
Continuous Ratio Optimization via Convex Relaxation
with Applications to Multiview 3D Reconstruction

Kalin Kolev and Daniel Cremers
Department of Computer Science

University of Bonn, Germany

Abstract

We introduce a convex relaxation framework to optimally
minimize continuous surface ratios. The key idea is to min-
imize the continuous surface ratio by solving a sequence
of convex optimization problems. We show that such min-
imal ratios are superior to traditionally used minimal sur-
face formulations in that they do not suffer from a shrinking
bias and no longer require the choice of a regularity param-
eter. The absence of a shrinking bias in the minimal ratio
model is proven analytically. Furthermore we demonstrate
that continuous ratio optimization can be applied to de-
rive a new algorithm for reconstructing three-dimensional
silhouette-consistent objects from multiple views. Experi-
mental results confirm that our approach allows to accu-
rately reconstruct deep concavities even without the speci-
fication of tuning parameters.

1. Introduction
Shape optimization is at the heart of fundamental Com-

puter Vision problems like image segmentation and mul-
tiview 3D reconstruction. Over the years minimal sur-
face formulations have become the established paradigm to
solve such problems, either in a discrete or in a spatially
continuous setting. Many of these models were originally
introduced in the context of image segmentation [11, 2]
and subsequently generalized to multiview 3D reconstruc-
tion where the reconstruction is computed by minimizing a
photoconsistency-weighted minimal surface [8]. More re-
cently, researchers have developed algorithms to globally
optimize respective energies for multiview reconstruction
in the discrete setting [20] and the continuous setting [13].

While minimal surface approaches were shown to pro-
vide good reconstructions and robustness to noise, they suf-
fer from two important shortcomings:

• Minimal surfaces are known to exhibit a shrinking
bias. In particular the global optimum of the mini-
mal surface energy is the empty set. The empty set
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Figure 1. Minimal surface vs. minimal ratio. While traditional
minimal surface models for multiview 3D reconstruction tend to
oversmooth protrusions and/or deep indentations, the minimal ra-
tio model is scale invariant and does not suffer from shrinking bias.
Therefore, concavities (e.g. at the legs) are accurately recovered.

can be suppressed by constraining optimization to the
vicinity of the visual hull [20], by introducing balloon-
ing or flux terms [19, 1], by reverting to region-based
terms using stereoscopic volume subdivision [9, 14],
or by imposing silhouette consistency [13]. Neverthe-
less, the shrinking bias prevails in the sense that inden-
tations and protrusions are energetically disfavored.

• The traditional variational approach of data term plus
regularity requires choosing an appropriate regularity
weight. As discussed in [17], this weight cannot be
chosen automatically as it defines the spatial scale at
which segmentations are to be computed. Formulated
differently, the traditional shape optimization approach
suffers from the fact that it is not scale invariant: For
a given object, the quality of reconstruction highly de-
pends on the spatial scale at which it is perceived. Con-
sequently one cannot assure good reconstruction per-
formance unless we know the scale of objects.

In this paper, we provide an exact mathematical char-
acterization of both the shrinking bias and the scale depen-
dency of traditional minimal surface approaches. Moreover,
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we introduce a method which allows to optimally compute
surfaces of minimal ratio in a spatially continuous setting.
It is based on solving a sequence of convex optimization
problems. In contrast to existing spatially discrete ratio op-
timization methods [10, 16], we derive a continuous coun-
terpart, which entails a series of advantages such as straight-
forward parallelizability, an absence of metrication errors
and substantially lower memory requirements [12].

We prove that the proposed minimal ratio solution does
not suffer from the above problems: Firstly, it does not
exhibit a shrinking bias and allows for better reconstruc-
tions of concavities and protrusions. In particular, we prove
that any disjoint surface with the same energy can be added
without affecting the overall energy costs. Secondly, the
minimal ratio formulation does not have any tuning pa-
rameters and is shown to be scale invariant. Based on
these observations, we developed a novel algorithm for re-
constructing silhouette-consistent surfaces of minimal ra-
tio from multiple views, based on photometric information.
Experimental results confirm that it allows for accurate re-
constructions that are independent of the geometric struc-
ture or the spatial scale of the object – see Figure 1.

The paper is organized as follows. In the next section, we
present some related work. Section 3 briefly reviews a re-
cent minimal surface formulation of multiview reconstruc-
tion [13]. In Section 4, we show how ratio optimization can
be carried out in a spatially continuous setting and discuss
the strengths of the model. Section 5 provides details on the
numerical implementation. In Section 6, we show experi-
mental results on real data sets. We conclude with a brief
summary.

2. Related Work
Ratio optimization goes back to the 1960’s [6], where

a generalization of the Newton’s method to fractional opti-
mization was proposed. However, the potential of this tech-
nique for solving computer vision problems was recognized
much later [4, 10]. Ratio minimization was successfully
applied for image segmentation [4, 10, 16] and multiview
3D reconstruction [16]. However, all of these approaches
were developed within a spatially discrete setting like min-
imum ratio cycles [10] or maxflow/mincut framework [16].
In contrast, the formulation proposed in this work is contin-
uous and relies on convex relaxation. It generalizes previ-
ous convex minimization techniques [3, 15] and shows their
applicability for ratio optimization. The continuous formu-
lation entails advantages like parallelizability and reduction
of metrication errors and memory requirements (see [12] for
a discussion). Moreover, it allows the integration of convex
constraints like silhouette consistency in the optimization
process [13]. Our approach shares similarities to the contin-
uous concave-convex procedure proposed in [21]. However,
a crucial difference is that the method of [21] is suboptimal

and generally does not give globally optimal solutions.
The concept of estimating stereoscopic regional terms

specifying surface interior/exterior, required by our model,
appeared in multiple previous works related to multiview
3D reconstruction [5, 9, 22, 14]. The key idea is to assign
regional costs to each point in space based on the location of
maximal photoconsistency along the viewing rays passing
through it. While the approaches in [5, 9, 22] rely on pre-
computed range images/disparity maps, the method of [14]
is entirely volumetric and does not depend on the resolution
of the input images. An alternative technique is to derive re-
gional terms determining the surface interior as divergence
of an estimated vectorfield, which specifies the shape ori-
entation [1]. However, estimating surface normals based
on multiview stereo is, in general, a challenging task, since
it is very sensitive to image noise and mismatches. In our
implementation, we used the approach of [14] due to its ef-
fectiveness and high accuracy.

3. Convex Integration of Silhouettes and Stereo
In this paragraph, we will briefly review the method of

Kolev and Cremers [13] to impose silhouette-consistency as
convex constraints.

Let V ⊂ R3 be a volume, which contains the scene of
interest, and I1, . . . , In : Ω → R3 a collection of calibrated
color images with perspective projections π1, . . . , πn. Let
S1, . . . , Sn ⊂ Ω be the observed projections of the 3D ob-
ject and ρ : V → [0, 1] be a photoconsistency map measur-
ing the discrepancy among various image projections. The
most photoconsistent shape, whose projection exactly coin-
cides with the observed silhouettes, can be obtained accord-
ing to the following minimal surface model:

E(S) =
∫

S

ρ(x) dS,

s. t. πi(S) = Si ∀ i = 1, . . . , n.

(1)

Representing the surface S implicitly by the characteristic
function u : V → {0, 1} of the surface interior Sint yields
the following equivalent formulation:

E(u) =
∫

V

ρ(x)|∇u(x)| d3x

s. t. u ∈ {0, 1}∫
Rij

u(x) dRij ≥ 1 if j ∈ Si∫
Rij

u(x) dRij = 0 if j /∈ Si,

(2)

where Rij denotes the visual ray through pixel j of image
i. One can observe that the energy functional in (2) is con-
vex, but it is optimized over a non-convex domain of binary
functions. Relaxing the binary condition to u ∈ [0, 1] yields
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a constrained convex optimization problem, for which the
global minimum can be obtained. A solution of the original
”binary” problem (2) is derived by a simple thresholding,
which corresponds to a projection of the computed mini-
mum.

While the above silhouette constraints suppress the
empty set to arise as the optimal solution, the minimal sur-
face formulation still suffers from scale dependency and
shrinking bias. To resolve these problems, we will now
develop a framework to compute silhouette-consistent sur-
faces of minimal ratio.

4. Ratio Optimization via Relaxation

Let us assume, that a vectorfield F : V → R3 is provided
representing an estimate of the inward orientation of the de-
sired shape. In Section 5 we will give more details on how
such information can be obtained from the input images.
With the notations introduced in Section 3, we consider the
following constrained ratio optimization problem:

E(S) =

∫
S

〈NS(x), F (x)〉 dS∫
S

ρ(x) dS

→ min

s. t. πi(S) = Si ∀ i = 1, . . . , n,

(3)

where NS(x) denotes the outward normal of surface S at
point x. Minimization of (3) gives a silhouette-consistent
shape, that optimally fulfills photoconsistency and normal
field alignment criteria. Since during minimization the
above energy functional becomes negative, optimal surfaces
aim at maximizing the numerator magnitude and minimiz-
ing the denominator.

4.1. Absence of a Shrinking Bias

The shrinking bias of minimum surface methods has
been extensively discussed in the literature. The follow-
ing proposition is a precise statement that ratio optimization
does not exhibit a shrinking bias.

Proposition 1. Let S, S′ ⊂ V be two arbitrary silhouette-
consistent surfaces with the same ratio energy: E(S) =
E(S′). Then adding the surface S′ to the surface S does
not affect the overall energy, i. e. E(S ∪ S′) = E(S).

Proof. For simplicity, we will denote the numerator and de-
nominator in (3) by N(S) :=

∫
S
〈NS(x), F (x)〉 dS and

D(S) :=
∫

S
ρ(x) dS.

From the condition E(S) = E(S′) we can derive

N(S′) =
D(S′)N(S)

D(S)

and hence

E(S ∪ S′) =
N(S) + N(S′)
D(S) + D(S′)

=
N(S) + D(S′)N(S)

D(S)

D(S) + D(S′)

=
N(S)
D(S)

= E(S).

The above claim states, that one can iteratively expand
a given surface by surface elements of the same ratio cost
without affecting the total energy. Similarly removing areas
of the same ratio cost does not decrease the energy, which
implies that the model has no shrinking bias. This is in con-
trast to the minimum surface model in (1), where the energy
would simply double (or halve) when adding (or removing)
same cost surface elements.

In the context of multiview 3D reconstruction, the ab-
sence of shrinking bias implies that the ratio optimization
does not have any inherent preference for a specific geome-
try. Hence, its accuracy does not depend on the presence of
protrusions or indentations on the recovered surface.

4.2. Scale Invariance

Now, we will give a precise specification of scale invari-
ance of the minimal ratio model (3), following observations
in [10].

Proposition 2. For any arbitrary surface estimate S and
scaled version S′ = γS with γ > 0, the ratio energy re-
mains unchanged, i. e. E(S) = E(S′), provided that the
data remains fixed:

F (x) = F (γx)
ρ(x) = ρ(γx).

Proof. Via change of variables, we obtain

E(S′) =

∫
S′
〈NS′(x), F (x)〉 dS′∫

S′
ρ(x) dS′

=
γ

∫
S

〈NS(x), F (x)〉 dS

γ

∫
S

ρ(x) dS

= E(S).

The above property of the model is particularly useful
when applying a multiresolution scheme. In that case, the
scale invariance guarantees that a correct solution is com-
puted at each resolution level without the cumbersome need
to adjust respective parameters.

1860



4.3. Continuous Optimization

While the above observations indicate that it is worth-
while studying minimal ratio formulations, the major com-
putational challenge is to actually solve the optimization
problem (3). In the following, we will propose an optimal
solution which is based on sequential convex optimization.

Using the divergence theorem, we can derive the follow-
ing equivalent formulation:

E(S) =

∫
Sint

divFd3x∫
S

ρ(x) dS

,

s. t. πi(S) = Si ∀ i = 1, . . . , n,

(4)

where Sint denotes the interior of S. Conversion to an im-
plicit representation u = 1Sint , where 1Sint denotes the
characteristic function of Sint, and relaxing the resulting
binary condition yields:

E(u) =

∫
V

divF · u(x) d3x∫
V

ρ(x)|∇u(x)| d3x

,

s. t. u ∈ [0, 1]∫
Rij

u(x) dRij ≥ 1 if j ∈ Si∫
Rij

u(x) dRij = 0 if j /∈ Si,

(5)

where Rij denotes again the visual ray through pixel j of
image i. The constrained ratio minimization problem in (5)
can be solved via the Dinkelbach’s method for fractional
optimization [6]. It consists of sequentially minimizing

G(u, λ) =
∫

V

divF · u(x) d3x− λ

∫
V

ρ(x)|∇u(x)| d3x,

s. t. u ∈ [0, 1]∫
Rij

u(x) dRij ≥ 1 if j ∈ Si∫
Rij

u(x) dRij = 0 if j /∈ Si

(6)

for different values of λ. Note that for a fixed parameter
λ (6) exhibits a classical constrained convex optimization
problem, i. e. a convex functional over a convex domain
[13]. Hence, for each subproblem the global minimum can
be computed efficiently.

In total, we have the following minimization procedure:

(0) Initialize: pick u arbitrary and set λ = E(u).

(1) Compute minimizer u∗ of G(., λ).

(2) Set u := u∗ and λ := E(u∗).

(3) If λ has decreased go to step (1), otherwise stop.

Now, we will prove the correctness of the algorithm.

Proposition 3. The above optimization procedure computes
a (global) minimum of (5).

Proof. As before, we denote N(u) =
∫

V
divF · u(x) d3x

and D(u) =
∫

V
ρ(x)|∇u(x)| d3x. Upon convergence,

the method gives a solution umin and a ratio λmin

such that λmin = E(umin). Convergence implies that
G(umin, λmin) = 0 and umin = arg minG(u, λmin).
From these two statements it follows

0 = N(umin)− λminD(umin) ≤ N(u)− λminD(u)

for all u that fulfill the constraints in (5). Hence, we obtain

λmin ≤ N(u)
D(u)

= E(u)

for all feasible functions u, thus λmin is the optimal ratio.

So far, we have discussed the minimization of the relaxed
problem (5). Since we are interested in finding minimizers
of the original non-convex problem (4), a straightforward
methodology is to threshold the solution of the convex prob-
lem umin appropriately in order to obtain a binary charac-
teristic function ũ = 1Sint for the surface interior Sint:

ũ(x) =
{

1, if umin(x) ≥ µ
0, otherwise , (7)

where

µ = min
{(

min
i∈{1,...,n},j∈Si

max
x∈Rij

umin(x)
)

, 0.5
}

.

(8)
This choice of threshold assures that the computed binary
solution still fulfills exact silhouette consistency. Note
that minimizing (4) is equivalent to minimizing the “bi-
narized” version of (5) (where u ∈ [0, 1] is replaced by
u ∈ {0, 1}). Although this approach does not guarantee
finding the global minimum of (4), it entails certain global-
ity guarantees:

Proposition 4. Let u′ be a (global) minimum of the “bi-
nary” version of (5), ũ the computed solution and umin a
(global) minimum of (5). Then, a bound γ(umin, ũ) exists
such that

E(ũ)− E(u′) ≤ γ(umin, ũ).
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Figure 2. Volumetric data terms. Visualized are cross-sections
through both utilized data volumes for the “dinoRing” image se-
quence (see Fig. 3). Left: Corresponding slice. Right: Regional
term ρint specifying the surface interior (above) and photocon-
sistency measure ρ (below) for the given volume slice. Intensity
values correspond to estimated costs.

Proof. Since the binary functions are a subset of the real-
valued functions, we have the relation

E(umin) ≤ E(u′) ≤ E(ũ)

As a consequence, we obtain the inequality

E(ũ)− E(u′) ≤ E(ũ)− E(umin) =: γ(umin, ũ).

5. Implementation

This section will give more details on the particular
choice of data terms and the numerical implementation of
the proposed approach.

5.1. Data Terms

Following the formulation in (3), we need to define two
data measures: a photoconsistency metric ρ : V → [0, 1]
and an inward normal field F : V → R3.

The photoconsistency estimation that we used in our ex-
periments is based on the voting scheme proposed in [7].
The choice of this technique was motivated by its robust-
ness even without requiring explicit visibility information
and increased accuracy compared to traditional methods.
See [7] for more details.

Instead of directly estimating a normal field F repre-
senting the shape orientation, we compute a regional term
ρint assigned to the interior of the surface, which can be in-
terpreted as divergence of a corresponding vectorfield (see
(4)). In order to obtain meaningful orientations, ρint should
be defined only in a vicinity of the surface with negative
values inside and positive values outside of it. A respective
vectorfield F : V → R3 with divF = ρint can be derived

as

F1(x1, x2, x3) =
1
3

∫ x1

0

ρint(x′1, x2, x3) dx′1

F2(x1, x2, x3) =
1
3

∫ x2

0

ρint(x1, x
′
2, x3) dx′2

F3(x1, x2, x3) =
1
3

∫ x3

0

ρint(x1, x2, x
′
3) dx′3,

(9)

where F = (F1 F2 F3)T . Note that this definition is unique
up to the addition of a divergence-free vectorfield. In our
implementation, we used the approach of [14] to compute
ρint. The key idea is to assign regional costs to each point
in space based on the location of maximal photoconsistency
along the viewing rays passing through it. See [14] for more
details.

A real example of estimated data volumes ρ and ρint is
depicted in Fig. 2.

5.2. Numerics

As mentioned previously, the minimization of (5) poses a
classical constrained convex optimization problem. Hence,
any iterative local optimization procedure will provide the
global minimum. However, the particular choice of mini-
mization method will affect the speed of convergence. In
our implementation, we used a fixed-point iteration ap-
proach based on Successive Overrelaxation (SOR). See [15]
for more details.

6. Experiments
We validate our approach on two real image sequences

of weakly textured objects containing deep indentations,
shown in Fig. 3 and 4. We compare the silhouette-
constrained minimal surface model, introduced in [13], to
the proposed ratio optimization. The first sequence is part
of a recent multiview stereo evaluation project [18] and
captures a textureless dinosaur figurine. Three of the in-
put images and multiple views of the reconstructions with
both models are shown in Fig. 3. The data set seems to
be a very challenging test scenario for the minimal surface
model, which produces clear oversmoothing effects by fill-
ing in deep concavities (e. g. at the legs). In contrast, the
minimal ratio model, which is free of shrinking bias, accu-
rately recovers the complete geometry. Note that none of
the compared models uses a weighting parameter, which al-
lows to control the amount of desired smoothing. On that
condition, the minimal surface model strongly depends on
the accuracy of the estimated photoconsistency measure and
on the geometry of the recovered shape. In contrast, the suc-
cess of its opponent is not affected by the particular struc-
ture of the reconstructed object or the spatial scale chosen.
The above observations are confirmed by the second experi-
ment, shown in Fig. 4. Once again, the minimal ratio model
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minimal surface reconstruction

minimal ratio reconstruction

Figure 3. “dinoRing” sequence. 3 of 48 input images of resolution 480×640 and multiple views of the reconstructions with the silhouette-
constrained minimal surface model, introduced in [13], and the proposed ratio optimization. Note that the minimal surface model produces
clear oversmoothing effects by filling in deep concavities (e.g. at the legs). In contrast, the minimal ratio model, which is free of shrinking
bias, accurately recovers the complete geometry.

minimal surface reconstruction minimal ratio reconstruction

Figure 4. Beethoven sequence. 2 of 33 input images of resolution 1024 × 768 and two views of the reconstructions with the silhouette-
constrained minimal surface model, introduced in [13], and the proposed ratio optimization. Analogously, in contrast to the minimal ratio
model, the minimal surface model tends to oversmooth concavities (e.g. at the cheeks or under the chin) due to the presence of shrinking
bias.

achieves a higher grade of accuracy, especially at deep in-
dentations (e.g. at the cheeks or under the chin).

The proposed ratio optimization procedure was imple-
mented for a GPU by using a red-black strategy and eval-
uated on a PC with 2.8 GHz and 4 GB of main memory,
equipped with a NVIDIA GeForce 280 GTX graphics card.

For both demonstrated experiments, we measured compu-
tational times in the range 2-3 minutes. Note that the com-
putation of the data terms is not included in these runtimes.
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7. Conclusion
We proposed a new approach for continuous ratio op-

timization based on relaxation and sequential convex op-
timization. The continuous formulation entails a series of
advantages compared to discrete counterparts developed in
the context of minimum ratio cycles or the parametric max-
imum flow framework like parallelizability, spatial consis-
tency and reduced memory requirements. Based on the
novel ratio optimization technique, we designed a new ap-
proach for multiview 3D reconstruction integrating multi-
view stereo and silhouette information. In a theoretical
investigation, we proved that, in contrast to the classical
minimal surface model, the minimal ratio model is free of
shrinking bias while retaining properties like regularity and
globality guarantees. They are confirmed by experiments
on challenging real data sets capturing weakly textured ob-
jects of complex geometry.
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