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Abstract

Multiple view 3D video reconstruction of actor per-
formance captures a level-of-detail for body and clothing
movement which is time-consuming to produce using ex-
isting animation tools. In this paper we present a frame-
work for concatenative synthesis from multiple 3D video
sequences according to user constraints on movement, po-
sition and timing. Multiple 3D video sequences of an ac-
tor performing different movements are automatically con-
structed into a surface motion graph which represents the
possible transitions with similar shape and motion between
sequences without unnatural movement artifacts. Shape
similarity over an adaptive temporal window is used to
identify transitions between 3D video sequences. Novel
3D video sequences are synthesized by finding the optimal
path in the surface motion graph between user specified
key-frames for control of movement, location and timing.
The optimal path which satisfies the user constraints whilst
minimizing the total transition cost between 3D video se-
quences is found using integer linear programming. Results
demonstrate that this framework allows flexible production
of novel 3D video sequences which preserve the detailed dy-
namics of the captured movement for an actress with loose
clothing and long hair without visible artifacts.

1. Introduction
Acquisition and reconstruction of human motion from

temporal sequences of people has been a central issue in
computer vision over the past decade with advances in the
video-based recovery of both skeletal motion and temporal
surface sequences which capture both the body, loose cloth-
ing and hair movement. The reuse of captured temporal
sequences of people (2D video, 3D marker positions, skele-
tal motion, 3D video surfaces) for animation production is
an important problem. Both 2D and 3D video sequences
contain detailed information on changes in shape and ap-
pearance which is not represented in skeletal motion. There
is considerable interest in the use of the surface detail infor-

mation in animation production as it is prohibitively expen-
sive to reproduce from the underlying skeletal motion. In
this paper we introduce a framework for user controlled an-
imation from captured 3D video sequences of people with
loose clothing that preserves the non-rigid surface deforma-
tion from multiple view video reconstruction whilst allow-
ing constraints on motion, timing and position.

Multiple view reconstruction of human performance as
a 3D video has advanced to the stage of capturing detailed
non-rigid dynamic surface shape of the body, clothing and
hair during motion[1, 24, 19, 22]. Full 3D video scene cap-
ture holds the potential to create truly realistic synthetic an-
imated content by reproducing the dynamics of shape and
appearance currently missing from marker-based motion
capture. However, in 3D video capture the acquisition re-
sults in an unstructured volumetric or mesh approximation
of the surface shape at each frame without temporal cor-
respondence, estimating correspondence has been the sub-
ject of much recent work [2, 1, 24, 23, 18, 17]. Although
these techniques could be combined with the surface motion
graph to achieve smooth transitions, accurate dense corre-
spondence of dynamic surfaces remains an open problem. It
makes the reuse of this kind of data more challenging than
conventional motion capture data. In this work performing
concatenative synthesis based on 3D shape and motion sim-
ilarity does not require explicit surface correspondence.

For conventional motion capture, reuse is performed ei-
ther by learning motion characteristics [13] or example-
based methods [21, 12, 11, 4]. Since learning methods risk
losing important detail by abstraction they cannot guarantee
that synthesized motion is physically realistic and existing
systems do not focus on the satisfaction of high-level con-
straints. Example-based methods which resample the cap-
tured data retain the realism and allow a higher-level control
[5, 6, 16].

Previous research in example-based concatenative syn-
thesis from motion capture [21, 12, 11, 4] employed a di-
rected graph or Markov chain to represent temporal connec-
tions between frames and search for a path satisfying user
constraints. These approaches only deal with low degree-
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of-freedom (DOF) skeletal motion capture data and cannot
be directly extended to high DOF 3D video surface motion
capture data.

Concatenative animation was introduced in video-based
rendering as a means to record and replay the detailed dy-
namics of a scene from 2D video [16]. Previous work con-
structed animation transition graphs from 3D video either
manually [19] or interactively [26]. Video segments are
re-ordered and concatenated at transition points to generate
new animated contents. The smoothness of transitions be-
tween video segments seriously affects the quality of the fi-
nal synthesis results. Automatic identification of transitions
based on similarity metrics becomes an important problem
for high-quality synthesis.

In this paper, we extend example-based methods for
motion synthesis from conventional motion capture to 3D
video. Temporal 3D video sequence matching [7, 8] is used
to automatically identify transitions. A framework is in-
troduced to allow synthesis according to user defined con-
straints on location, timing and motion key-frames. The
system is able to automatically detect transitions, construct
a motion graphs and search for the optimal path to satisfy
user-defined constraints. The realism and flexibility of the
motion synthesis is demonstrated on real data from a public
database of 3D video which contains sequences of an ac-
tress performing multiple motions with complex non-rigid
movement of clothing and hair.

2. Related work

2.1. Motion synthesis

Motion synthesis from conventional motion capture can
be categorized into learning and example-based methods.
Learning approaches model general motion characteristics
and cannot guarantee that the synthesized motion is phys-
ically realistic or looks natural. Example-based methods
provide an attractive alternative as there is no loss of de-
tail from the original motion dynamics. Current example-
based methods that allow high-level constraints on synthe-
sized motion (timing, position etc.) on skeletal motion cap-
ture and 2D video are reviewed.

Tanco and Hilton [21] introduced a two-level statistical
model for skeletal motion capture to synthesize novel mo-
tions: a Markov chain on states (clusters of frames) and
a Hidden Markov Model on frames. According to user-
defined key-frames, synthesis is performed by searching for
an optimal state sequence which minimizes the transition
cost between key-frames. This approach does not allow
user-defined constraints on position or timing. Similarly,
Lee et al. [12] provided a two-layer structure allowing effi-
cient search and interactive control from skeletal data. The
recursive search terminates when the depth of the spanning
tree reaches a given maximum. In both approaches a sim-

ilarity metric based on the skeletal pose is used to identify
transitions over a fixed temporal window. Kovar et al. [11]
construct a directed graph on skeletal motion capture se-
quences, referred to as a motion graph, where edges cor-
respond to segments of motion and nodes identify connec-
tions between segments. Motion segments include original
motions and generated transitions. Synthesis is performed
by an optimal graph walk that satisfies user-defined con-
straints. Similarly, Arikan et al. [4] employ a direct graph
to connect motion segments where each node corresponds
to a motion and each edge a transition. A hierarchical ran-
domized search is used to generate motions. Reitsma and
Pollard [15] evaluate motion graphs for skeletal motion data
and find the capability degrades rapidly with increases in
the complexity of environment or tasks. Wang and Boden-
heimer [25] evaluate the optimally weighted cost metric for
finding transitions through a cross-validation and user study.

Previous approaches on databases of skeletal motion
capture exploit the known temporal correspondence for
similarity metrics to identify transitions. Skeletal motion
capture does not retain the detail of captured surface dy-
namics. Multiple view reconstruction of 3D video captures
the detailed non-rigid surface dynamics as a surface mesh
sequence without temporal correspondence. However, cur-
rent methods cannot be directly extended to 3D video since
similarity metrics have considered only skeletal pose. This
does not account for surface shape deformation in cloth-
ing and hair. The challenge addressed in this work is to
identify transitions for 3D video sequences without tem-
poral correspondence and allow user-controlled synthesis
to produce novel animations. In previous research on 3D
video surface similarity has been defined either manually or
through a shape descriptor. Starck et al. [20] manually iden-
tify transitions to construct a motion graph for interactive
control using 3D video sequences to preserve dynamic sur-
face shape and appearance. Xu [26] et al. re-use 3D video
in a framework of motion editing they compute shape his-
tograms in spherical coordinate system to measure frame-
to-frame dissimilarity. In this paper we identify transitions
between 3D video sequences using shape similarity over an
adaptive window. A framework is introduced to allow con-
catenative synthesis from 3D video according to high-level
user-specified constraints on motion, position and timing.
This overcomes limitations of previous example-based ap-
proaches to animation from either skeletal motion capture
or 3D video data.

2.2. 3D shape matching

In the 3D object retrieval literature, shape descriptors
have been widely used to measure similarity. However,
these descriptors aim to discriminate between rigid shapes
for different object classes (book, mug, chair) and inter-
class variations (cars, chairs) instead of instances from se-
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quences of the same moving non-rigid object, a person,
which differ in both shape and motion. Although a num-
ber of researchers have addressed the problem of temporal
similarity for skeletal motion in the concatenative motion
synthesis literature [21, 12, 11, 4], temporal shape matching
for 3D video sequences of people with unknown temporal
correspondence has received limited investigation.

Osada et al. [14] introduced Shape Distribution that
computes the probability distribution of geometric proper-
ties of an object as a signature to discriminate similar and
dissimilar models. Johnson and Hebert [9] presented a 3D
shape-based object recognition system using Spin Images
that encode the density of mesh vertices projected onto an
object-centred space into a 2D histogram. Ankerst et al.
[3] provided a 3D Shape Histogram descriptor based on a
partitioning of the space where an object resides to clas-
sify a molecular database. Kazhdan et al. [10] introduced a
Spherical Harmonic Representation as a 3D shape descrip-
tor for 3D object retrieval that is constructed by measuring
the energy contained in different frequency bands. A com-
parison of these shape descriptors and their natural exten-
sion to temporal matching (via temporal filtering of static
similarity) is provided in [8].

3. Surface Motion Graph
The framework comprises two stages: pre-processing

the database of the 3D video sequences to construct a sur-
face motion graph; and motion synthesis by optimizing the
graph-path to satisfy user-defined constraints and minimize
the transition cost between 3D video segments. The sur-
face motion graph represents the possible transitions be-
tween 3D video sequences which is analogous to motion
graphs [11] for skeletal motion capture sequences. Transi-
tion points between 3D video sequences are identified with-
out temporal correspondence using a volumetric temporal
shape similarity metric.

Surface motion transitions from a 3D video sequence
X = {xi} to Y = {yj} are defined as an overlapped sub-
sequence of n frames. Smooth transitions could be gener-
ated by linear blending overlapped frames,

zk = (1− α(t))xi+k + α(t)yj+k (1)

where zk denote the blended frame of xi+k and yj+k,
k = −n

2 ...n
2 . Since the process of blending requires surface

correspondence which is unknown in this work, Equation 1
is only used as a guide to identify transitions frames xi ∈ X
and yj ∈ Y and adaptive window length n which maxi-
mize the similarity between the motion sequences X and Y
over the transition. The concatenation then performs as a
switch from X to Y at the centre of the window. Although
previous work on estimating dense surface correspondence
[2, 1, 24, 23, 18, 17] could be combined with surface mo-

tion graph to achieve smooth transitions, accurately esti-
mating dense correspondences of dynamic surfaces remains
an open problem. Linear blending of overlapped frames to
generate a smooth transition will be solved in future work.

Subsequent sections present a metric for temporal shape
similarity without surface correspondence and introduce the
estimation of transitions according to Equation 1 for con-
structing the surface motion graph.

3.1. Temporal Shape Similarity

To identify possible transitions between 3D video se-
quences without temporal correspondence we use a time-
filtered volumetric shape histogram to define a similarity
metric over a temporal window. The time-filtered volumet-
ric shape histogram has previously been shown to give good
performance for human motion recognition on 3D video se-
quences of people [8]. A shape histogram partitions the
space containing an object into disjoint cells correspond-
ing to the bins of a histogram. Given a 3D surface mesh, a
volume-sampling spherical shape histogram is constructed
as follows:

1. A volumetric representation is constructed by rasteriz-
ing the surface into a set of voxels that lie inside the
model.

2. Space is transformed to a spherical coordinates system
(r, φ, θ) around the centre of mass of the model.

3. A 3D histogram is constructed in spherical coordi-
nates, accumulating the voxels in the volume represen-
tation with bins size (∆r, ∆φ,∆θ).

4. The final histogram is normalized by the total number
of occupied voxels.

To estimate the orientation about the vertical axis which
maximizes the shape similarity, or equivalently minimizes
the difference in shape distribution, the spherical histogram
similarity is evaluated for all feasible rotations in θ. Instead
of rotating the 3D mesh, we generate a high resolution his-
togram first and shift it with 1◦ resolution in θ, and re-bin to
a coarse histogram. For frame i with no rotation, the high
resolution histogram H∗

i,0 = h∗i (r, φ, θ) and its coarse his-
togram is Hi,0; for frame j with α◦ rotation (α is integer),
the high resolution histogram H∗

j,α = h∗j (r, φ, f(θ, α)),
f(θ, α) = (θ + α)%360◦, and its coarse histogram is Hj,α.
The similarity between frame i and j is computed as the
minium Euclidean Distance between Hi,0 and Hj,α,

s(i, j) = min
α∈{0,...,359}

{‖ Hi,0 −Hj,α ‖} (2)

In this paper, we set (∆r, ∆φ,∆θ) = (10, 20, 40) for the
coarse histogram, the optimal bin size reported for human
shape similarity [8].

1480



Figure 1. An example of Surface Motion Graph. Double circles denote start and end key-frames. The higher-level graph represents the 3D
video sequences and transitions, the lower-level graph represents all possible motion graphs between a particular start and end keyframe.

3.2. Transitions

In this work, we define transitions to maximize the tem-
poral shape similarity according to the linear blend in Equa-
tion 1. Given two 3D video sequences X = {xi} and
Y = {yj}, the (i, j) element of the frame-to-frame shape
similarity matrix SXY is defined as

SXY (i, j) = s(xi, yj) (3)

where s(xi, yj) is computed by Equation 2. Since the shape
similarity is symmetric s(i, j) = s(j, i), the temporal shape
similarity is computed as a linearly weighted average of
the shape similarity for individual frames about the central
frame of the window,

S′
XY (i, j, n) =

n−1
2∑

k=−n−1
2

SXY (i + k, j + k) · w(k) (4)

where w(k) is normalised version of w′(k), i.e. w(k) =

w′(k)/
∑n−1

2

k=−n−1
2

w′(k) and w′(k) = min{k + n+1
2 ,−k +

n+1
2 }. Note that n is the window size and transition length,

if n is an even number, the central frame (i, j) is at half
way between frames. The transition between X and Y is
the global minimum of S′

XY (i, j) over all possible i, j, n,

(iopt, jopt, nopt) = arg min
i,j,n

{S′
XY (i, j, n)} (5)

Without blending, the concatenation is performed as a
switch at the central frame, i.e. xbioptc → ybjoptc+1.

3.3. Automatic Graph Construction

A surface motion graph is a two-level directed graph. In
the higher-level, each node represents a motion and each
edge a transition with direction. In the lower-level, each

node represents a frame and each edge a sequence of frames
connecting them. Figure 1 illustrates an example of surface
motion graph for four motions. Once the user have defined
the higher-level graph and selected key-frames, the lower-
level graph will be generated automatically as follows:

1. Initialization: Insert all 3D video sequences as edges
and their terminal frames as nodes to create a discon-
nected graph (Figure 1 upper-right).

2. Identify transitions: If there is an edge between 3D
video sequences X and Y in the high-level graph, the
transition represented as (iopt, jopt, nopt) is evaluated
according to Equation 5.

3. Insert transitions and key-frames: The start and end of
transitions, key-frames, if they are not in the graph, are
inserted as nodes, breaking existing edges (3D video
sub-sequences) into smaller ones. Transitions are in-
serted as edges to join either different 3D videos or
different parts of the same sequence.

4. Motion Synthesis
Motion synthesis is performed by optimizing over all

possible paths on the lower-level surface motion graph be-
tween user selected key-frames to minimize the total tran-
sition cost whilst satisfying constraints on position and tim-
ing. Note that the optimization considers loops to allow
repetition of cyclic motion.

4.1. Cost Function

The cost C(F ) of a path F through the surface motion
graph is defined as a combination of the total transition cost
Cs(F ), location cost Cd(F ) and time cost Ct(F ),

C(F ) = Cs(F ) + wd · Cd(F ) + wt · Ct(F ) (6)
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where wd and wt are weights for distance and time con-
straints respectively. wd = 1/0.3 and wt = 1/10 are set
equal to an error of 30 centimeters in distance with an er-
ror of 10 frames in time [4] with a relative weight of 1.0 to
emphasise the smoothness cost. Individual cost terms for
transitions, distance and time are defined as follows:

Total Transition Cost Cs(F ) for a path F is defined as
the sum of dissimilarity for all transitions between the input
3D video sequences concatenated to,

Cs(F ) = s(F ) =
Nt∑
i=1

si (7)

where Nt denotes the total number of transitions and si the
filtered dissimilarity for ith transition .

Distance Cost Cd(F ) for a path F with Nf frames
is computed as the absolute difference between the user-
specified target distance dT and the total travelled distance
d(F ),

Cd(F ) = |d(F )− dT | (8)

where d(F ) =
∑Nf−1

i=1 ‖ ci+1 − ci ‖. ci+1 and ci denotes
the projection of the centroid of the mesh at frame i+1 and
i onto the ground respectively along the vertical axis.

Time Cost Ct(F ) for a path F with Nf frames is eval-
uated as the absolute difference between the user-specified
target time tT and the total travelled time t(F ),

Ct(F ) = |t(F )− tT | (9)

where t(F ) = Nf . Here, the time is measured in “frames”
and the rate of captured 3D video sequences is 25fps.

4.2. Path Optimization

In this section, we present an efficient approach to search
for the optimal path that best satisfies the user defined con-
straints. The optimal path Fopt is found to minimize the
combined cost C(F ) defined by Equation 6,

Fopt = arg min
F
{C(F )} (10)

Enumerating all possible paths from the start to end key-
frame and evaluating the combined cost will give the global
optima. But when cycles appear in the graph, the number
of paths may become infinite. To avoid this, in stead of
enumerating all paths, we enumerate all walks (paths with-
out any loop) from the start to end key-frame and all loops
attached to each walk. The global optimal path must be
one of compositions of a walk and attached loops. For a
particular walk l0 with attached loops {l1, . . . , lNl

}, we de-
note it as l = {li} and corresponding number of repetitions
n = {ni}, i = 0, . . . , Nl, n0 = 1, a path F can be repre-
sented as n · l and the optimization becomes,

Fopt = nopt · lopt = arg min
n,l

{C(n · l)} (11)

The transition, distance and time costs become,

Cd(F ) = |n · d(l)− dT | (12)
Ct(F ) = |n · t(l)− tT | (13)
Cs(F ) = n · s(l) (14)

where f(l) = {f(l0), . . . , f(lNl
)}, f = d or t or s de-

fined in Section 4.1. Once the surface motion graph is con-
structed, there may be more than one walks from the start
to end key-frames. Let Nk denote the number of walks, for
each walk lk,0, lk is determined and the objective is to find
nk,opt according to Equation 11,

nk,opt = arg min
nk

{C(nk · lk)} (15)

and the index of global optimal walk and repetitions kopt

will be,
kopt = arg min

k=1,...,Nk

{C(nk,opt · lk)} (16)

finally, the optimal path Fopt is found as a composition of
optimal walk and loops lopt = lkopt together with optimal
repetitions nopt = nkopt,opt,

Fopt = nkopt,opt · lkopt (17)

The decomposition of an arbitary path to a walk and at-
tached loops is described in Section 4.2.1 and the composi-
tion of a walk and attachted loops back to a path in Section
4.2.3. The optimization of repetitions for a given walk and
loops according to Equation 15 are solved as Integer Linear
Programming (ILP) problems in Section 4.2.2.

4.2.1 Graph Path Decomposition

Depth-First Search (DFS) is performed to decompose all
possible paths between user-selected start and end key-
frames to walks and loops . Given an adjacency matrix adj
for the graph, source and sink (start and end key-frames),
the algorithm is implemented recursively and its pseudo
code is presented in Algorithm 1. This gives a set of walks
and each of them associated with a set of loops. Note that
although loops may be nested such that one loop included
another, in our optimization all possible nested sub-loops
are included as illustrated in Figure 2.

(a) (b)

Figure 2. Examples of Graph Path Decomposition that consider
nested sub-loops.
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4.2.2 Integer Linear Programming

Optimization of Equation 15 is non-linear, however, it can
be converted to constrained Integer Linear Programming
(ILP) sub-problems. For a particular walk with loops l, the
corresponding number of repetitions n is optimized as four
independent ILP sub-problems, p = 1, 2, 3, 4.

minimize Cp · np (18a)
subject to np,0 = 1 (18b)

0 ≤ ni ≤ +∞, integer (18c)
Cd,p · np ≥ 0 (18d)
Ct,p · np ≥ 0 (18e)

Cd,p, Ct,p, Cs,p and Cp are 1D vectors representing the
distance, time and total transition (smoothness) costs for
each sub-problem p, whose elements are computed as,

Cd,p,i = signd(p) · wd · (d(li)− dT ) (19a)
Ct,p,i = signt(p) · wt · (t(li)− tT ) (19b)
Cs,p,i = Cs(li) (19c)
Cp,i = Cd,p,i + Ct,p,i + Cs,p,i (19d)

where signd = (1, 1,−1,−1) and signt = (1,−1, 1,−1).
For each sub-problem, np,opt is solved efficiently by a stan-
dard ILP solver. The optimal repeat times of loops n for a
particular walk with loops l is then computed as the one that
achieves the minimun combined cost,

nopt = arg min
p=1,2,3,4

{Cp · np,opt} (20)

4.2.3 Graph Path Composition

Once the optimal walk and loops lopt with repetitions nopt

have been evaluated, a complete path can be composed by
F = nopt · lopt. The final motion sub-sequences are con-
catenated head-to-tail by matching the centroid of mesh at
transitions. However, some loops may indirectly connect to
the walk via other loops, e.g. l2 via l1 connecting to l0 in
Figure 2(b), if the repetition of via-loops are zero, we can-
not make the path. The feedback strategy is presented in
Algorithm 2, when the isolation of loops happens, a con-
straint is added to the ILP solver.

5. Results and Evaluation
3D character animations are synthesized from a public

available database of 3D video [19] which comprises an ac-
tress (Roxanne) wearing three different costumes: a game
character with shorts and t-shirt (Character1); a long flow-
ing dress (Fashion1); and a shorter tight fitting dress (Fash-
ion2). For each costume periodic (walk,run,stagger), mo-
tion transitions (walk to run, run to walk, walk to stand,

stand to walk) and other motions (hit, twirl) are included.
The captured 3D video sequences are unstructured meshes
with unknown temporal correspondence and different mesh
connectivity at each time-frame. A mesh contains approxi-
mately 100k vertices and 200k triangles.

Surface motion graphs are automatically constructed
from 3D video sequences for the performer within three
different constumes. Optimization is done in seconds for a
user-defined constraints on distance and time. Motions are
concatenated without post-processing or blending to show
the raw 3D video transitions. Synthesis results are presented
in accompanying videos. An example of selected frames
from a synthesized motion for Fashion1 captured in a virtual
camera view is shown in Figure 3. These results demon-
strate that the motion synthesis preserves the detailed cloth-
ing and hair dynamics in the captured 3D video sequences
and does not produce unnatural movements at transitions.

Motion synthesis is evaluated for the three surface mo-
tion graphs which represents potential transitions with four
pairs of key-frames for each costume as shown in Table 1.
Evaluation is performed by synthesizing motions for target
constraints on distance of 1−20m in 1m intervals and times
of 1−40s in 1s intervals giving 800 sequences for each key-
frame pair and 9600 synthesized sequences in total. The
maximum, minimum and root mean square errors over all
synthesized sequences for distance moved and timing are
presented in Table 1 for the sequences generated from each
key-frame pair. This analysis shows that the maximum dis-
tance and timing errors are less-than 1% of the target indi-
cating that the path optimization generates sequences which
accurately satisfy the user-defined constraints. Smoothness
cost is evaluated as a weighted average of Hausdorff Dis-
tance for overlapped individual frames at transitions. The
weights are set to decrease about the central frame the same
way with w(k) in Equation 4. Computation times are given
for an ILP solver together with a Matlab implementation
of the synthesis framework running on a single processor
machine. The computation time is approximately constant
with respect to the distance and timing constraints as indi-
cated by the low standard deviation.

6. Conclusion
In this paper, we presented a framework for concatena-

tive human motion synthesis from 3D video sequences ac-
cording to user-defined constraints on movements, position
and timing. Transistions between 3D video sequences are
identified without the requirement for temporal correspon-
dence using 3D shape similarity over an adaptive tempo-
ral window. A surface motion graph is automatically con-
structed to represent potential transitions for both cross-
transitions between different motion sequences and self-
transitions in the cyclic motion. Path optimization is per-
formed between user-specified key-frames using standard
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Figure 3. Example meshes for synthesized motion from 3D video database of Roxanne. Fashion1: Pose#1 → Twirl#85. Target traversing
distance and time is 10 metres and 500 frames.

SMG: Key-frames Smoothness (cm) Distance error (m) Time error (frame) Cputime (sec.)
min max min rms max min rms max mean± dev.

Character1: Stand#1→ Hit#45 4.24 19.79 0.0001 0.17 0.96 0 0.16 22 14.43 ± 7.05
Stand#1→Walk#16 4.24 26.80 0.0002 0.21 0.92 0 4.28 23 12.21 ± 4.74
Walk#16→ Jog#13 4.24 26.80 0.0001 0.21 0.96 0 4.81 24 13.54 ± 4.98
Jog#13→ Hit#45 4.24 25.76 0.0002 0.20 0.98 0 3.88 24 12.20 ± 3.42

Fashion1: Pose#1→ Twirl#85 5.82 20.54 0.0001 0.23 0.95 0 3.76 24 12.79 ± 2.92
Pose#1→Walk#15 5.82 20.54 0.0001 0.47 0.99 0 4.31 24 5.65 ± 1.46

Walk#15→WalkPose#37 4.23 13.09 0.0000 0.33 1.00 0 5.85 25 12.01 ± 4.85
WalkPose#37→ Twirl#85 4.23 20.54 0.0001 0.29 1.00 0 4.77 25 10.10 ± 3.07

Fashion2: Pose#1→ Twirl#100 4.49 21.20 0.0000 0.23 0.95 0 7.74 25 12.87 ± 3.61
Pose#1→Walk#15 4.87 18.12 0.0008 0.39 0.98 0 8.78 25 7.09 ± 1.91

Walk#15→WalkPose#37 4.49 16.05 0.0002 0.36 1.00 0 8.24 25 14.95 ± 6.11
WalkPose#37→ Twirl#100 4.49 18.12 0.0002 0.28 1.00 0 8.16 24 10.51 ± 2.77

Table 1. Evaluation for Roxanne. A grid of target 20×40 (metres×seconds) is tested for each pair of key-frames shown in the first column.

ILP solver to satisfy constraints on distance and timing with
repeated motions for loops in the graph. Results demon-
strate that concatenative synthesis of novel sequences ac-
curately satisfy the user constraints and produce motions
which preserve the detailed non-rigid dynamics of cloth-
ing and loose hair. Linear blending of meshes to pro-
duce smooth transitions which requires accurate dense cor-
respondences of dynamic surfaces will be solved in future
work. This approach greatly increases the flexibility in the
reuse of 3D video sequences allowing specification of high-
level user constraints to produce novel complex 3D video
sequences of motion.
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Appendix

Find all walks(adj,source,sink,walk)
walk← source;
if source=sink then

walks = walk;
return;

else
walks=[];
foreach node in source’s neighbours do

if node not in walk then
new walks =
Find all walks(adj,node,sink,walk);
walks← new walks;

else
loop=[];
i = index of node in walk;
loop← walk(i:end);
if loop not in loops then

loops← loop;
end

end
end

end
Algorithm 1: Find all walks and loops by DFS

I := 1..Nl;
n← Solve ILP;
k = 1;
while exist i ∈ I, ni ≥ 1 and li not connected to l0 do

set a 2D matrix A according to n:
foreach i ∈ I do

if ni == 1 then
ak,i = 1;

else
ak,i = 0;

end
end
add constraints An ≥ 1 to ILP solver;
n← Solve ILP;
k = k + 1;

end
Algorithm 2: Feedback strategy
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