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Abstract

We present a focus-based method to recover the orien-
tation of a textured planar surface patch from a single im-
age. The method exploits the relationship between the ori-
entation of equifocal (i.e. uniformly-blurred) contours in
the image and the plane’s tilt and slant angles. Compared
to previous methods that determine planar orientation, we
make fewer assumptions about the texture and remove the
restriction that images must be acquired through a pinhole
aperture. Our method estimates slant and tilt of an image
patch in a single image, as compared to depth from defocus
methods that require two or more input images. Experi-
ments are performed using a large set of test images.

1. Introduction
The recovery of 3D shape information from 2D inten-

sity images remains a primary objective of computer vi-
sion research. Numerous cues have been exploited to re-
cover depth information, many of which mimic those used
by the human visual system. Optical blur is one such cue
[1, 2, 3]. Computer vision methods that exploit optical
blur [4, 5, 6, 7] come in different forms, but most require
multiple input images with different lens settings. Given
the results of studies [2] that show the human visual sys-
tem’s ability to recover planar orientation from blur gradi-
ents in a single monocular presentation, it is somewhat sur-
prising that no comparable capability has been developed
in the computer vision literature. Methods that recover pla-
nar orientation from a single image, typically in the realm
of Shape from Texture, assume that images have been ac-
quired through a pinhole aperture, avoiding the issue of op-
tical blur.

The notion of a pinhole aperture, though conceptually
convenient, is problematic in practice. Even when the
smallest available aperture is employed, and regardless of
the perceptibility of blur in whole-image presentations, sig-
nificant blur is still present in an image. As in some of our
test images, with a 50mm lens at aperture f/22, our cam-

Figure 1. We recover the orientation (tilt θt and slope θs) of pla-
nar objects by finding equifocal contours in an image. Isodepth
contours in the scene (green lines on the planar surface) map to
equifocal contours (green lines on the sensor plane), and are or-
thogonal to the tilt direction. The 3D surface normal and its 2D
projection on the sensor are shown as red vectors.

era will produce a blur diameter of 5 pixels for objects at
1m when focused at a distance of 0.8m. When focused
at infinity, the same lens configuration will produce a blur
diameter of more than 7 pixels for an object at 5 meters. In-
deed, we will show that a blur cue of this magnitude is suf-
ficient to recover planar orientation when using the small-
est available aperture (f/22) on a high-end digital camera.
Moreover, as the size of individual pixels on digital image
sensors continue to shrink in accordance with Moore’s law
(with increasing spatial resolution), the blur magnitude will
increase in pixel terms even if it is fixed in terms of visual
angle. Equivalently, the same blur diameter (as measured
in pixels) will be observable in smaller aperture images as
pixel sizes continue to shrink.

This paper presents, for the first time, a single image
method for the recovery of planar orientation using an opti-
cal blur cue. In that it makes no assumption about the cam-
era settings - the aperture can be small or large - the method
offers improved generality over current planar orientation
schemes. The method first recovers planar tilt by finding
the direction of maximal blur gradient, and then recovers
slant by finding the angle that, when back-projected, pro-
duces equifocal contours in both principal directions (see
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Figure 1). As will be demonstrated in the experiments of
Section 5, our method is applicable to a wide range of tex-
tures: anisotropic textures, textures lacking dominant spa-
tial frequencies, and those that consist of repeating patterns.

The method is tested on a large new test set for evaluat-
ing planar orientation algorithms over a range of finite aper-
tures. It consists of 1404 camera images of 9 planar textures
at 26 carefully-controlled orientations, each photographed
with 6 different apertures. Our method produces an average
error in estimated tilt of 2.8◦ over the entire test set, and
below 1.5◦ on images captured with aperture f/22, which
represents improved performance as compared to existing
methods [8, 9] that assume a pinhole aperture. Average er-
ror in estimated slant is 5.4◦, which is comparable to the
state of the art in planar orientation. We also test the method
against several natural images, producing results that suc-
cessfully capture the 3D structure of the scene.

The method makes two assumptions about the input im-
ages. First, the texture pattern is assumed to be homo-
geneous. Second, the blur gradient is assumed to be lin-
ear across the image patch. This second assumption holds
automatically when the surface is planar, provided that no
point in the patch interior lies on the focal plane. This sec-
ond assumption is common to methods that recover depth
from defocus, and is necessitated by the inherent ambigu-
ity that points on either side of the focused depth exhibit
equal amounts of blur (see Figure 2). The homogeneity as-
sumption is a common one for methods that recover pla-
nar orientation by shape from texture, though some meth-
ods make the more restrictive assumption that the texture
is isotropic. The need for a homogeneity assumption arises
in our problem, since changes in the contrast of the texture
would be confounded with a change in blur. In addition to
these assumptions on the input images we, like most depth
from defocus methods, presume access to camera informa-
tion embedded in a JPEG images’s EXIF header - namely
the aperture, focal length, and focused distance.

2. Relation to Previous Work

2.1. Depth from Defocus

Depth from defocus (DFD) methods exploit the relation-
ship between image blur and a 3D point’s depth relative to
the focused distance. These methods require at least two
images taken with different lens settings (aperture or focal
position). Several older methods [4, 10] for DFD measure
the change in some sharpness metric at each image location,
and relate that change to depth through the known change in
lens settings. More recent algorithms [5, 6] for DFD recon-
struct both the scene’s radiance and 3D structure by mini-
mizing a regularized energy function comparing the input
images to a rendered appearance of the current estimate.
Like our method, these DFD methods require that objects

Plane of Focus                                                           Lens                            Sensor Plane

σ
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s

Figure 2. Points located at depths other than that of the plane of
focus will appear blurred in the image. There is a ambiguity, as
points on either side of the plane of focus can produce the same
blur radius σ (red and blur ray-tracings). Like other defocus meth-
ods, we resolve this ambiguity by assuming that all surface points
within a patch are to one side of the plane of focus.

in the scene lie either entirely in front of or behind the fo-
cused distance.

To date, the only methods that have recovered any depth
information from blur in a single image have been presented
by Pentland [4] and Subbarao and Gurumoorthy [11]. Both
estimate depth at step edges between regions of uniform ra-
diance by measuring the width of the blurred edges in the
image, but are unable to recover 3D information in other
regions of the image. Though different in application than
the method presented in this paper, Okatani and Deguchi
[12] have also recently presented a novel method for the es-
timation of scene scale from defocus cues in a single image.
That method requires a camera with a tilt lens.

2.2. Planar Orientation by Shape from Texture

Shape from texture methods recover the 3D structure of
scenes using two cues: the distance effect, where parts of
the scene further from the camera appear smaller, and the
foreshortening effect, where parts of the surface with high
slant appear compressed in the tilt direction (e.g. the green
equifocal contours appearing closer together at greater dis-
tances in Figure 1). Though shape from texture methods
have been developed to recover 3D information about gen-
eral scenes [13, 14], there are several that have been exclu-
sively designed to recover either the orthographic or projec-
tive mapping of a planar surface. Methods such as Brown
and Shvaytser [15] measure the deviation of the image’s
texture from isotropy in order to estimate the plane’s ori-
entation, assuming isotropic surface textures. Many other
methods such as Super and Bovik’s [16, 9] assume the tex-
ture map is a regular pattern – the extreme case is that that
the texture is dominated by a single spatial frequency. The
method of Galasso and Lasenby [17] relaxes this assump-
tion slightly, allowing for images with a small number of
local spatial frequencies. The recent method of Farid and
Kosecka [8] avoids any assumption about local spatial fre-
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quencies, but makes the assumption of random phase, pre-
cluding textures that have structured patterns. As mentioned
in the introduction, all shape from texture methods assume
a pinhole aperture.

Another related approach for a different application is
presented by Aggarwal and Ahuja [18], who propose a
method to estimate the orientation of a camera’s sensor by
measuring defocus over a known target composed of repeat-
ing texture elements.

3. Modelling the Blur Gradient

Consider an image patch in which the visible surface is
a plane of depth Z = Z0 + AX + BY , where X,Y , and
Z define the camera’s coordinate frame. Assume the im-
age is formed by a thin lens of focal length f . Let ds be
the distance from the sensor plane to the lens. Dividing the
equation of the plane by Z, multiplying by ds and rearrang-
ing, we obtain

1
Z

=
1
Z0
− A

dsZ0
x− B

dsZ0
y (1)

where x = dsX
Z and y = dsY

Z are pixel positions.
The goal of planar orientation algorithms is to accurately

estimate the slant and tilt of a 3D plane. As illustrated
in Figure 1, the slant θs ∈ [0, π2 ] is defined as the angle
between the optical axis and the plane’s 3D surface nor-
mal. The tilt θt ∈ [0, 2π] is defined as the orientation of
the 2D projection of the plane’s surface normal on the sen-
sor. The slant and tilt are the same at all positions in the
image patch, with tan(θs) = ‖∇Z‖ =

√
A2 +B2 and

(cos θt, sin θt) = ( ∂Z∂X ,
∂Z
∂Y ) = (A,B).

From the thin lens equation, given the camera’s aperture
F (f-number), focal length f , and sensor distance ds, the
blur radius σ is a linear function of inverse depth 1

Z ,

σ =
f

2F

(
ds

(
1
f
− 1
Z

)
− 1
)
. (2)

Substituting Eq. (1) into (2), we see that blur radius is a lin-
ear function of image position (x, y). In particular, the blur
gradient is constant across the image of the planar patch,

(
∂σ

∂x
,
∂σ

∂y
) =

f

2FZ0
(A,B). (3)

Our method estimates this constant blur gradient vector and,
from the known1 values of f, F, and Z0, we obtain the sur-
face slant and tilt from A,B.

1Most digital images files contain the camera intrinsics and the distance
to the focal plane in the EXIF header data.

Figure 3. (Left) The bark texture at orientation (θt, θs) = ( 3π
2
, π

4
).

Not that the resolution in the figure is∼ 1000 pixel per cm, so blur
cannot be seen here. (Right) Sharpness measured along rows (red)
and columns (green).

Figure 4. The average change in sharpness between adjacent, par-
allel linear contours of different orientations (slope of plots in Fig.
3 (right)). Blue points show measured data. The red curve is the
model fit to those observations.

4. Planar Orientation Estimation Algorithm
We begin by removing the intensity non-linearities in-

troduced by the camera’s tonescale function [19]. Next, as
image blur is best observed in the middle to high spatial
frequencies, we remove low frequencies from the image,
namely we subtract a low-pass filtered version of the image
from itself. The low pass filter is a Gaussian with standard
deviation 3 pixels2. As we will be comparing the blur along
different lines in an image, we define a simple sharpness
measure along a given line to be the standard deviation of
the residual image [20].

4.1. Estimating Tilt

The key to understanding our algorithm is the concept
of an equifocal contour - a contour along which the amount

2Experiments have shown the method to be insensitive to this value
within a range [2,4].
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Figure 5. Steps of the slant estimation method. (Left) Image in the canonical θt = 3π
2

view. (Center) Image after accounting for changes
in magnification consistent with the hypothesized slant angle bθs = π

4
. (Right) Image after accounting for both magnification and optical

blur. The hypothesized angle is taken as the slant estimate because the columns of the right image are determined to be equifocal.

of optical blur remains constant. Figure 3 (left) shows an
image with tilt θt = 3π

2 and slant θs = π
4 , acquired with

the focused distance at the same depth as the first row in the
image. Due to its tilt, rows of the image are equifocal and
depict isodepth contours of the plane, whereas columns of
the image cut orthogonal to the equifocal direction. Figure
3 (right) shows a plot of the sharpness measured along rows
(red) and columns (green). As expected, there is a clear
overall gradient in the sharpness across rows, but not across
columns. Our method for finding surface tilt searches for
the direction in which the sharpness gradient is maximized,
as we now explain.

Let θm be the direction of the sharpness gradient, which
is orthogonal to the orientation of parallel lines with the
highest line-to-line change in sharpness. This serves as our
estimate of the direction of the blur gradient, which is also
the tilt. For any orientation θ, the line-to-line change in
sharpness s(θ) is proportional to cos(θ − θm) (see Fig. 4).
To estimate tilt, then, we perform a least squares fit of a
small set of the measured s(θd) at orientations θd ∈ Θ to a
two parameter model

s(θ) = α cos(θ − θm). (4)

In our experiments we sample s at twelve values of θ.

4.2. Estimating Slant

Like the algorithm for finding the plane’s tilt, our slant
estimation method searches for an angle that best explains
the blur gradient. However, whereas the tilt estimation at-
tempted to find the direction of the sharpness gradient the
slant estimation method finds the angle θs that removes this
sharpness gradient. Slant is estimated as the angle whose
back-projection (image plane to surface plane) produces the
smallest gradient in the sharpness measure in the direction
of former depth variation.

Before searching for the slant angle, we rotate the image
into a canonical θt = 3π

2 view, as in Figure 5 (left), using
the computed tilt estimate from Sec. 4.1. For each candidate
slant angle θ̂s, we would expect a particular blur gradient
magnitude, according to Eq. 3.

The basic idea for estimating the blur gradient magnitude
and its corresponding slant is to apply a blur gradient that
is opposite to the inherent optical blur, such that we obtain
a uniformly blurred image. (Below we refer to this as a
“doubly” blurred image.) In particular, for the correct θs we
would expect the doubly blurred image to have no sharpness
gradient. This suggests that we compute a set of doubly
blurred images for candidate values θ̂s, and then choose the
one that minimizes the sharpness gradient.

In addition to applying this blur gradient, however, one
must also consider blur artifacts from perspective-induced
size changes of the surface texture. If a pinhole image
of a slanted plane were to be uniformly blurred, this uni-
formly blurred image would still have a sharpness gradient
due to the changing scale of texture elements. Since texture
elements at different depths would be different sizes (and
hence different spatial frequency components), the sharp-
ness measure would be non-uniform in the direction of the
tilt. This would occur in the case of a checkerboard texture,
for example.

To avoid this confound of focus and size (the latter being
a shape from texture cue only), we first rectify the image
using an appropriate homography

(x, y)→
(

x

(ds − y tan θs)
,

y

cos(θs)(ds − y tan θs)

)
for the candidate θ̂s value (see Fig 5 center). We then blur
the rectified image according to the blur gradient that is pre-
dicted by θ̂s. Each such rectified and doubly blurred image
is the rendered appearance of the planar surface as if it were
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θ1

θ2

Figure 6. The rectified and doubly blurred images represent differ-
ent slices through the scale space defined by the input image. The
green and red planes illustrate two such slices for candidate slant
angles θ1 and θ2.

rotated by θ̂s about the 3D line corresponding to the last
(most distant) row of the image. Equivalently, each image
corresponds to a slice of the scale space of the input image,
as illustrated in Fig. 6. For the correct slant θ̂s = θs, one
obtains a uniformly blurred (doubly blurred) and geometri-
cally rectified image (see Fig. 5 right) which now has no
sharpness gradient.

As currently implemented, the method computes the
doubly blurred image for ascending values of θ̂s in incre-
ments of 2◦. Slant estimation is terminated when the di-
rection of the sharpness gradient is reversed, which occurs
when θ̂s > θs. Because the complexity of computing the
doubly blurred image increases dramatically with θ̂s, this
has a considerable impact on overall complexity.

5. Test Data and Experimental Results
5.1. Test Image Set

To our knowledge, no existing calibrated data is avail-
able for testing our algorithm.3 We thus had to construct
a large, new, public test image set4. The test set consists of
1404 images: all combinations of 9 textures (a noise texture,
plus prints of the Brodatz textures grass, raffia, pigskin,
bubbles, bark, leather, weave, and sand; see Figure 7), 6
apertures (F = 22, 16, 11, 8, 5.6, 4), and 26 planar orienta-
tions (see Table 1). The included textures span a wide range
of characteristics. Raffia has a dominant spatial frequency
whereas the noise texture has a uniform power spectrum.
Grass has random phase whereas weave has repeating tex-
ture elements. Sand is roughly isotropic, whereas bark has
a directional bias. The chosen range of apertures spans 6
stops of exposure, from a near pinhole to an aperture that

3For example, the CURET database [21] is inappropriate. CURET sur-
face samples were 10 × 10 cm and viewed from a distance of Z0 =
200cm by a low resolution camera, resulting by design in a very low blur
gradient.

4http://www.cim.mcgill.ca/˜scott/texturedPlanes/

θs\θt −90◦ −80◦ −70◦ −60◦ −50◦ −40◦

30◦ X X X X X X
35◦ X X X X X X
40◦ X X X X X X
45◦ X X X X X
50◦ X X X

Table 1. Orientations included in the image test set.

offers very limited depth of field. The sampled tilt angles
can span the entire range of values when coupled with im-
age rotations of 90◦, 180◦, and 270◦, which can be achieved
without re-sampling intensity values. The chosen slant an-
gles are sampled evenly between 30 − 50 and degrees in 5
degree increments.

The test set consists of images acquired with a 10MP
Nikon D80 DSLR camera with a 50mm focal length lens.
Prints of the texture patterns were affixed to a planar stage
attached to a professional tripod with 1◦ markings on the
degrees of freedom. After carefully aligning the camera to
the tripod, the planar orientations were set by hand while
the camera was operated remotely to avoid altering its pose.

5.2. Orientation Estimation Results

The results of the tilt and slant estimation method are
shown in Table 2, including the overall accuracy and the
errors along the different testing parameters (texture, slant,
and aperture). The tilt was estimated by the method de-
scribed in Section 4.1, and measurements were taken over
orientations in increments of 15◦ (i.e. only six image rota-
tions were performed). The results indicate that the method
is quite successful despite sparse sampling of orientations.
Somewhat surprisingly, the tilt estimation errors are smaller
for larger F-numbers.

The results of our slant estimation are also shown in Ta-
ble 2. Due to the relatively longer execution time, we only
search for θs in increments of 2◦. Our tilt errors on F = 22
imagery average 1.3◦, as compared to 3.7◦ in [9]. Our slant
errors average 5.4◦ which, while worse than the 3.7◦ of [9]
or 3◦ of [8], include textures on which the existing algo-
rithms cannot work. The error of our slant estimates are
about double that of the tilt estimates. This may be due
in part to a cascading of the error from the tilt estimation,
as the slant estimation is designed to operate on an image
with a known tilt. The columns in Table 2 clarify this ef-
fect by giving the slant errors based on our estimated tilt,
as well as the errors based on the use of ground truth tilt in
its place. Within either column, however, we see optimum
performance for mid-sized apertures (F = 8 or 5.6). Poorer
performance results from the use of a small aperture due to
the lack of a substantial blur gradient, whereas poor perfor-
mance on large aperture images results from a similar prob-
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Figure 7. The Brodatz textures used in our experiments. In raster order: bark, bubbles, grass, leather, pigskin, raffia, sand, and weave.

tilt slant slant from
true tilt

overall 2.8 5.4 4.8
by texture noise 2.7 6.2 6.0

leather 3.2 6.8 3.4
pigskin 3.7 7.5 7.4

sand 2.8 3.9 3.9
bubbles 1.5 4.0 3.1

bark 3.8 4.2 4.0
weave 2.7 4.5 4.7
raffia 2.7 5.0 4.3
grass 3.6 6.8 6.9

by aperture F = 22 1.3 6.7 6.4
16 2.0 5.6 5.5
11 3.2 5.3 4.7
8 3.7 4.2 3.2

5.6 4.0 4.4 3.6
4 9.8 6.2 5.8

by slant 30◦ 2.3 5.9 5.4
35◦ 2.9 4.5 4.1
40◦ 2.6 3.9 3.5
45◦ 4.1 7.3 6.5
50◦ 3.1 6.1 5.1

Table 2. Average absolute tilt and slant errors (in degrees). Be-
cause errors from tilt estimation cascade into slant estimation, the
final column gives errors for slant estimation using the ground
truth tilt.

lem due to the fact that the blurring necessary to compute
the unslanted image (as in Figure 5 (Right)) is quite severe,
leaving little power in the middle to high spatial frequencies
used in the sharpness measure.

Though the images in our test set are captured at 10MP,
the number of pixels that we actually consider in our ori-
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Figure 8. Slant and tilt estimation errors, along with the corre-
sponding median execution time, as a function of patch size.

entation estimation scheme is about 6.5MP (roughly speak-
ing, the pixels contained within the largest circle that can
be inscribed in the image frame). The method is currently
implemented in Matlab, and the execution time depends sig-
nificantly on the parameters (particularly F and Z0) and the
plane’s slant. Over our 1404 image evaluation, the median
execution time was 34 seconds and 90% of the execution
times were under 2 minutes. The remaining 10% had wide
apertures (low F ) and high slants. Because each of the dou-
bly blurred images can be computed in parallel, an imple-
mentation that takes advantage of GPUs or multi-core pro-
cessors would easily achieve significant improvements in
speed.

5.3. Experiments with Image Size

Though the images captured for our test set are quite
large, such high-resolution imagery is not necessary to get
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good estimates of slant and tilt from our algorithm. In order
to understand the algorithm’s performance on lower resolu-
tion imagery, we have conducted an experiment to measure
the errors when using significantly fewer pixels. Using the
same test image set, we reduce the image resolution (using
Matlab’s imresize function) to a series of smaller val-
ues. At each test resolution, we run find the average slant
and tilt errors (in degrees), as well as the corresponding ex-
ecution times. The reduced-resolution imagery notionally
corresponds to the imagery that one would get if the cam-
era’s sensor were replaced by one of the same size, but with
significantly fewer pixels. The results of this experiment
are shown in Fig. 8, from which we see that the algorithm’s
performance degrades very gradually from full resolution
until a patch size of 1MP despite a significant reduction in
the median execution time. Below the 1MP boundary, how-
ever, the errors grow significantly.

5.4. Experiments with Natural Images

Though the use of our new test set is useful for comput-
ing the quantitative errors produced by our algorithm, it is
also interesting to consider its performance on natural im-
ages. While few natural images consist entirely of slanted,
homogeneously-textured planar surfaces, such surfaces are
common components of many natural images - particularly
urban scenes with significant man-made structures. More-
over, because our test set images are of printed textures, the
surface lacks depth variations that are common in more real
world textures. To assess the performance of our method
against such situations, we have developed a simple inter-
face that allows a user to select planar, textured patches of
images for orientation estimation. Some of the results are
shown in Figure 9. User-identified planar regions are de-
noted by red rectangles, and the estimated orientation is il-
lustrated by a vector indicating the direction of tilt, as well
as a disc whose minor axis is foreshortened in proportion to
the surface’s slant.

The staircase image (Figure 9 (row 1)) is of particular
interest because its regular structure gives a rough indica-
tion of ground truth. It consists of three planar surfaces
which meet at right angles to one another. As such, the left
and right planar regions should have identical orientations,
whereas the tilt of the middle region should be exactly op-
posite. The slants of the middle and left/right planes should
sum to 90◦, because they meet at a right angle. Indeed,
our method estimates orientations that closely match these
expectations. The estimated orientations (θt, θs) of these
surfaces are (359◦, 28◦), (186◦, 66◦), and (359◦, 26◦) for
the left, center, and right patches, respectively. These re-
sults are achieved in spite of non-uniform illumination (in
the left plane) and non-homogeneous regions of texture (the
dark spots in the right plane).

The brick image (Figure 9 (row 2)) depicts a similar sit-

Figure 9. Orientation estimation results on natural images. User-
selected bounding boxes (red dashed lines) denote planar surfaces
on which we performed orientation estimation. Vectors indicate
the tilt direction, and discs are foreshortened in proportion to the
surface slant.

uation. In this case, the orientations are estimated from sig-
nificantly smaller image regions (about 1MP) and the sur-
face has significant depth variations. Again, the tilt esti-
mates are nearly opposed at 182◦ and 2◦, and the slants of
52◦ and 42◦ for the left and right planes, respectively, sum
to nearly 90◦.

Though the structure of the final image does not imme-
diately suggest any way to verify the accuracy of our esti-
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mates, they seem to agree with the authors’ perception of
scene layout.

6. Conclusion
We have presented a novel method for the recovery of

planar orientation from a single image using blur cues. For
the first time, we have exploited the relationship between
equifocal contours in the image and a plane’s slant and tilt
angles. The accuracy of this method, which was tested
against a large set of test images, represents an improvement
in performance as compared to state of the art shape-from-
texture methods despite our making minimal assumptions
about the texture and removing the assumption that the im-
age be acquired with a pinhole aperture. Though related
to depth from defocus methods that require multiple input
images, our method produces results from a single image.

It remains to be seen whether the accuracy of this method
may be further improved by incorporating traditional shape
from texture cues without making additional assumptions
about the texture or aperture. With or without additional
cues, we intend to explore the ability of this method to re-
cover local orientation from smaller patches of images con-
taining objects with greater complexity than those consid-
ered in our tests.
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