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Abstract

This paper describes a novel graphical model approach

to seamlessly coupling and simultaneously analyzing facial

emotions and the action units. Our method is based on the

hidden conditional random fields (HCRFs) where we link

the output class label to the underlying emotion of a facial

expression sequence, and connect the hidden variables to

the image frame-wise action units. As HCRFs are formu-

lated with only the clique constraints, their labeling for hid-

den variables often lacks a coherent and meaningful config-

uration. We resolve this matter by introducing a partially-

observed HCRF model, and establish an efficient scheme

via Bethe energy approximation to overcome the resulting

difficulties in training. For real-time applications, we also

propose an on-line implementation to perform incremental

inference with satisfactory accuracy.

1. Introduction

For humans, the making of a particular facial expres-

sion is a continuous and often short event, typically trig-

gered by the associated emotion and put together through

a series of muscle motions (see Figure 1). These subtleties

have caused designing computer vision algorithms to au-

tomatically detect and recognize facial expressions a chal-

lenging task. To tackle this problem, most of the exist-

ing techniques, e.g., [2, 14] have converged to investigate

the action units (AU) of the Facial Action Coding System

(FACS) proposed by Ekman and Friesen [7]. In this work,

our primary goal is to establish a new graphical model ap-

proach of which classifying facial expressions and identi-

fying action units can be elegantly coupled and simultane-

ously analyzed. As a result, the framework can lead to a

more effective implementation for both technical and prac-

tical concerns. (The term “facial expressions” hereafter is

restricted to the six basic ones, including joy, sadness,

surprise, anger, fear, and disgust.)

Instead of recognizing the facial expression per image

Figure 1. From left to right, these face images show a transition

from neutral to peak for the making of a joy facial expression.

frame, we consider casting the problem as a classification

task over an image sequence. That is, our aim is to de-

termine the class label specifying the emotion of a given

sequence. Meanwhile, observe that knowing the combina-

tions of action units (especially those in the peak images)

generally provides useful evidence for distinguishing differ-

ent emotions. It is therefore insightful to know what action

units are activated in each facial image. To this end, we

consider hidden conditional random fields (HCRF) [16] for

facial expression recognition, and establish a useful connec-

tion between the hidden states of a CRF [11] and the action

units. A key distinction between our framework and HCRF

is that learning the proposed graphical model utilizes infor-

mation from some partially-observed hidden states. We will

show that such a deviation usually yields better predictions

for the sequence and the hidden-state labels, with the price

of requiring a more delicate learning/training process.

1.1. Related work

An extensive review on facial expression analysis can be

found in Pantic and Rothkrantz [15]. While the survey is a

bit outdated, it still provides a comprehensive overview on

the related topics. In what follows, we briefly describe tech-

niques that deal with facial activity, and then discuss those

focusing on predicting the emotion of a facial expression.

On analyzing facial activity and action units, Donato et

al. [6] show that the Gabor wavelet representation and the

independent component analysis are useful for classifying

action units. They conclude with a surmise that combin-

ing motion and gray-level information may give the best

facial expression recognition performance. Kapoor et al.

[10] have constructed a shape model of the upper face, and

used the model parameters as the inputs to SVMs for rec-

ognizing action units within the upper face. Different from
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[10], Bartlett et al. [2] consider applying SVMs to the Ga-

bor wavelet coefficients of a face image. In [17], Tian et al.

describe a neural network approach that facial expressions

are analyzed based on a set of permanent facial features

(brows, eyes, mouth) and transient facial features (furrows).

For better inferring the action units, Tong et al. [18] have

utilized a dynamic Bayesian network (DBN) to model the

spatial and temporal relationships among the action units.

To classify facial expressions into a set of basic emotion

classes, Pantic and Rothkrantz [14] propose a rule-based

system to code the emotions via action units. Zhang and Ji

[24] instead establish a DBN model to correlate the relation-

ships between the emotions and the action units. Alterna-

tively, there are methods that are formulated to directly rec-

ognize the basic emotions without drawing on action units.

Cohen et al. [4] consider the tree-augmented-naive Bayes

(TAN) classifier to learn the dependencies between the fa-

cial emotions and the motion units. In [2], Bartlett et al.

report that in their experiments the best results on classify-

ing facial expressions into basic emotions are achieved by

using SVMs with feature selection through AdaBoost [8].

Among the preceding techniques [2, 4, 14, 24] on link-

ing facial expressions to emotions, the emotion class label

is image frame-wise predicted (despite that their formula-

tion may use temporal information). This may not be rea-

sonable, as the making of a facial expression is a transition

over a sequence of image frames. For example, it would

be unrealistic and difficult to tell whether the facial expres-

sion associated with the third image in Figure 1 is joy even

by relating to the second image. Studies, e.g., [1, 3] from

a psychology viewpoint have also supported the sequence-

wise analysis can achieve better recognition results.

Yang et al. [21, 22] and Zhao and Pietikäinen [25] have

described techniques to extract features from a whole im-

age sequence, and to sequence-wise classify the emotion.

As the sequence lengths of a facial expression are generally

different, the so-called dynamic features accounting for the

distribution of temporal patterns are proposed in Yang et al.

[21] to handle such variations. However, when processing

facial expression sequences, not only is the time span vari-

able, but the change of the magnitude is non-linear. Learn-

ing only the temporal distribution may not well address the

full complexity of the difficulty. And the need to have ac-

cess to a whole sequence further prevents these approaches

from being generalized to supporting real-time applications.

2. Image Representation via Boosting

Our formulation classifies sequences of facial expres-

sion into six emotion categories: joy (2), sadness (3),
surprise (4), anger (5), fear (6) and disgust (7).
For the convenience of implementation, we also have an ad-

ditional category called neutral (1). The numbers in the

brackets are the emotion class labels.

Let D be the training data. (s, y) ∈ D denotes that s =
{I1, . . . , Ie} is a sequence of facial-expression images and

y ∈ {2, . . . , 7} is its emotion class label. (e symbolizes

ending, and its value could vary from different s.) As each

sequence s starts from a neutral status and ends at a peak

status of the underlying expression (see Figure 1), we can

thus produce two labeled images from s: I1 will be labeled

as neutral (1), and Ie will have label y inherited from

the sequence.

With the (pairwise) labeled images from D, we are ready

to construct the image representation. It is desirable to have

a representation based on image features that are stable and

have certain invariant properties. The nowadays popular

interest points, e.g., [12] appear to meet the requirements.

Nevertheless, the bag-of-features representation is some-

what awkward for incorporating into a classification frame-

work. To relax the restriction, we next describe a scheme to

transfer a bag-of-features description into a feature vector.

2.1. Interest point descriptor

We re-scale each labeled image to 100 × 100 pixels,

and use the SIFT keypoint detector [12] to generate interest

points. Instead of the SIFT descriptor, we find that encoding

an interest point with Gabor responses leads to better clas-

sification results for our application. Specifically, we con-

struct a bank of Gabor filters at 8 orientations and 9 spatial

frequencies (4 to 64 pixels per cycle at 1/2 octave steps),

and perform image convolution through the filter bank. We

also attach the coordinates of an interest point to the Gabor

response. Altogether, each interest point is described by a

descriptor vector of dimension 74 (= 8 × 9 + 2).

2.2. Image feature vector

Let {Ji}
M
i=1 be the set of (pairwise) labeled images,

Ni be the number of interest points detected from Ji, and

N =
∑M

i=1 Ni be the total number of interest points. Since

not all interest points are discriminative, and in practice N
is too large to work with, we consider AdaBoost for interest

point selection, and build our image representation based

on the selected, informative ones. We carry out the inter-

est point selection in seven different runs in that the training

images are labeled from seven emotion categories. As the

procedure in each run is exactly the same, it suffices to ex-

plain how it is done for a particular emotion category.

We begin by dividing the training images into positive

and negative ones, and define a “distance function” d to

measure the irrelevance of interest point k to image Ji by

d(k, Ji) = min
ℓ∈{1,...,Ni}

‖gk − gℓ
i‖, (1)

where gk and gℓ
i are the interest-point descriptor vectors.

At iteration t of running the AdaBoost algorithm, our

criterion for choosing a good interest point is as follows.
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Observe that, through (1), an interest point k gives rise to

two distributions: one for the positive images of {Ji} and

the other for the negative ones. Treating each interest point

as a weak classifier would produce a weighted misclassifi-

cation error ǫt(k). It follows that the selected interest point

at iteration t satisfies

k∗
t = argmin

k
ǫt(k). (2)

Suppose that upon the completion of AdaBoost, K inter-

est points have be chosen. (K = 60 in all our experiments.)

Then, repeatedly performing the interest point selection by

setting the target class to each of the emotion categories in

turn would yield a set of n = 7×K interest points, denoted

as {k∗
1 , . . . , k

∗
n}. To construct a feature vector x (of dimen-

sion n) for an arbitrary image I from its bag-of-features rep-

resentation, we first detect the interest points of I , and then

define the ith component of x by

xi = d(k∗
i , I). (3)

3. Partially-observed HCRFs

The HCRF model has been applied to object recognition

[16] and gesture recognition [20]. In essence, the main idea

behind HCRFs is to enrich CRFs by adding hidden states to

capture complex dependencies or implicit structures in the

training samples. The effect can be achieved by using more

hidden variables, or by increasing the number of possible

hidden states. Either way would lead to a graphical model

with a large number of hidden-state configurations.

Unlike other graphical models with hidden states,

HCRFs lack an explicit formulation (such as the transition

probabilities in HMMs) on correlating the hidden variables

other than the clique relations. Under such a general setting,

it is difficult to foresee useful regularities from the hidden-

state outputs by HCRFs. In our experiments we observe that

applying HCRFs to image sequences of similar appearances

may give rise to rather different hidden-state configurations.

Our use of HCRFs for facial expression recognition has

a good analogy here. While recognizing the underlying

emotion is our goal, uncovering the action units in each im-

age frame turns out to be crucial for making the prediction.

Also, in our training data, the action unit information is al-

ready provided in the peak (last) image of each sequence.

These two aspects of consideration have prompted us to

develop a new generalization for HCRFs—by introducing

partially-observed hidden state variables. As we will ex-

plain that the modification does not affect the graph struc-

ture (see Figure 2), and requires no extra data labeling.

3.1. Energy function and data likelihood

In a partially-observed HCRF model, the hidden vari-

ables of a training sequence s are divided by h = ho ∪ hu,

h1 h2 he

hu

y

s

Figure 2. The shaded node corresponds to an observed sequence

s. h1 and he are the starting and the ending hidden variables re-

spectively, and hu includes the remaining hidden variables.

where ho and hu denote the hidden variables whose (dis-

crete) state values are respectively observed or unknown

during training. Analogous to [16], the conditional prob-

ability of class label y and hidden variables h is given by

p(y,ho,hu | s; θ) =
exp {−E(y,ho,hu, s; θ)}∑

y′,h′

o
,h′

u

exp {−E(y′,h′
o,h

′
u, s; θ)}

(4)

where θ includes the parameters of the probabilistic model,

and E is the energy function. It implies that

p(y,ho | s; θ) =
∑

hu

p(y,ho,hu | s; θ). (5)

And the data log-likelihood of D = {(s(i), y(i),h
(i)
o )}, with

partially-observed hidden states, is given by

L(θ) =
∑

i
log p(y(i),h(i)

o | s(i); θ) −
‖θ‖2

2σ2
(6)

where we have assumed a zero-mean Gaussian prior on θ.

Learning a partially-observed HCRF model can now be ac-

complished by solving

θ̂ = arg max
θ

L(θ). (7)

In our implementation, scaled conjugate gradient [13] is

used to find θ̂ in (7). We emphasize that the partially-

observed information about the hidden variables is provided

only in training. Hence probability inference with the pro-

posed model is exactly the same as with a regular HCRF.

That is, given a new test sequence s, we have

p(y | s; θ) =
∑

h
p(y,h | s; θ). (8)

3.2. Approximation with Bethe free energy

By far it may appear that adding partially-observed hid-

den variables to the learning of HCRFs is straightforward.

The definition of L(θ) in (6) indicates that solving (7) re-

quires evaluating p(y,ho | s; θ) for each training sequence.

When applying the belief propagation algorithm, the joint

probability whose variables belong to a clique can be di-

rectly approximated by the corresponding belief. In our
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case, the variables y and ho most likely do not form a clique.

Evaluating (5) requires to explicitly compute

∑

hu

exp {−E(y,ho,hu, s; θ)} (9)

and
∑

y′,h′

o
,h′

u

exp {−E(y′,h′
o,h

′
u, s; θ)} , (10)

which are both intractable. To resolve the difficulty, we

consider using Bethe free energy [23] to approximate the

Helmhotz free energy, which is simply the negative log of

the partition function Z(T ) in the Boltzmann’s Law:

p(x) =
1

Z(T )
exp{−E(x)/T }, (11)

where E is the energy function and T is known to be the

temperature. After running belief propagation, the Bethe

free energy can be efficiently computed from the potential

functions and the beliefs of the nodes and cliques.

The two quantities (9) and (10) can be thought as the

partition functions of two particular graphical models: (9) is

for the graph that the labels/states of the nodes y and ho are

given, and (10) is for the graph that all labels are unknown.

In Figure 2, ho = {h1, he}. Since the Bethe free energy

is a function of the beliefs, it can be readily computed with

belief propagation. Consequently, we can well approximate

the values of (9) and (10).

4. Facial Expression Recognition

We are now in a position to lay out how facial expression

recognition is done via inference with the learned graphical

model, and also describe how to extend our method to pro-

cess on-line image streams.

4.1. HCRFs for recognizing facial expressions

Let (s = {Ii}, y) denote a labeled sequence of facial

expression images, and xi be the feature vector of image

Ii. Also let {h1, h2, . . . , he} be the set of hidden vari-

ables, each of which assumes a possible label correspond-

ing to a combination of action units. In learning a partially-

observed HCRF model, the labels of h1 and he will be pro-

vided. Thus, according our notations, ho = {h1, he} and

hu = {h2, . . . , he−1}. An illustration of such a graphical

model is shown in Figure 2. (Note that the nodes with re-

spect to h1 and he are not adjacent, and not belong to the

same clique.) Since there are three different types of cliques

describing the relationships among the state and the obser-

vation nodes, three kinds of feature functions are considered

in the definition of energy function E:

E(y,ho,hu, s; θ) =
∑

j

φ(s, j) · θ1(hj) +
∑

j

θ2(y, hj)

+
∑

(j,k)∈E

θ3(y, hj, hk), (12)

where E is the set of edges linking the hidden nodes, and

φ(s, j) represents the observation at node j. In our for-

mulation, we exploit the temporal information by setting

φ(s, j) = [xT
j−1,x

T
j − xT

j−1]
T .

4.2. Realtime incremental inference

By incremental inference, we are to design a message-

passing scheme such that when processing an upcoming

image frame It, all the previous inference results before

time instant t will be available for making the new infer-

ence. Motivated by this desirable property, we define the

message sent from hidden node ht−1 to ht as

mt(y, ht; θ) =
∑

h1:t−1

exp {−E(y, h1:t,x1:t; θ)} (13)

where h1:t and x1:t stand for h1, . . . , ht and x1, . . . ,xt, re-

spectively. mt(y, ht; θ) can be further rewritten as

∑

ht−1

exp {−E(y, ht−1:t,xt−1:t; θ)}mt−1(y, ht−1; θ)

(14)

where according to (12)

E(y, ht−1:t,xt−1:t; θ) = φ(s, t) · θ1(ht) + θ2(y, ht)

+ θ3(y, ht, ht−1). (15)

From (14), we can derive an implementation for per-

forming incremental inference. Namely, making inference

at time t is done by evaluating

p(y |x1:t; θ) =

∑
ht

mt(y, ht; θ)
∑

y′,h′

t

mt(y′, h′
t; θ)

. (16)

Indeed the foregoing scheme is not limited to processing on-

line streaming data. Owing to the chain structure (among

hidden variables), when the proposed incremental inference

is applied to a whole image sequence s, the resulting prob-

ability p(y | s; θ) is the same as that by simultaneously con-

sidering all image frames. However, the labeling of hidden

variables ht, t = 1, . . . , e may be different due to that now

only the information related to the preceding hidden nodes

is available for each prediction. We will discuss further de-

tails regarding this matter in the next section.

In our formulation of incremental inference, the message

mt(y, ht; θ) at time t carries all the previous inference re-

sults. This property is preferable when there would be only
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one facial expression from the on-line streaming data. In

practice such a restriction is not reasonable. To relax the

limitation, we need some mechanism to ensure that proba-

bility inference of the current facial expression can be made

without including the effects from the previous expressions.

One way to achieve this is to detect the conclusion of an ex-

pression and reset the recognition system. However, there

still lacks an efficient way for detecting the ending of an

expression peak in real-time applications [5]. Here we dis-

cuss what conditions can assure the HCRF framework to

make inference without considering the past information.

Assume that frame t is the start of an expression. From (14)

and (15), we denote those terms related to the past by

ut(y, ht; θ) =
∑

ht−1

exp {−θ3(y, ht, ht−1)}mt−1(y, ht−1; θ).

(17)

As is implied in Section 3, we can compute the Bethe

free energy for each y. If (17) yields the same value for all

ht given any y, the information prior to frame t causes no

effect at all since the message from t − 1 acts as a uniform

distribution. To facilitate this condition, we consider

f(x) = xq, for x > 0 and 0 ≤ q < 1. (18)

When f is repeatedly applied to any real value, the outcome

will converge to 1. We call the parameter q in (18) the prun-

ing factor that controls the rate to approach 1. At frame t,
we “relax” the past information ut(y, ht; θ) by f(ut) and

approximate mt(y, ht; θ) by

f(ut(y, ht; θ)) × exp (φ(s, t) · θ1(ht) + θ2(y, ht)). (19)

Whenever a new expression starts, one can set the value

of q to be close to 0 (to disregard the past information), and

otherwise to be close to 1. In our experiments, the values

are 0.1 and 0.9, respectively. The reason we choose 0.9

instead of 1 is mainly because such a tactic can result in

a more noticeable drop in the inference probability when

an expression is completed and image frames with neutral

expression are reached. Nevertheless, detecting the end of

an expression is still a hard problem. In our experiments,

we use a heuristic way to decide. We compute the dif-

ference between the values maxy,r;1≤r≤5 p(y |x1:t−r−1; θ)
and maxy p(y |x1:t−1; θ). If the difference is larger then

0.05, we say that a new expression starts and set q = 0.1.

5. Experimental Results and Discussion

We test our method with three sets of experiments. The

first is to compare the sequence-wise classification out-

comes derived by the partially-observed HCRF model (PO-

HCRF for abbreviation) and other implementations. The

second is to investigate the effects of using an extensive set

of hidden labels to account for all action unit combinations

in the training dataset. And for the last, we demonstrate

that satisfactory real-time recognition performances can be

achieved via the on-line incremental inference.

5.1. Dataset

The facial expression database used in our experiments

is Cohn and Kanade’s DFAT-504 dataset [9]. It contains 486
sequences produced from 97 subjects. There are about 1 to

9 sequences for each subject. In this dataset, the action unit

information is provided only for the last frame (peak image)

of each sequence, and occasionally it may not be sufficient

for identifying the emotion category. We have labeled 392
sequences by referencing Table 2 in Zhang and Ji [24].

5.2. Sequencewise classification

In this set of experiments, we are to demonstrate the ef-

ficiency of using PO-HCRFs to analyze sequences of facial

expressions. We begin by setting the total possible hidden

labels/states to 14, and further consider two cases. For case

one, the hidden labels range from 1 to 7 (1 will be reserved

for neutral), and each corresponds to some combina-

tion(s) of action units. And for the other case, the mean-

ingful labels are from 1 to 9. In both cases the remaining

labels are not explicitly defined so that it leaves some de-

gree of freedom for the training process since certain image

frames are hard to be labeled. The purpose of adding two

more hidden labels is to enable our system to distinguish

whether (i) a joy face is with mouth open (i.e., AU25), and

(ii) a fear face is with a “shock” (AU2: outer brow raiser

or AU5: upper lid raiser). (See Table 1 for details.)

Besides comparing the results derived by HCRFs and

PO-HCRFs, we have implemented the method of Bartlett

et al. [2] for image sequences. It is done by applying their

classifier to each image frame, and the label of a sequence

is decided by a majority vote. (Note that those classified as

neutral are not counted.) For a more insightful study, we

also consider adapting their method by using our feature se-

lection scheme. In Table 2, we report the recognition accu-

racies. The notations PO-HCRF7 and PO-HCRF9 indicate

the number of meaningful hidden labels used in their imple-

mentation. Examples of illustration on the labeling results

are provided in Table 1. A confusion matrix by PO-HCRF9

is given in Table 3. Overall, the experimental results show

that PO-HCRF can achieve better accuracy rates, and output

more coherent hidden labels.

Indeed the fact that all test sequences start with a neu-

tral frame is not required by our method. To verify this

claim, we apply PO-HCRF to all the last half sequences,

and obtain a slightly better recognition rate, 93.11%. Two

such examples are plotted in Figure 3, where the broken-

line graphs show the probabilities of different emotions for

the given (last half) facial expression sequences.
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Emotion Example Basic AUs Hidden label HCRF PO-HCRF7 PO-HCRF9

joy

6+12 2 2

411912 9 11 1 2

1 2

6+12+25 2 3

1 3

surprise 1+2+5+25+27 3 4

4 8 10 1 3 1 4

anger 4+7+17+23+24 4 5

8 4 857 81285 8118 5 857 8 5 8 5 8 1 4 1 5

disgust 4+9+17 5 6

4 12 1 5 1 6

fear

1+20+25+2 6 7

7 4 9 7 11 8 11 1 6

1 71+20+25+5 6 7

1 8

1+20+25 6 8

sadness 1+15+17 7 9

4 7 4 1 7 1 9

Table 1. Hidden labels vs. emotions for PO-HCRF7 and PO-HCRF9 are shown in the first four columns. Note that the set of action units

with respect to a hidden label is not the only possible combination. The remaining columns include illustrations of the labeling results from

our sequence-wise classification experiments. The four face images shown in each example are the 1st, the 1

3
rd, the 2

3
rd, and the last ones

of the sequence. The color bar and the numbers signify the hidden labels of the images, while gray color is for neutral.

Bartlett et al. [2] Our feature HCRF PO-HCRF7 PO-HCRF9

84.69% 87.50% 86.48% 91.33% 92.86%

Table 2. Accuracy rates for sequence-wise recognition.

joy sadness surprise anger fear disgust

joy 98.0% 0.0% 0.0% 0.0% 2.0% 0.0%

sadness 0.0% 97.5% 0.0% 2.5% 0.0% 0.0%

surprise 0.0% 1.4% 98.6% 0.0% 0.0% 0.0%

anger 2.8% 22.2% 0.0% 69.4% 2.8% 2.8%

fear 7.0% 1.8% 1.8% 1.8% 87.7% 0.0%

disgust 2.2% 0.0% 0.0% 6.7% 2.2% 88.9%

Table 3. Confusion matrix of PO-HCRF9.

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

 

 

joy

sadness

surprise

anger

fear

disgust
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0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

 

 

joy

sadness

surprise

anger

fear

disgust

6

Figure 3. Examples of last half sequence labeling from Table 1.

5.3. More on the labeling results

Interesting observations can be inferred from the forego-

ing experiments. First, a facial expression typically does not

progress “linearly.” For example, in a joy sequence as in

Figure 4a, it would be unnatural to use interpolation based

on the neutral and peak images to approximate the middle

ones. In this case, the lip corner pulls up first (AU12) and

then the mouth opens gradually (AU25). Our labeling re-

sults show a good match for such face actions. Second, a

more dramatic example is given in Figure 4b where hidden

label 8 for fear appears in labeling a joy sequence. This

can be explained in terms of action units. In some facial ex-

pressions of fear, the mouth corner is pulled up (AU12),

as in Figures 4c and 4d. Furthermore, the basic set of the

action units for fear comprises AU1 (inner brow raiser),

AU20 (lip stretcher) and AU25 (lips part). The last two,

AU20 and AU25, may also happen in a joy sequence.

In Figure 4b, the two labeling results derived by the im-

plementations for sequences and incremental inference are

shown. Although, from (16), the two approaches would out-

put the same class probability at each time instant, the label-

ing for the hidden variables can be different. The distinction

is caused by that labeling with incremental inference cannot

reference information beyond its current image frame.

5.4. All action unit combinations

Among our selected 392 training sequences, there are 15
action units (see Figure 5) occurred most frequently, and in

total 100 combinations from them appeared in all of the last
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(a)
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joy sadness surprise anger fear disgust

1 8 3

1 8 3

(b)

1 8

(c) (d)
Figure 4. (a) A joy sequence. (b) The plot for the inference probabilities for the six emotion c1asses. Below the plot are the hidden-node

labeling results respectively derived by processing the whole sequence (top) and by incremental inference (bottom). In both results, despite

some of the images have been labeled as fear, the output emotion class label is still correct. (c) and (d) Some examples of the fear faces

with action unit AU12 (mouth corners pull up), which also could occur in a joy facial expression.

image frames. Thus, we use an extensive set of 100 hidden

labels, and carry out PO-HCRF100 to achieve a five-fold

cross-validation rate of 90.05%.

We consider the labeling results at the first and the last

frames to evaluate the recognition rate and the false alarm

rate for each action unit (see Figure 5). Most of our results

are better than or comparable to those in [2] except for AU1

and AU4. The main reason for the degradation is due to that

the distributions of AU1 and AU4 are dominated by those of

other action units for the fear and sadness sequences.

Finally, we note that the better action unit recognition rates

in Tong et al.’s work [18, 19] are derived by using action

unit information from all training image frames, while in

our method only the two end frames are used.

5.5. Implementation for realtime applications

Five-fold cross-validation is adopted to estimate the on-

line recognition accuracy by our real-time implementation.

At each fold, we first run PO-HCRF9 and PO-HCRF100

separately on each training sequence, and frame-wise de-

rive the inference probabilities for the six emotion classes

(like the plot in Figure 4b). We also compute the entropy

and its first derivative at each time instant. The six prob-

abilities and the two entropy-related quantities form a fea-

ture vector of dimension 8. Suppose now we want to learn

a decision function for the emotion of joy via the Percep-

tron algorithm. The positive/negative data are those image

frames from the joy/non-joy sequences that the inference
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(a) Recognition rate (b) False alarm rate
Figure 5. Evaluation for classifying each action unit.

probability for joy in their feature vector is the largest. The

remaining cases can be analogously learned.

For testing, we perform incremental inference by treat-

ing a test sequence as an image stream. At each time instant,

the decision function corresponding to the emotion class

that currently has the highest inference probability will be

applied, and a decision on the emotion label will be made

if the response is positive. With this setting, the accuracy

rate we achieve is 80.10% with 9.18% false alarm rate for

PO-HCRF9 and 80.36% with 8.93% false alarm rate for

PO-HCRF100. For justifying the advantage of using the

pruning factor q in our on-line implementation, we further

simulate image streams by concatenating all the sequences

of the same person in the training dataset. An example of

such comparison results is illustrated in Figure 6.
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Figure 6. The effect of the pruning factor. The plotted inference probabilities suggest how likely the subject is making the expressions.

In the bottom, each color section with faces indicates the period of the sequence comes from which expression and for each period only

the neutral and peak faces are displayed. Whenever a time instant is in the gray areas, our system will issue that the subject is making the

expression currently with the highest probability.
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