been easily verified from the

color-represented Jacobian maps (yellow-green: close to

1, red: close to 0). While the Jacobian map obtained

by our approach (minimum 0.5, maximum 2.6) shows

mostly yellow or green, the standard approach (mini-

mum 0.2, maximum 3.5) yields a Jacobian map with

many red regions.

4. Conclusion

We have presented a derivation of the functional gra-

dient of normalized mutual information with respect to

any infinite-dimensional deformation. This has been

used to define a variational algorithm to perform multi-

modal image registration. Some of the fundamental

shortcomings of global and local mutual information as

a discrepancy measure for image registration have been

pointed out, and they have been addressed by introduc-

ing a model that weights local and global statistics in

normalized mutual information, allowing the local struc-

tures of the image, when present, to drive the registra-

tion, and the global statistics to take over elsewhere. We

have illustrated the performance of our approach both

quantitatively and qualitatively on synthetic phantoms

and simulated MRIs with ground truth transformations,

as well as on real clinical data of multimodal (anatomi-

cal MR and gene expression) mouse brain images with

unknown deformations.
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Appendix

In the following we derive the Gateaux derivative of the

joint intensity distribution p(i1, i2; w) with respect to a gen-

eral, nonparametric, infinite-dimensional deformation w. Re-

call the Parzen window estimator in (1) and let f(w) denote

the numerator, then

f(w) =

∫

D2

Gσ(i1 − I1(w(x)), i2 − I2(x))·

· (1 − H(φ1(w(x)))) dx.

(A-1)

Here H is the Heaviside function

H(x) =

{

1, if x ≥ 0
0, otherwise,

(A-2)

and φ1 is the signed distance function of boundary ∂D1

φ1(x) =

{

−miny∈∂D1 ||x − y||, if x ∈ D1

+ miny∈∂D1 ||x − y||, otherwise.
(A-3)

Similarly, let z(w) denote the denominator, we have

z(w) = |V | =

∫

D2

(1 − H(φ1(w(x))))dx. (A-4)

Now let w be perturbed by an infinitesimal amount in an arbi-

trary direction u, we have the Gateaux derivatives of f(w)

∂f(w + ǫu)

∂ǫ

∣

∣

∣

∣

ǫ=0

=

∫

D2

{

−

[

∂Gσ

∂i1

]

(i1 − I1(w(x)), i2 − I2(x)) · ∇I1(w(x))·

· (1 − H(φ1(w(x)))) − Gσ(i1 − I1(w(x)), i2 − I2(x))·

· ∇φ1(w(x)) · δ(φ1(w(x)))

}

· u(x) dx,

(A-5)

and z(w)

∂z(w + ǫu)

∂ǫ

∣

∣

∣

∣

ǫ=0

=

∫

D2

−∇φ1(w(x)) · δ(φ1(w(x))) · u(x) dx,

(A-6)

where δ(x) = H ′(x) is Dirac’s delta. Consequently, the

Gateaux derivative of p(i1, i2; w) has the following form

∂p(i1, i2; w + ǫu)

∂ǫ

∣

∣

∣

∣

ǫ=0

=
1

|V |

∫

D2

{

−

[

∂Gσ

∂i1

]

(i1 − I1(w(x)), i2 − I2(x)) · ∇I1(w(x))·

· (1 − H(φ1(w(x)))) −
(

Gσ(i1 − I1(w(x)), i2 − I2(x))−

− p(i1, i2; w)
)

· ∇φ1(w(x)) · δ(φ1(w(x)))

}

· u(x) dx.

(A-7)

If the variation of V can be neglected during registration (as in

[7]), the last two terms vanish and (A-7) thus reads

∂p(i1, i2; w + ǫu)

∂ǫ

∣

∣

∣

∣

ǫ=0

=
1

|V |

∫

V

{

−

[

∂Gσ

∂i1

]

(i1 − I1(w(x)), i2 − I2(x))·

· ∇I1(w(x))

}

· u(x) dx.

(A-8)
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