
HOP: Hierarchical Object Parsing

Iasonas Kokkinos
Laboratoire MAS, Ecole Centrale de Paris

Equipe GALEN, INRIA Saclay - Ile-de-France, Orsay

Alan Yuille
University of California at Los Angeles ∗

Abstract

In this paper we consider the problem of object parsing,
namely detecting an object and its components by compos-
ing them from image observations. Apart from object local-
ization, this involves the question of combining top-down
(model-based) with bottom-up (image-based) information.

We use an hierarchical object model, that recursively de-
composes an object into simple structures. Our first contri-
bution is the formulation of composition rules to build the
object structures, while addressing problems such as con-
tour fragmentation and missing parts. Our second contri-
bution is an efficient inference method for object parsing
that addresses the combinatorial complexity of the problem.
For this we exploit our hierarchical object representation to
efficiently compute a coarse solution to the problem, which
we then use to guide search at a finer level. This rules out a
large portion of futile compositions and allows us to parse
complex objects in heavily cluttered scenes.

1. Introduction

The problem we address in this work is to parse an ob-
ject in a scene, as shown in Fig. 1. By parsing we mean
detecting an object by composing all of its structures using
a sparse representation of the image. This is a most chal-
lenging task as the object structures can deform, some may
be missing, which combined with a cluttered background
providing numerous tokens leads to a combinatorial explo-
sion. However, by accurately parsing an object we can not
only localize it, but also track it or segment it, without solv-
ing each problem from scratch.

For this we use an hierarchical object representation, de-
scribed in Sec. 3 and shown in Fig. 1(a), which gradually
decomposes an elaborate object model into simpler image
structures. Specifically, objects are decomposed into parts,
which in turn break into contours, which in the end produce
straight edge segments (‘tokens’). The latter are extracted
by using the Pb edge detector [19] and line segmentation.

We phrase detection as finding an optimal sequence of
compositions that start from these edge tokens and lead
in the end to the whole object. This amounts to build-
ing a parse tree, as shown in Fig. 1(b). The leaves of

∗Work supported by NSF grants 0413214, 0613563, and 0736015.

Parts

Object

Contours

Tokens

(a) Hierarchical Representation (b) Parse Tree

(c) Image Tokens (d) Parsed Object

Figure 1: Object Parsing Task: Our goal is to compose objects
using image tokens based on an hierarchical object representation.
This amounts to building a parse tree, that indicates how image
tokens are related to object structures.

this tree (‘terminals’) are edge tokens, and the color-coded
nodes correspond to intermediate object structures; in get-
ting closer to the root more complex structures are formed,
involving more parts, while the root of the tree is the whole
object structure, shown in Fig. 1(d). In Sec. 4 we ex-
plain how we can go from the hierarchical representation
in Fig. 1(a) to the parse tree in Fig. 1(b)

There is a huge number of candidate parse trees, most
of which will have low likelihood under our probabilistic
model. In Sec. 6 we describe how we efficiently find those
few parse trees which have high likelihood.

Our first contribution is building efficient and flexible
composition rules that deal with problems such as contour
fragmentation and missing parts. Our second contribution
lies in controlling the combinatorial complexity of the prob-
lem, by using a parsing algorithm that exploits our object
representation. We propose a ‘structure coarsening’ oper-
ation that simplifies the composition of structures and re-
duces the problem to a simpler one, allowing us to perform
coarse-to-fine detection. This rules out a vast portion of the
solution space in a top-down manner and makes feasible the
computation of optimal parses for real images with heavy
clutter, where plain bottom-up detection can get trapped in

1

802978-1-4244-3991-1/09/$25.00 ©2009 IEEE

futile compositions.
2. Previous Work

Our work builds on the the hierarchical compositional
approach, e.g. [10, 14, 32, 2], which models complex struc-
tures by putting together simpler parts. Even though con-
ceptually appealing, how to best perform inference on hier-
archical models is not a solved problem.The authors of [14]
perform depth-first search with a restricted representation
involving discrete variables, and correct its results using a
variant of reranking. Regarding using continuous attributes,
as we do in this work, they mention it is ‘potentially un-
manageable in a Markov system’. In the work of S. C. Zhu
and coworkers [12, 28] proposals are generated from dis-
criminative models such as AdaBoost/Ransac in a bottom-
up manner and are then validated by object/scene models.
Instead, we use a single generative model to both suggest
object locations during coarse-level search and to validate
the detection results at a finer level, in the framework of an
integrated optimization algorithm. In more recent work [3]
a pruned version of dynamic programming is used to effi-
ciently detect objects at an initial stage and then refine them
in a top-down manner. The behavior of this method is hard
to predict, while we rely on A* which has guaranteed op-
timality properties; further we provide results on datasets
that are more challenging for localization, where the object
occupies a small portion (5-10%) of the image domain.

Coming to works that are more closely related to our
method at the technical level, in [5] inference with an hi-
erarchical model was presented, but limiting the object rep-
resentation to a single contour. In [23] the detection of ge-
ometric structures, such as salient open and convex curves
was formulated as a parsing problem. In our work we ex-
tend this approach to deal with high-level structures, i.e.
objects with many parts and of potentially different types,
while applying it in a Coarse-to-Fine manner instead of us-
ing Best-First-Search. The combinatorics of matching have
been studied for rigid objects [11], and [20] also used A∗for
detecting object instances, while in [16] branch-and-bound
is used for efficient detection with a bag-of-words model.

Finally, as in recent works for object detection [26, 22,
8, 31] and earlier ones on grouping [18, 11, 13], we use a
contour-based object representation. We argue that as con-
tours cover a larger portion of the object than interest points
[1, 6], they can be more easily used in conjunction with
other tasks, like tracking or segmentation.

3. Hierarchical Object Representation

We use a three-layered hierarchy for our model, as
shown in Fig. 1 for a car; at the highest layer we have the
whole ‘object’ structure that is decomposed into three parts
in the second layer. Each of these parts is then decomposed
into a set of contours in the first layer, which in turn gener-

ate edge tokens, lying at the ‘zeroth’ level.
The structures at each layer are described by their pose

vectors, p = (x, log σ, θ)T that contain information about
location- x, scale- σ and orientation- θ. These are random
variables, and the dependencies among structure and part
poses are modeled by probability distributions, whose pa-
rameters are automatically estimated, as described in 7.1.

For tractability we consider that the parts are indepen-
dent conditioned on their parent structure, so we have:

log Pr(pSr
|pr) =

∑
i∈Sr

log Pi,r(pi|r). (1)

Pr relates the pose pr of structure r to the poses pSr
of its

constituents Sr. Each Pi,r models the relative pose of part
i to that of structure r, given by:

pi|r = ([xi − xr]R(θr), log(σi) − log(σr), θi − θr)
T , (2)

where R(θr) is a rotation matrix. The location and scale
components of pi|r are modeled with Gaussians and orien-
tation with a von Mises distribution. At the lowest level we
compare the r-th model contour, having pose pr, with con-
tours formed by grouping subsets of tokens, TSr

. We use a
discrepancy measure among contours D(TSr

|pr) described
in Sec. 4, and consider P (TSr

|pr) ∝ exp(D(TSr
|pr)).

If we know the poses of the object structures at the three
levels of the hierarchy P1:3, and the token-to-contour asso-
ciations S1 at the first level, we can express the likelihood
of an image represented as a set of tokens T1:C as:

log P (T1:C |S1,P1:3) = log PO(pO) +
∑

p∈SO

log Pp,O(pp|O)︸ ︷︷ ︸
object→part

+
∑
p∈P

∑
c∈Sp

log Pc,p(pc|p)︸ ︷︷ ︸
part→contour

∑
c∈C

log P (TSc
|pc)︸ ︷︷ ︸

contour→tokens

+c(TB) (3)

where SO is the object’s support, i.e. its parts and Sp is the
support of part p, i.e. its contours. C is the set of model con-
tours and c(TB) =

∑
i∈B log PB(Ti) is the log likelihood of

the unexplained tokens under a background model.
This representation is essentially an hierarchical, tree-

structured graphical model: the relations among struc-
tures and parts define a tree-structured graph with pairwise
cliques among parents and children, and the observation po-
tentials at the lowest nodes are defined by the cost of match-
ing the model contours to image tokens. However, there are
two essential differences in our inference algorithm: First,
we use sparse information extracted from the bottom-up to
indicate node states with nontrivial likelihood. Inference in
graphical networks using Belief Propagation, e.g. [4] con-
siders all node states, most of which have almost zero like-
lihood. Second, the graph has an hierarchy. We exploit this
to quickly rule out unpromising solutions instead of propa-
gating information around all nodes in a flat graph. In the

803

2

1 3

1 1 1

1 0 10 1 1

0 0 1

0 0 0

1 0 00 1 0

1 1 0 1 1 0

0 1 0 1 0 0

0 0 0

0 0 1

0 1 1 1 0 1

1 1 1
Coarsen

0 1 0 1 0 0

0 0 0

0 0 1

1 1 1

Figure 2: Left: Hasse diagram showing for a 3-part structure: as a
structure acquires its constituents, it gradually climbs to the top of
the diagram. The binary vector inside the box indicates the parts
that have been found. Intuitively, we view each structure as having
bonds that gradually pick up parts. Right: Structure coarsening:
the problem of assembling a structure is simplified by considering
as completed any structure the contains a single part.

following two sections we describe how these tie in with
our compositional inference approach.

4. Bottom-Up Composition Mechanisms

Having formulated our model in a top-down fashion,
where we start from the object structure and decompose
it until generating image contours, we now invert this for-
mulation, and describe how we can compose the object in
a bottom-up manner.

4.1. Composition Rule Formulation

In order to detect objects in a compositional framework
on needs certain composition rules that are applied itera-
tively; for example, to assemble a ‘box’ structure one could
, as proposed in [32], use custom rules, e.g. grouping the
two pairs of parallel strokes and then joining them based
on perpendicularity, or combining corners. However this
requires new hand-crafted rules for new structures, e.g. an
hexagon, or learned structures, while one needs to devise
special rules for the case of missing parts.

Our approach addresses these problems by allowing each
structure to acquire its constituent parts, one at a time.
Consider building in this way a structure S having N con-
stituents S = (S1, . . . , SN). Initially we set Si = ∗, ∀i,
where ∗ is a special ‘dummy’, non-instantiated part. Grad-
ually building up the structures amounts to recursively ap-
plying binary compositions rules of the form:

(S, C) → S′, S′
i = C (4)

where C is the new constituent, attached to part i of S; the
rule is applicable only if Si = ∗, e.g. for i = 2 we would
have S = (S1, ∗, S3) and S′ = (S1, C, S3).

This way of composing structures introduces a partial
ordering � among them, with Si � Sj if Sj has all the
parts of Si; the ordering is partial as two structures are in-
comparable if e.g. each has a part that the other does not.
This ordering can be visualized with a Hasse diagram, as
shown in Fig. 2 for a 3-part structure. In this diagram boxes
correspond to structures, and when two structures are con-
nected the one lying higher has more elements than the one

below it. Gradually building up structures amounts to fol-
lowing a path in a Hasse diagram that starts from the mini-
mum element and gradually goes to its maximum.

Further, we introduce the idea of structure coarsening,
i.e. collapsing several of the nodes of the Hasse diagram
into a single one as shown e.g. in Fig. 2. This means that
we consider identical structures that have one, two or three
parts instantiated, as long as they have a part in common.
This reduces the number of distinct structures and helps us
simplify the parsing problem, as described later in Sec. 6.3.

4.2. Weighted Composition Rules

As our model is probabilistic, we can quantify how good
a structure is in terms of its composition cost, which is
equal to minus the log-likelihood of the observations gen-
erated from it. Further, as our model has a hierarchical tree
structure, we recursively estimate the composition cost of a
structure using only the costs of its constituents.

This is done with weighted composition rules, that relate
the costs of the precedents with that of the antecedent; each
binary composition rule is written as:

(S =w1), (C =w2) → (S′= w3), (5)

w3 =w1+w2+wr, wr = log P (pC |pS) + Cseal(C)

where S and C have composition costs, w1, w2 and S′ pays
an extra wr for binding the two structures. The first term
of wr, log P (pC |pS) is the log-likelihood of part C con-
ditioned on structure S, and comes naturally from Eq. 3.
Cseal(C) is a ‘sealing cost’ that implements our mechanism
for dealing with missing parts. Specifically, each struc-
ture C does not pay for non-instantiated parts until its gets
merged with a larger structure. At that point, all such parts
are declared missing, so C has to pay a penalty for these
missing constituents. For contours, as described in the next
section, we use the missing length penalty in Eq. 7, γLm,
and for complex structures we estimate the cost recursively.
In this way we can generate structures with missing parts,
which however come at a cost when the structures move
higher up in the hierarchy.

5. Integral Angles for Contour Matching

The interface between our model and the image is at its
first level, where model contours are associated with edge
tokens. A problem we need to address there is contour frag-
mentation: as shown in Fig. 3 an object contour like the arc
of the wheel can give rise to different image tokens. As we
do not want our model to account for all possible fragmen-
tations, we need an efficient way to reconcile tokens and
contours. For this we use a post-processing step that first
groups tokens into larger contours and then matches them to
the model. Once they are matched, they are used to generate
more complex structures, and eventually the whole object,

804

(a) (b) (c)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

X(s)

Y
(s

)

(d)

0 0.5 1

−1

0

1

Arc length, s

A
ng

le
,θ

(e)

Figure 3: Matching image tokens to model structures: the model
arc in (a) has to be matched to fragmented observations as in (b)
and (c). Using the angle-based representation of the contours in
(d), the fragmented lines (red/green) become piecewise constant
signals (e). This allows using ‘integral angles’ for efficiency.

as we describe in the next subsection. In this subsection we
address the technical problem of efficiently matching token
groupings to object contours. We do this using a variation
of the integral image technique.

As shown in Fig. 3 (e) we use an angle-based representa-
tion of contours [11], mapping the arclength s to the tangent
angle θ. The registration between a model contour θM and
an observed contour θO can be described in terms of three
parameters: rotation amounts to an additive constant c, scal-
ing is a dilation by a factor α and constant differences in the
arc-length argument are accounted for by shifting one of the
functions by τ . The matching quality is then expressed as:

EθO,θM
(α, τ, c) =

∫ L

s=0

[
θO(

s

α
+ τ) − θM (s) + c

]2

ds. (6)

A square norm is used to make the the distance between the
two functions efficiently computable; the optimal value of
c is obtained as the mean difference of the registered func-
tions, but α and τ are nonlinearly related to E.

This leaves exhaustive evaluation as the only choice, so
we need to speed up the computation of the integral in Eq. 6.
To do this we exploit working with piecewise constant con-
tours: If a contour is formed by linking N line tokens Tn,
each having length ln and orientation θn, the criterion used
for matching writes:

E(α, τ, c) =

N∑
n=1

∫ ln
α

s=0

[θn − θM (s + τn) + c]
2

+ γLm, (7)

where τn = τn−1 + ln−1+gn−1

α
. Above gn is the gap be-

tween tokens Tn−1, Tn, and τn is the model coordinate sys-
tem where the match with the n-th line segment begins, and
τ0 = τ . Lm = L −

∑
n

ln
α

is the length of model contour
that is not observed, due to gaps or because the image con-
tour is smaller than the model contour. We symmetrize this

cost to equally penalize larger contours. As θn is constant,
the integrals in Eq. 7 write:

(θn + c)2
ln

α
− 2[θn + c]

∫ ln
α

s=0

θM (s + τn) +

∫ ln
α

s=0

θ2
M(s + τn)

The only integral that remains involves the model angle
function θM and its square. We reduce the complexity of
computing these from O(L) to O(1) using the precomputed
‘integral angle’ functions ΘM (s) =

∫ s

0
θs as follows:

∫ ln
α

s=0

θM (s + τn) = ΘM (s + τn +
ln

α
) − ΘM (s + τn).

This allows brute force search within a range of values for
α, τ with a small computation cost, while using densely
sampled contour models - we use 100 points per contour.
We then use D(θTSr

, θMr
) = minα,τ,c EθTSr

,θMr
(α, τ, c)

as our data-fidelity term that links the model prediction to
the image observations, as mentioned earlier in Sec. 3.

We can thus have an object model with a few long con-
tours, while dealing with all possible contour fragmentation
scenarios. This combines the tractability of a continuous
contour model with the efficiency of working with a sparse
image representation.

6. Efficient Object Parsing

Having described our hierarchical object representation
and the composition rules used to assemble it, we now ad-
dress the efficient composition of the most likely object,
given a set of edge tokens extracted from the image. As
composing an object is a sequential task, we can prioritize
the order in which we explore compositions. One way to
do this is using a purely bottom-up method that starts from
the tokens and builds increasingly complex structures, until
in the end forming the whole object. A priority rule that
can be applied in this setting is to consider first structures
that have small composition cost, or high likelihood; this
strategy, amounts to Knuth’s Lightest Derivation (KLD) in
parsing [23]. A problem with this approach is that large
groupings are harder to form than small ones, since their
cost is the sum of more positive terms. Therefore, in clut-
tered scenes many intermediate structures are formed on
the background, perpetually postponing the construction of
more complex ones.

Intuitively, we would like to use our model to guide us in
a top-down manner to areas where there is complementary
evidence for an object structure. For example if we know
that we cannot find the mid- and back- parts of a car in an
image region, we should quit searching there for bottom-up
compositions of the front part.

This can be accomplished in a principled way using the
A∗algorithm [25]. As shown in Fig. 4, A∗prioritizes search

805

not only based on the cost of a path traveled so far, but also
on an estimate of the cost to get to the goal, called ‘heuris-
tic’. This keeps search focused towards the goal, by favor-
ing solutions that seem to be getting closer to it. In [23]
the A∗algorithm was generalized to the problem of hier-
archically computing lightest derivations (parsings). This
addresses the problem of composing a set of observations
to build a goal structure by using a set of weighted rules
that have minimal net cost. As in A∗search, the formed
structures are prioritized based on both the composition cost
and the remaining cost required to get to the goal statement.
This was demonstrated to deal with the enormous number
of possible curve and convex groupings formed by aggre-
gating local image features into longer structures.

In our case we use the ‘syntax’ of our object model and
consider building up objects having multiple parts, without
making special assumptions about the object structures. As
we show, applying A∗to our problem is feasible using the
composition mechanisms of Sec. 4 and the structure coars-
ening described in Sec. 6.3. We then extend this idea to
performing Coarse-to-Fine detection, thereby avoiding the
Best-First approach of A∗which may not be ideal for object
detection. In the next two subsections we describe how [23]
apply A∗to the general parsing problem and how it relates
to our problem, while in the last two subsections we further
elaborate on how we apply it to our problem.

6.1. A∗for parsing

During parsing we have a priority queue Q, where all
composed structures are stored and a set S of structures
which have been produced with the lowest possible cost.
Initially S is empty and Q contains the edge tokens ex-
tracted from the image.

At each step a structure is popped from Q, it is examined
if it is are already in S and discarded if so. Otherwise it
is put in S and all its potential combinations with elements
already in S are formed. These are inserted in Q, and wait
to be popped in turn, according to their priority. If we only
want the single optimal parse we stop when popping the
first ‘goal’ statement from Q, otherwise we stop when we
exceed a cost threshold.

Depending on the rule used to compute the priorities,
we have different search strategies. As mentioned, Knuth’s
Lightest Derivation (KLD) assigns priorities equal to the
production costs. Instead, A∗obtains the priority π(S) of
a structure S by adding to its production cost g(S) a heuris-
tic term h(S) that assesses the cost to get to the goal starting
from S, i.e. π(S) = g(S) + h(S). If h(S) is a lower bound
of the actual cost it is an admissible heuristic function, al-
lowing us to get to an optimal solution.

By using h(S) we rule out structures that have a small
production cost g but are far away from a goal. This fo-
cuses search in directions that can prove promising in the

Context(B)

A

B

Context(A)

Figure 4: Heuristics and parsing. Left: In search, A∗combines
the cost-so-far (dark line) with a heuristic (dashed line) that ap-
proximates the cost-to-go (green line). This helps direct search
towards the goal. Right: In parsing, heuristics can be computed
using contexts; the context of each structure consists of the set of
structures that are required to lead to the ‘goal’, object structure.

long run. To apply A∗to the parsing problem we need to
construct and estimate the heuristic h(S); this brings us to
contexts and abstractions.

6.2. Contexts and Abstractions

The context of a structure S, Con(S) provides us with
the means to construct a heuristic function. Loosely stated,
Con(S) is the complement of S, and tells S how much
more it has to pay to get the goal (Fig. 4). Formally, it is
an instantiation of other structures which, combined with
S, lead to a goal statement. So for a composition

(A1 = w1), (A2 = w2) → (goal = w3)

we can write (Con(A1) = w3 − w2) and (Con(A2) =
w3 − w1). Contexts are defined recursively for the inter-
mediate structures, starting from the highest-level contexts
and going down to contexts for terminals. Intuitively, with
reference to Fig. 4, this means that the context of A is what
A needs to get to B, plus what B needs to get to the goal.

Contexts are difficult to compute, too: if for a struc-
ture we know what else we need to get to the goal, this
means we have solved the parsing problem already. How-
ever, A∗requires only a lower bound of the cost of getting
to the goal. We can thus use problem abstractions: the ab-
straction of a problem is obtained by eliminating some of its
aspects that make it hard to solve, so that the computed so-
lution’s cost underestimates that of the actual solution. As
this can be done by relaxing problem constraints, it requires
no ‘hand crafted’ lower bounds.

So for parsing, if abs(S) is the mapping of a structure to
the abstracted problem domain, the cost of Con(abs(S)) is
used as a heuristic to determine the priority of S at the con-
crete level. That is, we solve the rest of the parsing problem
in a simplified setting, and use the estimated cost as a lower
bound of the actual ‘cost-to-go’. Composition rules of the
form of Eq. 5 are thus rewritten as:

(A1 = w1), (A2 = w2), (Con(abs(S)) = wc)
π(S)
→ (S = w3),

806

Engine Cabin Trunk Car Object

Coarse level detection

Fine level detection, using Coarse level guidance

Fine level detection, without guidance

Figure 5: Coarse-to-Fine vs. Fine-level Parsing: At the coarse level a small set of candidate object locations is quickly identified; these
are then used to guide search at the fine level, acting like top-down guidance. Instead, when doing Fine-level Parsing without guidance a
detailed parse of the object is attempted in futile directions (see text for details). Please see in color on screen.

where π(S) = w3 + wc, the priority of S, is deter-
mined by its composition cost w3 and the heuristic cost
wc = Con(abs(S)).

6.3. Heuristics via Structure Coarsenings
Having laid out the abstract setting for A∗parsing, we

now describe how we compute heuristics for our problem,
namely object parsing. For this, we use the structure coars-
ening described in Sec. 4.1 to compute heuristics.

As shown in Fig. 2, composing a structure amounts to
climbing to the top of a Hasse diagram, where each upward
move comes with a cost for the newly acquired part. Adding
up these costs along the path to the top gives the cost of syn-
thesizing the whole structure. We can thus lower bound this
cost by bounding from below the costs of certain arcs, e.g.
those lying above the first level. This is the idea behind
structure coarsening, which we discussed in 4.1. We con-
sider for example the composition of the object structure
‘O’; the cost of acquiring its part p, if that has zero cost on
its own, will equal:

− logP (pp|O) =
1

2

[
log((2π)n|Σ|) + [pp|O]T Σ−1[pp|O]

]
where P (pp|O) is the conditional probability of the pose of
part p given the pose of the structure. This quantity is the
cost of an arc in the Hasse diagram for that structure, and
can be lower bounded by 1

2
log((2π)n|Σ|). We thereby as-

sume that we will find a part p whose pose is identical to
that predicted by the object structure, i.e. pp|O = 0 and
has zero cost on its own. The cost of composing the object
structure in this simplified setting is thus a lower bound of
its actual cost; we can therefore use this cost as an admissi-
ble heuristic for A∗.

As this bound is too optimistic, we build a tighter one by
observing that since we have a prioritized search strategy,

we always pick first the part that has lowest cost, say C1. So
all other parts of the structure will have cost at least equal
to that of the first part. We can thus lower bound the cost of
the other constituents with max(1

2
log((2π)n|Σ|), C1).

Another option would be to replace minimum costs with
expected costs; This is known to significantly speed up
A∗but results in non-admissible heuristics, which can lead
fine-level search to suboptimal solutions [24]. As we do not
want to introduce uncontrolled problems in our evaluation
we leave this for future work.

6.4. Coarse-to-Fine Parsing
In order to apply the ideas described above to object de-

tection, we do not follow the Best-First approach described
so far. As we do not want the single best object, but may
want to have multiple detections, it is more natural to use
Coarse-to-Fine detection in a ‘parallel’ manner, instead of
the ‘serial’ Best-First approach. In specific, we use the
simplification of the parsing problem described above as a
coarse-level detection; for this we coarsen the part-contour
level of the hierarchy, and identify parts composed from
multiple contours. For an ‘engine’ structure this means it
can be composed from one contour, e.g. the wheel, and is
then considered to be complete.

This results in parts found in many image location, but
can be performed efficiently, as we do not form parts with
more than one contour, as seen by comparing the top and
bottom rows of Fig. 5. We use these coarse parts to build
object structures and finally generate ‘goal’ structures from
these objects, i.e. parse tree roots Fig. 1(b). When turning
objects into goals, we penalize missing parts as described
in 4.2. Even though at this stage any object part needs to
have only one contour, this still results in many poor object
structures falling below threshold.

807

Figure 6: Top Row: Adjacency graphs among edge (black) and
ridge (red) lines for cars and faces. The arcs of the graph are shown
in blue and their width indicates the affinity between the lines.
Bottom Row: Object parts found using spectral clustering of the
adjacency graphs.(Gray-level encodes part label)

The ‘goal’ structures that are above threshold then prop-
agate contexts to the fine level along the lines of the pre-
vious section, thereby focusing the detection to a few loca-
tions in the image where an object is likely to reside. At
the fine level a more detailed parsing is performed, leading
to a highly accurate detection of the object. Coarse-level
detection thereby focuses on the few image locations where
all object parts can be simultaneously present, and brings
‘top-down’ guidance into detection at the fine level.

Instead, as shown in the bottom row of Fig. 5 plain fine-
level detection is ‘short sighted’, and tries to form all parts
at full detail from the beginning, thereby wasting compu-
tational resources. This is evident from the large number
of individual parts formed on the background, which the
Coarse-to-Fine approach manages to avoid.

7. Application to Object Detection

We validate our method using the UIUC car [1], Caltech
face [6] and ETHZ apple and bottle [8] datasets.

7.1. Model Construction
For apples and bottles we use the provided object bound-

aries and manually determine their hierarchical structure.
For all of the parsed car images shown we use a hand-
crafted model, for ease of communication; for the bench-
mark results reported on cars and faces we use however au-
tomatically learned models. These are constructed using
the method briefly described below; we emphasize however
that the topic of this paper is efficient inference, while learn-
ing will be detailed in a longer version of this paper, and is
reported for completeness.

Initially, we extract a set of contours that frequently oc-
cur in the object category using the method of [15] to au-
tomatically establish correspondences from 50 unregistered
training images. Edge and ridge line segments are com-
puted from the registered feature maps using the grouping
method of [15], and as shown in Fig. 6 an adjacency graph is
formed based on the geometric configuration of these lines:

edge-to-edge and ridge-to-ridge connections are established
based on continuity, while an edge is connected to a ridge if
it is almost parallel and its distance is approximately equal
to the width of the ridge. Further, to favor making a single
part out of lines that move together we introduce weights
between each connected pair of lines based on their joint
deformation statistics.

We group these line segments using spectral clustering
[29], and after pruning small clusters, we obtain the ob-
ject parts shown in the bottom row of Fig. 6. Each of these
parts contains certain contours, whose parametric distribu-
tions are estimated afterwards from the established corre-
spondences. Other methods have been recently introduced
to combine boundaries, or segments of multiple images into
object parts [30, 9, 2], but we argue that our approach is sim-
pler, as parts emerge naturally from the interactions among
geometric primitives. The parameters in the cost function
are estimated in an EM-manner, by iteratively detecting ob-
jects in fore- and back-ground images from training set, and
then updating the cost parameters so as to minimize classi-
fication errors.

7.2. Detection Results
In the top rows of Fig. 7 we demonstrate parsing results

on images from [1]; there we observed that our algorithm
can deal with real images containing substantial clutter, typ-
ically containing 300-500 edge segments. There, simple
fine-level search can take around 7-10 seconds, while with
our coarse-to-fine detection we reduce this to less than 1
second; in particular coarse-level detection typically takes
around one tenth of a second. These measurements do not
include the average cost of boundary detection (10 sec-
onds), curve linking (3 seconds) and matching of contours
to object boundaries (3 seconds) which are common for
both methods; timings are in Matlab on a 1.8Gh PC.

In Fig. 7(a) we compare detection performance using
parses computed at the coarse and fine levels. At the fine
level performance improves but at the cost of longer com-
putation. The hierarchical parsing strategy can thus allow
us to choose among increasingly elaborate models, depend-
ing on the level of accuracy required. Further, we experi-
mented with learning how to combine the different terms in
Eq. 3, by learning different weights for each summand type
(part/contour/token). For this we train a sigmoidal classi-
fier using parses from fore- and back-ground images, which
yields another improvement in performance. In Fig. 7(b) we
compare our results to some classical works using sparse
image representations. Our system performs comparably
despite using no appearance information. Better results
have recently appeared in the literature, e.g. [9, 16], but we
note that we have not tuned our system for detection, since
our main concern has been to develop an efficient inference
algorithm.

In the middle three rows of Fig. 7 we show parsing re-

808

1

1

1
1

1
1

1

1

1

1 11
1

1

1
1

1
1

1
1
1

1 1

1
1
11

1
1
1

1

1
1
1 1

1

1
1
1

1

1

1

1

111

1

1

1

1

1

1

1

1

1 1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1
1

1

1

1

1

1
1 1

1

1

1

1

1

1

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Precision

R
ec

al
l

Detection Results on UIUC cars

Coarse Parsing
Fine Parsing
Learned Weights

0 0.25 0.5 0.75 1 1.25 1.5
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
Apples

False−positives per image

D
et

ec
tio

n
ra

te

CSN
Our method

0 0.25 0.5 0.75 1 1.25 1.5
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
Bottles

False−positives per image

D
et

ec
tio

n
ra

te

CSN
Our method

Figure 7: Top two rows: Parsing results on images from [1]. Next
three rows: Parsing results on apples and bottles from [8] and faces
from [6]. Thick lines are contours, thin lines are part-structure
connectors. Next row: Left: Precision-Recall curves on UIUC cars
using parsing at the coarser level, parsing at the fine level (all parts
considered) and the learned cost parameters. Right: Comparison
to the methods of [1, 6, 17], Bottom Row: comparison to [7].

sults on apples and bottles from [8] and faces from [6]. and
in Fig.s (c) and (d) we report quantitative results. Using
the same performance measures as in the references, for
faces we have an EER of 93.4, while for apples and bot-
tles we perform comparably to [8]. Overall, we observe
that our system can cope with multiple scales and missing
parts, while performing well for several of categories.

8. Conclusions

In this paper we develop a principled and efficient infer-
ence method for hierarchical object representations. Our re-

sults demonstrate the practical applicability of our approach
in real images containing substantial clutter, where a ten-
fold improvement in performance is attained.

In future work we intend to further explore how recent
works such as [27, 2, 9, 30, 21] for learning hierarchical
compositional models can be combined with our inference
approach.
References
[1] S. Agrawal and D. Roth. Learning a Sparse Representation for Object Detec-

tion. In ECCV, 2002.

[2] N. Ahuja and S. Todorovic. Learning the taxonomy and models of categories
present in arbitrary images. In ICCV, 2007.

[3] Y. Chen, L. Zhu, C. Lin, A. L. Yuille, and H. Zhang. Rapid inference on a novel
and/or graph for object detection, segmentation and parsing. In NIPS, 2007.

[4] P. Felzenszwalb and D. Huttenlocher. Pictorial Structures for Object Recogni-
tion. IJCV, 2005.

[5] P. Felzenszwalb and J. Schwartz. Hierarchical Matching of Deformable Shapes.
In CVPR, 2007.

[6] R. Fergus, P. Perona, and A. Zisserman. Object Class Recognition by Unsuper-
vised Scale-Invariant Learning. In CVPR, 2003.

[7] V. Ferrari, L. Fevrier, F. Jurie, and C. Schmid. Groups of adjacent contour
segments for object detection. Technical report, INRIA, 2006.

[8] V. Ferrari, T. Tuytelaars, and L. V. Gool. Object Detection by Contour Segment
Networks. In ECCV, 2006.

[9] S. Fidler and A. Leonardis. Towards Scalable Representations of Object Cate-
gories. In CVPR, 2006.

[10] K. S. Fu. Syntactic Pattern Recognition. Prentice-Hall, 1974.

[11] E. Grimson. Object Recognition by Computer. MIT Press, 1991.

[12] F. Han and S. C. Zhu. Bottom-Up/Top-Down Image Parsing by Attribute Graph
Grammar. In ICCV, 2005.

[13] D. Jacobs and M. Lindenbaum. Special Issue of Perceptual Organization in
Computer Vision. IEEE T. PAMI, 25(4), 2003.

[14] Y. Jin and S. Geman. Context and Hierarchy in a Probabilistic Image Model.
In CVPR, 2006.

[15] I. Kokkinos and A. Yuille. Unsupervised Learning of Object Deformation Mod-
els. In ICCV, 2007.

[16] C. H. Lampert, M. B.Blaschko, and T. Hofmann. Beyond sliding windows:
Object localization by efficient subwindow search. In CVPR, 2008.

[17] B. Leibe, A. Leonardis, and B. Schiele. Combined Object Categorization and
Segmentation with an Implicit Shape Model. In ECCV, 2004.

[18] D. Lowe. Perceptual Organization and Visual Recognition. Kluwer, 1984.

[19] D. Martin, C. Fowlkes, and J. Malik. Learning to Detect Natural Image Bound-
aries. IEEE T. PAMI, 26(5):530–549, 2004.

[20] P. Moreels, M. Maire, and P. Perona. Recognition by probabilistic hypothesis
construction. In ECCV, page 55, 2004.

[21] B. Ommer and J. M. Buhmann. Learning the Compositional Nature of Visual
Objects. In CVPR, 2007.

[22] A. Opelt, A. Pinz, and A. Zisserman. Boundary-fragment-model for object
detection. In CVPR, 2006.

[23] P. Felzenszwalb and A. McAllester. The generalized A∗ Architecture. Journal
of Artificial Intelligence Research, 2007.

[24] J. Pearl. Heuristics. Addison-Wesley, 1984.

[25] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall, 2003.

[26] J. Shotton, A. Blake, and R. Cipolla. Contour-based learning for object recog-
nition. In ICCV, 2005.

[27] A. Storkey and C. Williams. Image modelling with position-encoding dynamic
trees. IEEE T. PAMI, 25(7), 2003.

[28] Z. Tu, X. Chen, A. Yuille, and S. Zhu. Image Parsing: Unifying Segmentation,
Detection, and Recognition. IJCV, 63(2):113–140, 2005.

[29] L. Zelnik and P. Perona. Self-tuning spectral clustering. In NIPS, 2005.

[30] L. Zhu, C. Lin, H. Huang, Y. Chen, and A. Yuille. Unsupervised Structure
Learning: Hierarchical Recursive Composition, Suspicious Coincidence and
Competitive Exclusion. In ECCV, 2008.

[31] Q. Zhu, L. Wang, Y. Wu, and J. Shi. Contour Context Selection for Object
Detection: A Set-to-Set Contour Matching Approach. In ECCV, 2008.

[32] S. C. Zhu and D. Mumford. Quest for a Stochastic Grammar of Images. Foun-
dations and Trends in Comp. Gr. and Vis., 2007.

809

