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Abstract

Image segmentation is, in general, an ill-posed prob-
lem and additional constraints need to be imposed in or-
der to achieve the desired result. Particularly in the field of
medical image segmentation, a significant amount of prior
knowledge is available that can be used to constrain the so-
lution space of the segmentation problem. However, most
of this prior knowledge is, in general, vague or imprecise
in nature, which makes it very difficult to model. This is the
problem that is addressed in this paper. Specifically, in this
paper, we present Fuzzy-Cuts, a novel, knowledge-driven,
graph-based method for medical image segmentation. We
cast the problem of image segmentation as the Maximum
A Posteriori (MAP) estimation of a Markov Random Field
(MRF) which, in essence, is equivalent to the minimiza-
tion of the corresponding Gibbs energy function. Consid-
ering the inherent imprecision that is common in the a pri-
ori description of objects in medical images, we propose a
fuzzy theoretic model to incorporate knowledge-driven con-
straints into the MAP-MRF formulation. In particular, we
focus on prior information about the object’s location, ap-
pearance and spatial connectivity to a known seed region
inside the object. To that end, we introduce fuzzy connec-
tivity and fuzzy location priors that are used in combination
to define the first-order clique potential of the Gibbs energy
function. In our experiments, we demonstrate the applica-
tion of the proposed method to the challenging problem of
heart segmentation in non-contrast computed tomography
(CT) data.

1. Introduction

Image segmentation is at the core of higher level analysis
of medical images. It constitutes an integral part of a vari-
ety of applications including study of anatomical structures,
quantification of tissue volumes, localization of patholo-
gies, computer-aided diagnosis, and image-guided surgery.

However, image segmentation is, in general, an ill-posed
problem and additional constraints need to be imposed in
order to achieve the desired solution. The commonly used
constraints include the traditional regularization constraints
and those derived from prior knowledge about the objects
being segmented (e.g., shape, appearance, location). A va-
riety of approaches have been proposed both for image seg-
mentation in general [13] and for medical image segmenta-
tion in particular [16]. However, the energy minimization
formulation of the segmentation problem, or the equivalent
probabilistic formulation of Maximum a Posteriori (MAP)
probability estimation, tend to be more suitable for taking
into account the need for the incorporation of various con-
straints into the problem. Particularly in the field of medical
image segmentation, a significant amount of prior knowl-
edge is usually available and can be exploited to constrain
the solution space of the segmentation problem. However,
most prior knowledge available in the field of medical im-
age segmentation is vague or imprecise in nature, which
makes it very difficult to model. Moreover, it is an even
greater challenge to unify the information from such a wide
variety of sources into a single framework. This is precisely
the problem that is addressed in this paper.

In this paper, we present Fuzzy-Cuts, a novel, knowledge-
driven, graph-based method for medical image segmenta-
tion. Specifically, we cast the problem of image segmen-
tation as the MAP estimation of a Markov Random Field
(MRF), the solution to which can be obtained by minimiz-
ing the corresponding Gibbs energy function that is essen-
tially a sum of clique potentials. For the purposes of this
paper, we only consider the first- and second-order clique
potentials. We then use graph-cuts to minimize the Gibbs
energy [7, 9]. Our main contribution is the definition of
the first- and second-order clique potentials. We derive the
first-order clique potential using an elegant fuzzy set theo-
retic framework that attempts to model the inherent fuzzi-
ness found in the a priori description of objects in medical
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images. Specifically, we focus on the incorporation of the
following two types of prior knowledge:

• Appearance and spatial connectivity prior: While
segmenting organs in medical images, we know that
each organ is composed of a set of tissues which in turn
have a characteristic appearance or texture. This prior
knowledge about the texture or appearance of the tis-
sues composing the organs can be used to improve the
segmentation. However, since it is possible that two
different organs can be composed of the same tissue,
using only appearance information will result in the
erroneous segmentation of both the organs as a single
object. Hence, both appearance and spatial connectiv-
ity to the seed region of the object are equally impor-
tant in achieving a good segmentation result.

• Location prior: Since the acquisition process of med-
ical images is standardized, prior knowledge about the
anatomical location of the organs can be used to our
advantage while segmenting organs in medical images.
The location of organs is commonly specified relative
to other neighboring organs.

We model the appearance and spatial connectivity prior us-
ing fuzzy connectedness [19] and we use the framework of
fuzzy spatial relationships [1, 5] to model the location prior.
We define the second-order clique potentials using a gener-
alized Potts Interaction model. Specifically, we extend the
definition of Boykov et al. [2] to the multi-feature scenario.

This paper is organized as follows: In Section 2, we de-
scribe in detail the theoretical foundation of our Fuzzy-Cuts
algorithm. In Section 3, we demonstrate the application of
Fuzzy-Cuts to the challenging problem of heart segmenta-
tion in non-contrast CT data and present our segmentation
results. Finally, in Section 4 we present our conclusions.

2. Fuzzy-Cuts
In this section, we present the theory behind Fuzzy-Cuts.
Specifically, we begin by formulating the segmentation
problem as the minimization of a Gibbs energy function
with first- and second-order cliques in Section 2.1. We then
present our definitions for the first- and second-order clique
potentials in Sections 2.2 and 2.3, respectively. Finally, in
Section 2.4 we discuss the minimization of the segmenta-
tion energy using graph-cuts. A brief outline of the steps
involved in our segmentation algorithm Fuzzy-Cuts is given
below:

Algorithm Fuzzy-Cuts
1. Compute fuzzy connectivity prior (Sec. 2.2.1).
2. Compute fuzzy location prior (Sec. 2.2.2).
3. Compute first-order clique potentials using fuzzy connectiv-

ity and location priors (Sec. 2.2).

4. Compute second-order clique potentials using a generalized
Potts model (Sec. 2.3).

5. Minimize Gibbs energy using graph-cuts (Sec. 2.4).

2.1. Formulation of the segmentation problem

The image segmentation problem is a labeling prob-
lem. More formally, consider an image I and let P =
{1, 2, ...,M} be the set ofM pixels (or voxels) of the image
and let L = {l1, ..., lH} be the set of H labels assigned to
the H objects to be segmented. The goal of image segmen-
tation is to find a mapping F : P → L that is optimal in
some sense. The Markov random field (MRF) theory pro-
vides an elegant mathematical framework for solving this
problem [12]. Using the MRF framework, we define the
labeling F = {F1, ..., FM} as a field of random variables
defined on the set of pixels P , wherein each random vari-
able Fi is associated with a pixel i ∈ P and takes on a
value fi from the set of labels L. Any possible assign-
ment f = {f1, ..., fM} of labels to the random variables
is called a configuration of F , and is essentially a realiza-
tion of the field. Note that every configuration f defines
a segmentation and we denote the set of all possible con-
figurations as F. We also define a neighborhood system
N = {Ni | ∀i ∈ P} for the set of pixels P , where Ni is
the set of all neighbors of the pixel i ∈ P . For example, this
can be a 4- or 8-neighborhood system for 2D images and a
6- or 26-neighborhood system for 3D images. Now F qual-
ifies as an MRF with respect to the neighborhood system N
if and only if it satisfies the following two properties:

Positivity : Pr(f) > 0,∀f ∈ F
Markovianity : Pr(fi | fP−{i}) = Pr(fi | fNi

),∀i ∈ P

The Markovian property dictates that the label fi assigned
to a pixel i depends only on the labels fNi

assigned to its
neighboring pixels Ni. This condition is generally true for
medical images: the statistics of a pixel in a medical im-
age is related to the statistics of the pixels in a small local
neighborhood around it [6]. Now that we have an MRF, we
need to find a way to model the probability Pr(f | D) of
a particular labeling configuration f given the observed im-
age dataD. The Hammersley-Clifford theorem [8] provides
an elegant solution to this problem. According to this theo-
rem an MRF is equivalent to a Gibbs random field (GRF)
which includes an interesting and beneficial property: A
random field F qualifies as a Gibbs random field if it obeys
the Gibbs distribution that can be specified as follows:

Pr(f) = Z−1 · exp (−E(f)) , (1)

where Z is a normalizing constant and E(f) is the Gibbs
energy function. The Gibbs energy function

E(f) =
∑
c∈C

Vc(f) (2)

716



is essentially a sum of clique potentials Vc(f) over the set
of all possible cliques, C. A clique c, in our case, can be
defined as a subset of the set P of pixels such that each
member of the set is a neighbor of all the other members.
The value of Vc(f) depends on the local configuration of
the clique c. The number of pixels in a clique defines the
order of the clique and the corresponding clique potential.
For the purposes of this paper, we only consider first- and
second-order cliques. In this case, the Gibbs energy can be
expressed as follows:

E(f) =
∑
i∈P

Vi(fi) +
∑
i∈P

∑
j∈Ni

Vij(fi, fj), (3)

where Vi and Vij are the first- and second-order clique po-
tential functions, respectively. Now that we have found a
convenient way to model Pr(f | D), the optimal or MAP
labeling f∗ of the MRF can be defined as

f∗ = arg max
f∈F

Pr(f | D) (4)

which is equivalent to minimizing the Gibbs energy func-
tion E(f | D) conditioned over the observed data D as
shown below:

E(f | D) =
∑
i∈P

Vi(fi | D) +
∑
i∈P

∑
j∈Ni

Vij(fi, fj | D).

(5)
We refer to Eq. 5 as the segmentation energy. In order to
achieve the desired segmentation, our next challenges are
to define the first- and second-order clique potentials Vi and
Vij , and then to find an efficient way to minimize the seg-
mentation energy E(f | D). Section 2.4 discusses how to
minimize the energy function using graph-cuts. Sections
2.2 and 2.3 present our definitions of the first- and second-
order clique potentials.

2.2. Definition of first-order clique potential

The first-order clique potential Vi(fi | D) in Eq. 5 measures
the cost or penalty incurred in assigning a label fi to the
pixel i given the data D. In probabilistic terms, it measures
the degree to which the event of assigning a label fi to pixel
i disagrees with prior knowledge about the objects being
segmented. Owing to the inherent imprecision or fuzziness
that is common in the description of objects in medical im-
ages, we use a fuzzy set theoretic framework to unify any
prior knowledge about the objects being segmented. Specif-
ically, in this paper, we consider prior knowledge about the
object’s location, appearance and spatial connectivity to a
known seed region of the object. We define the first-order
clique potential as a fuzzy set defined on the image space S
as:

Vi(fi | D) = ĉ
(
t
(
µOz
χ (i), µOz

λ (i)
))

, (6)

where µOz
χ (i) : S → [0, 1] and µOz

λ (i) : S → [0, 1] are
fuzzy sets defined on the image space S, t is the t-norm
operator representing fuzzy conjunction of two fuzzy sets
and ĉ is the fuzzy complement operator. The term µOz

λ (i)
models prior information about the location of the object
Oz in the image space, where Oz is an object with label lz
and, fi = lz given a particular segmentation f . The term
µOz
χ (i) models prior information about the appearance and

spatial connectivity to a known seed region of the objectOz .
Further details about µOz

χ and µOz

λ are discussed in Sections
2.2.1 and 2.2.2, respectively.

2.2.1 Fuzzy connectivity prior

We use fuzzy connectedness, originally introduced by
Udupa et al. [19], to model µOz

χ (i) in Eq. 6, representing
prior knowledge about the appearance and spatial connec-
tivity to a seed region of the object Oz . Fuzzy connect-
edness allows us to realize a fuzzy theoretic model corre-
sponding to the following notion [17]:

“If two regions have about the same appearance
and if they are spatially connected to each other
in the image space then they most likely belong to
the same object.”

For the purposes of this paper, given a seed region of the
object, we can use fuzzy connectedness to compute a fuzzy
connected component that assigns to each pixel in the im-
age space a membership value that represents the degree to
which the pixel is connected to the seed region. The rela-
tion of “connectedness” is a fuzzy relation (as opposed to
a crisp binary relation) that is a function of both similarity
in appearance and spatial connectivity to the seed region of
the object. In other words, if a pixel is spatially connected
to the seed region through a path of pixels where each pixel
has an appearance close to that of the seed region, then it
is assigned a high membership value. Specifically, let R be
the seed region of the object Oz , then using fuzzy connect-
edness we define µOz

χ (i) as a fuzzy set representing a fuzzy
connected component of the object Oz as shown below:

µOz
χ (i) = max

pRi∈PRi

{
min

16j<|pRi|

[
ψOz (j, j + 1)

]}
, (7)

where pRi is any path of pixels connecting R to pixel i,
PRi is the set of all possible paths connecting R to i, and
ψOz (j, j+1) is a local fuzzy relation representing the affin-
ity or “hanging togetherness” between two consecutive pix-
els j and j + 1 on the path pRi consisting of |pRi| pixels.
According to Eq. 7, the degree of connectedness of a pixel
i to the object Oz is equal to the strength of the strongest
path connecting the seed region R to the pixel i where the
strength of a particular path is equal to the weakest affinity
between successive pairs of pixels along the path. The key
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to good performance from fuzzy connectedness depends
heavily on an appropriate definition of local fuzzy affin-
ity relation ψOz (p, q) representing the degree to which two
spatially adjacent pixels p and q in the image space belong
to the same object. A generalized form of the fuzzy affinity
relation proposed by Udupa et al. [19] is given by:

ψOz (p, q) =
{
µOz
ν (p, q) · µOz

α (p, q) if p 6= q
1 otherwise

(8)

where µOz
ν (p, q) is a simple adjacency test on the pixels p

and q which is equal to 1 if the two pixels are spatially adja-
cent in the image space and zero otherwise. The fuzzy func-
tion µOz

α (p, q) measures the degree to which the two pixels
p and q belong to the same object in terms of appearance,
taking their intensities and local image properties into ac-
count. A variety of definitions of the fuzzy affinity relation
are available in the literature [19, 15], most of them differ-
ing in the way the function µOz

α (p, q) is designed, and each
of them has its own advantages. Any definition of the fuzzy
affinity relation that is suitable to the specific application
at hand can be straightforwardly plugged into our frame-
work. For the purposes of this paper, we extend the defi-
nition of Udupa et al. [19] to a generalized multi-feature
version given by:

µOz
α (p, q) = w1 · Pr

(
x =

(Dp +Dq)
2

; θOz
1

)
(9)

+w2 · Pr
(
x = |Dp −Dq|; θOz

2

)
,

where Dp and Dq are the feature vectors of pixels p and
q, respectively. The term Pr(x; θOz

1 ) is a probability den-
sity function (pdf) of the feature values of the object Oz ,
and θOz

1 is the vector of parameters governing this density
function. The term Pr(x; θOz

2 ) is a probability density func-
tion of the difference in feature values of neighboring pix-
els (feature homogeneity) in the object Oz , and θOz

2 is the
vector of parameters governing this density function. The
weights w1 and w2 provide control over the amount of im-
portance given to individual terms in Eq. 9 and we assume
that w1 + w2 = 1. Specifically, the first term in Eq. 9 is the
feature-affinity term that measures the degree to which the
mean feature vector of pixels p and q belongs to the the ob-
ject Oz given a pdf of the feature values of the pixels in the
object. The second term in Eq. 9 is the homogeneity term
that measures the degree to which the feature homogene-
ity between the pixels p and q agrees with the homogeneity
with that of the object Oz given a pdf representing the fea-
ture homogeneity of neighboring pixels in the object Oz .

2.2.2 Fuzzy location prior

In this section, we describe various fuzzy approaches that
can be employed to define the spatial fuzzy set µOz

λ (i) (see

Eq. 6) representing prior information about the location of
the object Oz in the image space. Anatomical description
of the location of organs is often specified in terms of their
spatial relationship with other neighboring organs. Addi-
tionally, these descriptions are vaguely specified in natural
language which is far from a pixel-level description. As
a typical example, consider the anatomical location of the
heart which is usually described as follows:

• the heart is located “within” the thoracic cavity,

• the heart is located “between” the lungs, and

• the heart is located “superior to” the diaphragm.

However, notice that there is an inherent structure in this de-
scription that can be exploited. The location of the organ of
interest (heart) is specified as a conjunctive combination of
its spatial relationship with each neighboring organ. Based
on these inferences, we propose to model µOz

λ (i) as a fuzzy
conjunction of the spatial relationship of object of label fi
with each of its neighboring objects where each one of these
relationships is in turn a fuzzy spatial set. More formally,
we define µOz

λ (i) to be a fuzzy set defined on the image
space S as follows:

µOz

λ (i) = t
(
..., µOz

NOk
(i), ...

)
; k = {1, 2..., T} (10)

where T is the total number of neighboring objects involved
in the description of the location of the object Oz , µOz

NOk
(i)

is a spatial fuzzy set representing the spatial relationship of
the object Oz with the kth neighboring object, and t is the
t-norm operator representing a fuzzy conjunction of all the
fuzzy sets involved. A variety of ways to define different
kinds of fuzzy spatial relationships between objects (e.g.,
“inside”, “outside”, “left of”, “right of”, “above”, “below”).
are available in the literature, a summary of which can be
found in [1]. Note that the proposed model is applicable
assuming that we have either a crisp or fuzzy segmentation
of the neighboring objects. Alternatively to the proposed
model, one can also perform atlas registration and use a
probabilistic atlas [14] to represent µOz

λ (i).

2.3. Definition of second-order clique potential

The second-order clique potential function V2(fi, fj | D)
in Eq. 5 measures the cost or penalty incurred in jointly as-
signing a label fi to the pixel i and a label fj to the pixel
j ∈ Ni given the data D. We model this as a piecewise con-
stant prior using a Generalized Potts Interaction model [3]
as shown below:

Vij(fi, fj | D) = K(i, j | D) · (1− δ(|fi − fj |))

=
{
K(i, j | D) if fi 6= fj
0 otherwise

(11)

718



ForK(i, j | D) we extend the definition of Boykov et al. [2,
4] to a multi-feature version which we express as follows:

K(i, j | D) = exp
(
−(Di −Dj)TΣ−1

k (Di −Dj)
)
,
(12)

where Di and Dj are the feature vectors of pixels i and j,
respectively. The term Σk is the covariance matrix which
can represent the amount of variability allowed between the
feature vector values of two neighboring pixels within an
object. This function assigns a higher penalty if two neigh-
boring pixels with similar feature vector values are assigned
different labels. Specifically, if the dissimilarity between
the two pixels i and j in the feature space is within the
amount of variability allowed by Σk then the event of as-
signing different labels to them is highly penalized.

2.4. Minimizing E(f | D) using graph-cuts

Minimizing the energy function E(f | D) is a significant
part of the challenge in solving an image segmentation
problem. Graph-cuts provides an efficient way to optimize
such energy functions [10] owing to certain constraints.
Particulary in the case of a binary segmentation problem,
where L = {0, 1}, graph-cuts provides us with a globally
optimal solution provided that Vij is a sub-modular func-
tion (i.e., Vij(0, 0)+Vij(1, 1) ≤ Vij(0, 1)+Vij(1, 0)) [10].
The more general case of multiple-object segmentation,
where H > 2, with a segmentation energy based on the
generalized Potts model can be solved by formulating it
as a multi-way cut problem [3], which unfortunately has
been proven to be NP-Hard. However the α − expansion
algorithm proposed by Boykov et al. [3] has been proven
to find good approximate solutions to this problem.

In this section, we present a brief overview of the graph con-
struction procedure for the general case of multiple-object
segmentation that can be cast as an optimal multi-way cut
problem. The optimal multi-way cut problem is essentially
a generalization of the binary, two-terminal, s-t minimum
cut problem to the multiple-label scenario. Consider a
directed and edge-weighted graph G = 〈V, E〉 where V
is the set of vertices or nodes and E is the set of directed
edges with non-negative weights. The set V contains
two types of nodes: p-nodes, denoted VP , for the set P
of pixels (or voxels) in the image space, and l-nodes,
denoted VL, for the set L of labels which are also called
terminals. Thus, we have V = P ∪ L. Correspondingly,
we have two types of edges: n-links, denoted EN , for
edges between p-nodes, and t-links, denoted EL, for edges
connecting p-nodes to l-nodes. The t-links and n-links
correspond to first- and second-order cliques of the MRF
F discussed in Section 2.1. Two p-nodes are connected by
an edge if and only if they are neighboring pixels in the
neighborhood system N of the MRF F . Thus, each n-link
{i, j} ∈ EN , where i, j ∈ P , in the graph represents a

second-order clique between the corresponding pixels (or
sites) of our MRF F and hence is assigned a weight wij
equal to the corresponding second-order clique potential
(i.e., wij = K(i, j | D)) (see Section 2.1). Similarly,
each t-link {i, l} ∈ EL in the graph represents a first-order
clique of our MRF F corresponding to the pixel (or site)
i ∈ P and label l ∈ L and hence is assigned a weight wil
based on the corresponding first-order clique potential (i.e.,
wil = Wi − Vi(l), where W > max

l∈L
{Vi (l)}) (see Sec-

tion 2.1). A multi-way cut is a subset of edges C ∈ E such
that all the l-nodes or terminals are completely separated in
the induced graph G(C) = 〈V, E − C〉. Additionally, it is
required that no proper subset of C separates the terminals
in G(C). The cost |C| of the multi-way cut is equal to
the sum of its edge weights. The optimal multi-way cut
problem corresponds to finding the minimum cost multi-
way cut. With the current graph construction it is easy to
see that the minimum-cost multi-way cut minimizes the
segmentation energy in Eq. 5. A summary of the weights
assigned to the different types of edges in the graph G is
depicted in the following table.

Edge Weight (Cost) for
{i, j} K(i, j | D) {i, j} ∈ N
{i, l} Wi − Vi(l) i ∈ P, l ∈ L

3. Experiments: Heart Segmentation
In this section, we demonstrate how to apply Fuzzy-Cuts to
the problem of heart segmentation in non-contrast CT data.
Specifically, we applied Fuzzy-Cuts to segment the heart in
2D axial slices taken at the z-level of the origin of aorta. A
sample image is shown in Figure 1(a). Notice that this is
a binary (foreground-background) segmentation problem:
we have only two labels (L ∈ {0, 1}) where the heart is
our foreground object and everything else is considered as
background. Also note that we only use one feature per
pixel, namely the intensity value of the pixel, and we use a
4-neighborhood system. In Sections 3.1 - 3.5 we discuss
the implementation details of each individual step in the
Fuzzy-Cuts Algorithm. Finally, in Section 3.6 we present
the segmentation results obtained and compare them with
the results obtained using other methods.

3.1. Computation of the fuzzy connectivity prior

We compute the fuzzy connectivity prior using Eqs. 8 and
9. We use only the feature affinity term in Eq. 9 by setting
w1 = 1 and w2 = 0. We use a Gaussian mixture model
to model the pdfs of the intensity values of the foreground
and background object. Specifically, we model the pdf of
the foreground (heart) using a single Gaussian distribution
representing the intensities of the blood and muscle tissues
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(a) (b)
Figure 1. (a) An axial CT slice taken at the z-level of the origin
of aorta. (b) The foreground (green) and background (blue) seed
regions interactively specified by the user.

of the heart, and we model the pdf of the background using
a mixture of three Gaussian distributions representing the
air, fat and bone tissues of the organs neighboring the heart.
The parameters of these Gaussian distributions can be de-
rived from seed regions corresponding to each tissue which
can be obtained either automatically or interactively. For
the purposes of this paper, the parameters of the Gaussian
distributions are determined from the user-initialized seed
regions in each of the tissues involved. Specifically, the user
provides one or more brush strokes for each tissue using an
interactive tool. Figure 1(b) depicts the user-initialized seed
regions for the foreground and background objects and Fig-
ures 4(a) and (b) depict the fuzzy connectivity priors of the
foreground and background objects.

3.2. Computation of the fuzzy location prior

According to prior knowledge from anatomy, the location
of the heart in Figure 1(a) can be described as follows:

• the heart is located “between” the lungs,
• the heart is located “within” the thoracic cavity, and
• the probability of a pixel belonging to the heart in-

creases as we go towards the center of the cavity be-
tween the lungs and inside the inner thoracic cavity.

In order to incorporate this prior knowledge into the seg-
mentation process, we first segment the lungs using simple
thresholding and connected component analysis. We then
segment the thoracic cavity using a dynamic programming
based method [11]. Note that the thoracic cavity encloses
the heart and the lungs. We compute a binary mask of
the cavity between the lungs and inside the thoracic cav-
ity by excluding the lung masks from the thoracic cavity
mask. We refer to this as the heart cavity mask. Figure 2
depicts the binary masks of the left lung, right lung, the tho-
racic cavity and the heart cavity. We use the binary mask of
the thoracic cavity to represent the spatial relation “within”
with the thoracic cavity. Note that a binary mask is a crisp
set which is a special case of a fuzzy set. We use a simple

normalized distance map to represent the prior knowledge
that the heart pixels are more likely to be found towards the
center of the heart cavity mask. In order to represent the
spatial relationship “between” with respect to the lungs, we
reduce it to two fuzzy directional relations, one with the left
lung and the other with the right lung. Let O1 and O2 be
the centroids of the left and right lung respectively, and let
−−−→
O1O2 be the unit vector representing the direction of the
vector joining O1 and O2. The heart is located in the direc-
tion of

−−−→
O1O2 of the left lung and in direction of

−−−→
O2O1 of

the right lung. We use the fuzzy mathematical morphology
based approach proposed by Bloch et al. [1] to model these
directional relationships. Figure 3 depicts the fuzzy maps
of all the spatial relationships discussed above. We com-
pute the fuzzy location prior of the foreground as a fuzzy
conjunction (t-norm) of the fuzzy maps of all the spatial
relationships. We use the “min” operator as the t-norm op-
erator to compute the fuzzy conjunction and we compute
the fuzzy location prior of background as a fuzzy comple-
ment of the foreground prior. Figures 4(c) and (d) depict the
fuzzy location prior of the foreground and the background
objects.

(a) (b) (c) (d)
Figure 2. Binary masks of: (a) left lung, (b) right lung, (c) thoracic
cavity, and (d) heart cavity.

(a) (b) (c) (d)
Figure 3. Fuzzy spatial relationships: (a,b) the heart is located “be-
tween” the left and the right lung, (c) the heart is located “within”
thoracic cavity, and (d) the probability of a pixel belonging to the
heart increases as we go towards the center of the heart cavity.

(a) (b) (c) (d)
Figure 4. (a,b) Depiction of the fuzzy connectivity prior for the
foreground and background object, respectively. (c,d) Depiction of
the fuzzy location prior for the foreground and background object,
respectively.
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3.3. Computation of first-order clique potentials

We compute the first-order clique potentials as a fuzzy con-
junction (t-norm) of the two fuzzy sets representing the
fuzzy connectivity prior and the fuzzy location prior as de-
tailed in Eq. 6. Specifically, we use the product as the t-
norm operator to compute the fuzzy conjunction. Figures
5(a) and (b) depict the first-order clique potentials for the
foreground and the background object.

3.4. Computation of second-order clique potentials

We compute the second-order clique potentials using a gen-
eralized Potts model (Section 2.3). Since we consider only
one feature value, namely the intensity, we set Σk equal to
the variance of the difference between intensity values of
neighboring pixels within the foreground and background
seed regions. Any variability between the intensities be-
yond Σk more likely belongs to the interface between the
foreground and the background object and hence receives a
high penalty. Since we consider a 4-neighborhood system,
we have two kinds of second-order cliques: (1) spatial inter-
actions between neighboring pixels along the x-axis, and (2)
spatial interactions between neighboring pixels along the y-
axis of the image. Figures 5(c) and (d) depict the potentials
of the second-order cliques along the x- and y-directions.

(a) (b) (c) (d)
Figure 5. (a,b) Depiction of the first-order clique potentials for the
foreground and background object, respectively. (c,d) Depiction
of the second-order clique potentials between pixels along the x-
and y-directions, respectively.

3.5. Energy minimization using graph-cuts

After computing all the terms of the Gibbs energy, we con-
struct the graph (Section 2.4). Since the problem under con-
sideration is a binary segmentation problem, optimization
using graph-cuts provides a global minimum for our seg-
mentation energy.

3.6. Results and Discussion

Figure 6 depicts the segmentation result of Fuzzy-Cuts in
comparison with other approaches. Specifically, we evalu-
ated the performance of Fuzzy-Cuts in the following three
scenarios:

(a) Fuzzy-Cuts with and without fuzzy location prior
Figures 6(a) and (b) depict a comparison of the seg-
mentation results obtained using Fuzzy-Cuts with and

(a) (b)

(c) (d)
Figure 6. A comparison of segmentation results obtained using dif-
ferent methods. (a) Fuzzy-Cuts, (b) Fuzzy-Cuts using fuzzy con-
nectivity prior only, (c) BGC (Sec. 3.6 (b)), (d) RFC (Sec. 3.6 (c)).

without fuzzy location prior. As is evident from Fig-
ure 6(b) that due to the lack of location prior the tissues
of the neighboring organs spatially connected to the
foreground seed region by a strong fuzzy affinity path
were incorrectly labeled as foreground. This suggests
that the location prior is equally important in achieving
the desired segmentation result.

(b) Fuzzy-Cuts vs Graph-Cuts
Figures 6(a) and (c) depict a comparison of Fuzzy-
Cuts against the graph-cuts-based method proposed by
Boykov et al. [4] (BGC). Since their method uses
only intensity-likelihood information to define the t-
link weights, all the pixels that have an appearance
similar to the seed region of the foreground were la-
beled as foreground irrespective of whether or not they
actually belong to the foreground.

(c) Fuzzy-Cuts vs Relative Fuzzy Connectedness
Figures 6(a) and (d) depict a comparison of Fuzzy-
Cuts against simple, non-iterative, relative fuzzy con-
nectedness proposed by Udupa et al. [18] (RFC). In
relative fuzzy connectedness, a pixel is assigned to an
object that has the strongest affinity path to it in com-
parison to all the other objects. Since the affinity is
a function of appearance only, the segmentation leaks
out into neighboring organs with similar appearance as
the foreground.
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We applied Fuzzy-Cuts to segment the heart in the origin of
aorta slice (see Figure 1) of non-contrast cardiac CT scans
from 30 patients. The accuracy of the segmentation results
obtained were evaluated by measuring the degree of overlap
with manual segmentation performed by an expert. The de-
gree of overlap was estimated using the Dice similarity co-
efficient (DSC). Table 1 provides descriptive statistics of the
DSC measure obtained by Fuzzy-cuts in comparison with
other methods discussed above.

Table 1. Descriptive statistics of the Dice similarity coeffi-
cient (DSC) obtained by Fuzzy-Cuts in comparison with BGC
(Sec. 3.6 (b)), and RFC (Sec. 3.6 (c)).

DSC (mean± std) DSC Range
Fuzzy-Cuts 0.88± 0.03 [ 0.78, 0.95 ]

RFC 0.79± 0.10 [ 0.60, 0.95 ]
BGC 0.59± 0.08 [ 0.44, 0.76 ]

4. Conclusion
In this paper, we have presented Fuzzy-Cuts, a novel,
knowledge-driven, graph-based method for medical image
segmentation. Fuzzy-Cuts introduces a new fuzzy theoretic
approach to incorporate knowledge-driven constraints into
the MAP-MRF formulation of the segmentation problem. It
combines the strengths of both fuzzy and probabilistic ap-
proaches into an elegant segmentation framework. Fuzzy-
Cuts currently incorporates prior information about an ob-
ject’s location, appearance, and spatial connectivity to a
known seed region. In general, any prior that can be rep-
resented as a spatial fuzzy set can be readily incorporated
into the proposed framework. The incorporation of addi-
tional prior information (e.g., shape) will be a topic of our
future research.
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