
 

 

 
Abstract 

 
In two-dimensional Fourier transform magnetic 

resonance imaging (2DFT-MRI), patient/object motion 
during the image acquisition results in ghosting and 
blurring. These motion artifacts are commonly considered 
as a major limitation in the MRI community. To correct 
these artifacts without resorting to additional navigator 
echoes, most existing methods perform image quality 
measure to estimate motion; but they may easily fail when 
the motion is large. Viewed as a blind image restoration 
problem where the motion point spread function (PSF) is 
unknown, state-of-the-art restoration algorithms can not 
be easily applied because they cannot handle a complex 
PSF kernel that has the same size as the image. To 
overcome these challenges, we propose a novel approach 
that exploits the image structure to segment the kernel into 
several fragments. Based on this kernel representation, 
determining a kernel fragment can be formulated as a 
binary optimization problem, where each binary variable 
represents whether a segment in MR signals is corrupted 
by a certain motion or not. We establish a graphical model 
for these variables and estimate the kernel by minimizing 
an energy functional associated with the model. 
Experimental results show that the proposed method can 
provide satisfactory compensation of motion artifacts even 
when large motions are involved in the MR images. 
 

1. Introduction 
Patient or object motion during the magnetic resonance 

(MR) image acquisition can significantly degrade the 
image quality, resulting in diagnostically unacceptable 
artifacts such as ghosting and/or blurring. This has become 
a major limitation in MR examinations, especially when 
relatively large motion occurs. To address this issue, 
various approaches have been proposed. One way is to 
directly measure motion by employing additional navigator 
echoes (e.g., [1]); but some applications cannot afford the 
prolonged scan time or adopt the required special pulse 
sequences. Another approach exploits non-Cartesian 

trajectories in the frequency domain (usually referred to as 
k-space, where the MR signals are acquired) and is 
expected to be more robust to motion effect. However, it is 
generally understood that the conventional 2-D Fourier 
transform (2DFT) imaging (i.e., Cartesian trajectory) plays 
an important role for many applications and cannot be 
replaced. Some researchers [6] tried to estimate motion by 
attaching external markers to the imaging object. This 
method requires certain imaging assumptions which might 
not be practical in a clinical setting. Another approach, 
based on image quality measures to evaluate trial motion 
corrected image, is the focus of this research. 

We first briefly describe MRI principles to better 
understand the cause of MRI motion artifacts. In MRI, time 
signals are mapped to the k-space (i.e., Fourier) coefficients 
of the target image. This scheme is known as spatial 
encoding. Generally, the x and y directions are, 
respectively, referred to as the frequency encoding and 
phase encoding directions. When k-space is filled with the 
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Figure 1: (a) Images degraded by motion artifacts. (b) The 
corrected images by using the proposed motion 
compensation algorithm. 
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required signals that correspond to the desired field of view 

for the imaging object, a reconstruction algorithm—most 
often the inverse Fourier transform (IFT)— is used to 
generate an image. 

Data acquisition is extremely fast in the frequency 
encoding direction, so motion can be ignored here. The 
time interval between two phase encoding (PE) lines is 
much longer. Therefore, object motion will take effect for 
different PE lines, incurring phase shift in k-space 
according to the Fourier transform property. The motion 
artifacts are the consequences of this phase shift. Removing 
motion artifacts is thus about recovering phase information 
in the frequency domain. Two motion corrupted examples 
are shown in Figure 1.  

Based on this assumption, the image metric based 
methods (e.g., [5]) evaluate a set of trial motion for each PE 

line. The motion that yields the best measure is selected. 
Several methods have been applied to minimize certain 
image metrics and perform well for small motions. 
Aktinson et al. [2, 3] used the entropy criterion to determine 
the motions. Lin et al. [15] suggested to use normalized 
gradient squared (NGS) [4], where several clinical results 
are shown to be comparable to those from the navigator 
echo based techniques. More recently, to improve 
algorithm efficiency and robustness, they proposed the 
EXTRACT [14] method based on extrapolation of the 
k-space data and its correlation to prior corrected results. 

The advantage of image metric based approach is that it 
does not require special pulse sequences. However, due to 
high dimensionality of the search space and the robustness 
issue of the image metrics, the correct minimizer is hard to 
obtain when the original MR signal is corrupted by large 
motions. 

Viewed as a blind image restoration problem, where the 
motion point spread function (PSF) is unknown, the goal 
for motion correction is to estimate the corruption-free 
image and the motion PSF from the MR image directly. 
Similar restoration problems exist in different fields, such 
as radio astronomy, but the state-of-the-art deconvolution 
or deblurring methods cannot be applied here because our 
motion PSF kernel is a complex matrix whose size is as 
large as the target image. 

In this paper, we propose a novel approach to address the 
issues described above. Our approach takes advantage of 
the special structure of the motion PSF kernel. We first 
detect dominant motion from the corrupted image. Then, 
we formulate the MRI motion estimation as a graph-based 
optimization problem. To be specific, the magnitude of the 
motion PSF kernel may contain many peaks, each 
corresponding to a motion vector. A large peak in the 
magnitude may represent artificial image structures due to 
ringing effect, with strong edges showing the most visible 
artifacts. Hence, we need to locate strong edges and the 
ringing counterparts from the image to estimate the peak 
locations in the PSF kernel. For each estimated motion 
vector, a binary variable is associated with a segment in  
k-space to denote if it is corrupted by this motion. The 
k-space partitioning segments are similar to those in [2]. 
We then combine all these binary variables in a graph, with 
which we associate an energy that is minimized to obtain 
the entire motion estimate. We perform several 
experiments and compare results with several image metric 
based methods. Experimental results show that the 
proposed method can provide satisfactory compensation 
for motion artifacts even when large motions are involved. 

The rest of this paper is organized as follows: the 
formulation for the MRI motion correction problem is 
given in Section 2. The proposed novel motion artifact 
compensation algorithm is described in Section 3. Some 
experimental results are shown and compared with those 

Figure 2: (a) The original image, (b) motion degraded 
image, (c) and (d) are, respectively, the magnitude of 
k-space data of (a) and (b), (e) and (f) are, respectively, the 
phase of k-space data of (a) and (b). In (f), several rows near 
the center are different from those in (e), because they are 
corrupted. 

(a) (b)

(c) (d)

(e) (f)
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from existing methods in Section 4. Finally, Section 5 
concludes this paper. 

2. K-Space Data and Motion Artifact Kernel 

2.1. Property of k-space data 
It is known that a real signal/image exhibits Hermitian 

symmetry in the frequency domain, i.e., it is equal to its 
own conjugate transpose. Specifically, for a matrix F, we 
have F = FH, where the superscript H indicates the 
conjugate transpose. Although k-space data is complex due 
to MRI imaging principles, the object to be imaged is 
always real so that Hermitian symmetry could be expected, 
subject to all measurement imperfection. 

2.2. Motion corruption process in spatial domain 
When translational motion with shift (dxn, dyn) occurs 

and induces phase shift for the n-th phase encoding (PE) 
line, the overall motion transfer function M can be written 
as 
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k k k k
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= ∑M M                                       (1) 

where  
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                      (2) 
Here, kx and ky are, respectively, the indices for 

frequency-encoding and phase-encoding lines; δ (s, t) is the 
2-d delta function that takes on the value 1 if s = t = 0, and 0 
otherwise, and δ(t) is the 1-d delta function. Then, the 
corrupted k-space data G is the point-wise matrix 
multiplication (denoted by the symbol ) between the ideal 
k-space data F and the motion transfer function M 
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From Equation (3) and the convolution theorem, we know 
 
 

{ } { } { }1 1 1FT FT FT− − −= ⊗G F M ,                           (4) 
 

where 1FT −  and ⊗  denote, respectively, the inverse 
Fourier transform (IFT) and the 2D convolution. Thus, we 
can write the motion point spread function (PSF) kernel k 
as 
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where the constant scaling factor in the Fourier transform 
pair is ignored. We see that the magnitude of the PSF kernel 
is constant along the y direction, if only one motion (dxn, 
dyn) results in phase shift at the n-th PE line and the other 
PE lines are uncorrupted. If the entire k-space resulting 
from this single motion is known, we will be able to see a 
peak at (dxn, dyn) in the PSF. Figure 3(a) illustrates an 

Figure 3: The magnitude map of two kernels are shown. The kernel (a) has a single motion vector, and the kernel (b) has two different 
motion vectors. They are calculated by IFFT. The center means the (dx, dy) = (0, 0). 

(a) (b)
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example kernel when a single motion leads to 8 corrupted 
PE lines. 

3. Proposed Motion Correction Algorithm 
The proposed algorithm can be divided into three parts. 

First, we detect and estimate dominant motion, and then we 
create a graphical model for each estimated motion vector. 
Finally, the corrupted segments for each dominant motion 
are restored by minimizing the energy associated with the 
graphical model. The following subsections give detailed 
descriptions of our algorithm. 

3.1. Estimation of motion vectors 
To better detect object boundary structures in the motion 

corrupted image, we first perform Canny edge detection 
(CED) [8]. This will allow us to create desirable templates 
to perform normalized cross correlation (NCC), which we 
will describe shortly. Then we calculate the gradient map. 
The edge fragments from CED with high gradient 
magnitude are regarded as strong structures, which, 
together with their neighboring pixels, are collected to form 
a set of templates. These templates are not necessarily 
rectangle, and may be arbitrary-shaped. 

To estimate motion vector, we apply the template 
matching approach by NCC, defined as 
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where T  is the mean intensity of the template T; and I is 
the mean intensity of the image with (x, y) coincided with 
the center of T. NCC is performed only for low gradient 
magnitude map where strong structures are removed. This 
is because we assume that the true structures have stronger 
gradients than those of ghosting structures. According to 
NCC, the distances between the template center and the 
location with high response yield candidates for motion 
vectors. Finally, a voting array containing all motion 
vectors is used to collect responses from different NCC 
matching results. 

3.2. Graphical model construction and 
optimization 

For each motion vector (dx, dy), we must determine 
whether the segment is corrupted or not. We make use of 
the image quality metric and the conjugate symmetric 
property for the motion-free k-space data to create a 
graphical model. In this work, the normalized gradient 
squared (NGS) [5] is used as the image quality metric. A 

greater NGS value for an input image I, computed 
according to  
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implies better image quality. The graphical model for 
determining whether a segment is corrupted due to motion 
is depicted in Figure 4. Here, the number of binary nodes is 
the same as the number of PE lines N. The i-th binary 
variable Vi models whether the i-th PE line is corrupted or 
not. Hence, the problem is transformed into a labeling 
problem. The energy E for this labeling problem is 
composed of three terms with weighting coefficients α and 
γ :  
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,, αγ .          (8) 

 
We elaborate each term below. First, Ed(Vi) is defined by 
NGS according to Equation (7). It can be interpreted as a 
data fidelity term in our graphical model, as it evaluates the 
goodness of the trial solution (i.e., Ed(Vi=1) ), compared to 
the that of the input image Ed(Vi=0). In our notation, 
Ed(Vi=1) is the NGS value of the image when the motion 
(dx, dy) is corrected at the i-th row, i.e., 

A graphical model for Motion vector (dx, dy)

Figure 4: A graphical model for a dominant motion vector
(dx, dy) contains N binary nodes, and three types of energies 
are shown in the figure. 
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The term Eg(Vi, Vj) penalizes the case when two adjacent 
PE lines are not simultaneously motion-compensated. This 
embodies the fact that adjacent PE lines should undergo 
similar motion conditions. Explicitly, we define 
Eg(Vi=1,Vj=1) as 
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                                     1 1 .
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       (10) 
 
If two adjacent rows have different labels, we simply assign 
a constant to Eg(Vi,Vj): 
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Finally, Esym(Vi, Vj) is a regularization term that enforces 
conjugate symmetry of k-space data given the label of i-th 
and j-th PE lines. If Vi=1 or Vj=1, it means that the motion 
(dx, dy) is applied to the corresponding row. Then, the 
magnitude D of the difference of the k-space data and its 
Hermitian transpose is calculated. Esym(Vi, Vj) is defined 
by the Frobenius norm of this matrix D: 
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(11) 
 
After constructing the graphical model, we apply the 
iterated conditional modes (ICM) algorithm [7] to cut the 
edges of the graph. For the nodes classified as corrupted, 
the inverse motions are applied to the k-space data. The 
parameters of the graph are updated and all variables are 
classified again until no variables are labeled corrupted. 

3.3. Overall algorithm 
The overall algorithm is summarized here: 
 

1. Perform edge detection and calculate the gradient 
magnitude map. 

2. Select the regions containing edge fragments with high 
gradient magnitude as templates, Ti, i=1,..,n. In 
practice, the dilation operator can be applied on the 
edge fragment. 

3. Create low-gradient-magnitude map L by removing 
the regions with high gradient magnitudes. For 
example, a threshold, above which the gradients are 
removed, can be used. 

4. For each Ti, perform NCC to find the displacements 
with high responses. Select candidate motion vectors 
{(dxi,dyi)} from  the displacement vectors. 

5. For each candidate vector (dxi,dyi), create a graphical 
model and calculate all related terms by using 
Equation (7-11). 

6. Perform iterated conditional modes (ICM) algorithm 
to determine the corrupted segments. Compensate the 
corresponding segments with estimated motion 
vectors. 

7. Re calculate the energy on the current graphical model 
and repeat step 6. If there is no change, perform step 6 
on the other graphical models. 

4. Experimental Results 
To evaluate the proposed algorithm, we collect several 

sets of data. The first one is a bottle phantom with true 
k-space data obtained from a MR imager (MR). We also 
use the Shepp and Logan head phantom (SL) and brain MR 
images [18] to generate k-space data for testing. 

We simulate motion corrupted data by using several 
large motions on the k-space data. Each dataset contains 
several large motions. 

If true motion displacement is not integer-valued, in 
most cases, our method can find the closest integer motion 
vectors to compensate the motion artifacts. Some examples 
are shown in Figure 6. The motions in Figure 6 are similar 
to those in Figure 5, but the motion vectors are not integer 
motions. 

For quantitative analysis, we also calculate the NGS 
values for all our results. The NGS has been used for 
assessing the quality of the corrected MR images. The 
comparison is shown in Table 1. Compared with the input 
corrupted data, the average NGS gain of our method is 
28.85%. This is significantly better than the negative 
performance -24.73% by using EXTRACT, and still 2 
times better than the gain 14.55% by using min-NGS 
method. Table 2 shows similar comparison on the corrected 
brain MR images. 

We compare our method with the image-metric based 
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method. Its metric is the NGS, and we use BFGS [10-13] 
method with a cubic line search as the optimization 
procedure because the size of the metric map is hard to 
decide and it performs well in most situations. In Figure 6 
(a), the min-NGS method compensates most of the motion 
artifacts except that there exists some ghosting in the left 
part of phantom. 

There are some difficult cases in our experiments. For 
example, both the NGS method and our method cannot 
provide satisfactory motion correction results in Figure 
5(b). Our method does not perform well in this case 
because the dominant motion detection procedure failed to 
detect the true motion in the first step. 
 

Figure 6: (a) A motion corrupted image with non-integer motion 
which are similar those to Figure 5(a), and (b) the corrected result 
by using our method. 

(a) (b)

Figure 5: Experimental results on Shepp and Logan phantom data (a-c) and MR scanned phantom (d). 

Corrupted 
data 

(a) SL1 (b) SL2 (c) SL 3
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Table 1: The NGS1 gain on SL. 
Dataset Corrupted 

data 
Our 
method 

min-NGS EXTRACT

SL1 2.2370e-4 3.1295e-4 3.1764e-4 1.7995e-4
SL2 1.7733e-4 1.7782e-4 1.7914e-4 1.2861e-4
SL3 1.7715e-4 2.5929e-4 1.7830e-4 1.2902e-4
Mean 
gain 

0% 28.85% 14.55% -24.73% 

 
Table 2: The NGS gain on MR and Brain MR. 

Dataset Motion- 
corrupted 

Our method min-NGS 

MR1 8.9624e-5 1.1338e-4 1.1996e-4 
MR2 1.1748e-4 1.2571e-4 1.2557e-4 
MR3 1.1941e-4 1.5839e-4 1.2831e-4 
Brain1 1.0214e-4 1.0805e-4 1.0869e-4 
Brain2 9.4636e-5 1.1949e-4 1.0115e-4 
Brain3 1.0442e-4 1.0667e-4 1.0507e-4 
Brain4 1.0473e-4 1.1224e-4 1.0514e-4 
Mean 
gain 

0% 15.36% 8.93% 

 
1 In order to avoid the effect of shift, these NGS values in our tables are 
calculated circularly. 

5. Conclusion  
We constructed a graphical model and associated with it an 
energy functional that consists of an image quality metric, 
and motion smooth and data symmetry constraints. Based 
on this model, motion correction is converted to a labeling 
problem, where ICM is used to minimize the energy 
functional. Binary variables are used to represent whether 
motion occurs in the corresponding k-space segments. 
These variables have strong dependency because motion is 
better correlated within a very short time period. Our 
graphical model is built to explore this correlation. 
Previous image-metric based methods failed to exploit this 
dependency in the MRI motion compensation process. 
Because our algorithm takes this into account, our results 
are more robust to incorrect motion estimate. We compared 
the proposed motion compensation algorithm with NGS 
and EXTRACT methods in the experiments. The 
experimental results showed the proposed algorithm 
performs well in most cases even when large motions are 
involved in the motion artifacts. 

Finally, we note that other Markov random field (MRF) 
minimization methods can also be used to solve our energy 
functional, such as TRW-S [17]. A comparative study [16] 

Figure 7: Experimental results on Brain MR images. 
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data 

min-NGS 
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has shown different minimization methods may yield 
different results. As a future work, we would like to 
combine the graphical models for different motion vectors 
into a whole graphical model in order to better describe the 
correlation between different motion vectors.  
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