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Abstract

We propose a framework that can conveniently capture
heterogeneous relationships among multiple random vari-
ables. The framework is formulated based on a hybrid
probabilistic graphical model. It allows using both directed
links and undirected links to capture various types of rela-
tionships. Based on this framework, we develop a multi-
scale hybrid model for image segmentation. The multiscale
model systematically captures the spatial relationships and
causal relationships among such image entities as regions,
edges, and vertices at different scales. We further show how
to parameterize such a hybrid model and how to factor-
ize its joint probability distribution according to the global
Markov properties. Based on this factorization, we exploit
the Factor Graph theory to perform joint probabilistic in-
ference and solve for the image segmentation problem.

1. Introduction

Image segmentation is an important low level vision
problem. It provides the basis for other middle level or
high level problems such as object recognition, scene under-
standing, etc. In image segmentation, we deal with differ-
ent image entities such as pixels, regions, edges, junctions,
etc. Researchers have noticed that it is very important to
exploit the relationships between image entities for solving
the image segmentation problem. For example, it is hard
to distinguish the regions in the squares of Figure 1 purely
depending on their individual appearances. However, the
relationships of these regions to other entities such as their
nearby neighbors or long-range neighbors can help to dis-
ambiguate the problem.

Previously, researchers have incorporated different rela-
tionships as additional knowledge besides the image data.
They have included the global shape constraints, spatial re-
lationships, smoothness constraints, scene contexts, consis-
tency of image labels at multi-scales [21, 18, 9, 2, 12, 7],
etc. Incorporation of these information has been demon-

Figure 1. An example illustrating the importance of the contex-
tual relationships. Without contextual information, it is hard to
discriminate the regions within the rectangles.

strated to help solve the specific problem.
The natural relationships between different image enti-

ties are often heterogeneous. Some relationships can be
naturally interpreted as causal relationships. Other relation-
ships like the correlations or mutual interactions do not have
explicit causal meaning. All these heterogeneous relation-
ships can be useful and informative. The problem is how to
model them in a systematic way. We need a powerful tool
to address this modeling problem.

In machine learning community, Probabilistic Graphical
Models (PGMs) have been developed as a powerful model-
ing tool. The PGM is a marriage between the graph theory
and statistics. It provides a systematic way to model various
relationships and is intuitively easy to understand. In addi-
tion, principled methods have been developed to perform
probabilistic inference in a PGM to search for the optimal
states of random variables, given the evidence.

Traditionally, different types of PGMs are developed to
model certain kinds of relationships. These PGMs can be
divided into the undirected PGMs and the directed acyclic
PGMs. The Markov Random Fields (MRF) [9, 2, 20] and
Conditional Random Fields (CRF) [16, 15] mainly capture
the non-causal relationships such as the spatial correlation.
On the other hand, the Bayesian Network (BN) [24] [29]
[7] and Hidden Markov Model (HMM) mainly model the
causal relationships. Both of them have been exploited to
solve computer vision problems.

Although the undirected PGMs and directed PGMs can
individually capture certain types of relationships, they can-
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not model heterogenous relationships. Since heterogenous
contextual relationships extensively exist in real problems,
there is a need for a single framework that can simultane-
ously capture all these relationships in a systematic way.

In this paper, we present such a framework that is ca-
pable of capturing heterogeneous relationships and perform
inference in a principled way. To demonstrate the capabil-
ity of this framework, we apply it to the figure/ground im-
age segmentation problem. Our main contributions include:
1) we propose a multiscale hybrid probabilistic graphical
model to represent multiple image entities and capture the
heterogeneous contextual relationships among them at dif-
ferent scale levels; 2) we show how to factorize the joint
probability distribution according to the graphical structure
of the hybrid model and how to parameterize such a model;
3) based on the factorization, we demonstrate how to use the
Factor Graph theory to perform joint probabilistic inference
in a principled way to solve the problem.

2. Overview
Our model is built on a multiscale framework, as shown

in Figure 2. There are different image entities in image seg-
mentation, such as regions and edges. Traditionally, im-
age segmentation can be treated as a problem to label each
pixel of the image. The group of connected pixels with the
same label form a segmented region. This type of method
is classified into the region-based image segmentation. On
the other hand, image segmentation can also be treated as a
problem to find the boundary of the object of interest. This
type of method is the edge-based image segmentation. Be-
sides, there are other image entities that may also be use-
ful. For example, edges can intersect to form vertices (junc-
tions). In this paper, a vertex means the intersection of mul-
tiple (more than two) edge segments. These entities also
provide useful information for image segmentation. The
vertex implies the intersection of multiple regions.

There are many heterogeneous contextual relationships
between image entities that naturally exist and are informa-
tive. We capture these useful relationships in the multiscale
framework through different types of links. Figure 3 illus-
trates those captured contextual relationships.

There are some natural causalities between these im-
age entities. First, two adjacent regions intersect to form
an edge. If these two regions have different labels, they
form/cause a boundary between them. Second, multiple
edges intersect to form a vertex. Third, the region labels
at the fine layer induce the the region labels at the coarse
layer. In the mutliscale framework, the image labels that
are consistent in different scales tend to be the reliable la-
bels. Traditionally, the prior works assume the inter-layer
relationships can be formulated as a coarse-to-fine Markov
chain. Such a framework tries to propagate the image labels
from the coarse layer to the fine layer. Different from these

Figure 2. The multiscale framework consists of the inter-layer di-
rected links pointing from the fine layer to the next coarse layer.
The intra-layer undirected links (thick lines) represent the spatial
correlations between region labels. For clarity, not all inter-layer
and intra-layer links are drawn.

Figure 3. Image entities and the heterogeneous contextual relation-
ships among them.

prior works, we think the image labels at different scales
naturally form a kind of causal relationships since the im-
age labels at the fine layer vote to predict the image labels
at the next coarser layer.

Besides those causalities, there are some other useful
contextual relationships. In image segmentation, the spa-
tial correlations between image labels have often been ex-
ploited to encourage the local homogeneity of image labels.
These spatial relationships are naturally modeled by undi-
rected links. In addition, we observe that the boundary of a
natural object is normally smooth. The connection between
two connected edge segments therefore should be locally
smooth. We enforce the smooth connection by the undi-
rected links between the edge nodes. These links require
the edge labels to be consistent with each other and form a
smooth contour along the object boundary.
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(b)

Figure 4. (a)A part of the oversegmentation. (b)A single-scale hy-
brid model capturing the heterogeneous contextual relationships.

3. A Hybrid Model for Image Segmentation
The proposed multiscale hybrid graphical model has a

similar model structure at each scale, as shown in Figure
4. To construct the model at each scale, we first overseg-
ment the image to produce a map of oversegmentation. Fig-
ure 4(a) shows a small part of this oversegmentation. From
this map, we automatically find the small regions (hereafter
referred to as superpixels) {yi}, the edge segments {ej},
and the vertices {vk}. We then construct a hybrid model in
Figure 4(b) to model these image entities and capture their
heterogeneous relationships. In addition, each image en-
tity has its own measurements that are represented by the
shaded circles. The measurements of region nodes are rep-
resented by feature vectors x extracted from the observed
image. The measurements of edge nodes can be defined
similarly. In this paper, we simply use the average gradient
magnitude as the edge measurement. The orientation of the
edge segment is another useful information. It will be used
to calculate the angle between two edge segments. This an-
gle will be used to enforce the smoothness constraint. The
measurement of the vertex is discretized according to the
Harris corner response [10].

Specifically, the hybrid model consists of region nodes
y = {yi, i = 1..n}, edge nodes e = {ej , j = 1..m}, vertex
nodes v = {vt, t = 1..w} and their measurements {xi, i =
1..n}, Me = {Mej

, j = 1..m} and Mv = {Mvt
, t =

1..w}. All nodes except the measurements xi and Mej are
discrete nodes. yi ∈ {1,−1} and the state 1 means this
region is a foreground. ej and vt are binary nodes. ej = 1
means this edge segment belongs to the object boundary,
and vice versa. vt = 1 means the vertex is actually a corner
along the object boundary.

The relationships among these nodes are captured by ei-
ther directed or undirected links. The directed links repre-
sent the causalities between image entities, while the undi-
rected links represent their spatial relationships (or mutual
interaction). Specifically, the directed links between two
different image entities (e.g. between regions and edges),
between the same image entity at different scales, and be-
tween an image entity and its measurement, model the
causal relationships. The undirected links between the same
type of image entities at the same scale model their local
spatial relationships or the local smoothness constraint.

4. Factorization in the Hybrid Model
Given the hybrid graphical model, we need factorize the

joint probability distribution (JPD) of the random variables
according to the graphical structure. We first show how to
factorize the JPD in a single-scale hybrid model. Next, we
will show how to factorize the JPD in the whole multiscale
hybrid model.

4.1. Factorization in the Single-scale Hybrid Model

Based on the graphical structure of the hybrid model in
Figure 4, we can factorize the JPD of all the nodes accord-
ing to the conditional independence relationships encoded
in the graphical structure. Our factorization is based on
the Global Markov Property (GMP) of a hybrid graphical
model (cf. Chapter 3 of [17]).

Direct application of the GMP theory requires finding
the moral graph and the ancestral set [17]. For a complex
hybrid graphical model, it is not so straightforward to find
the moral graph and the ancestral set. It is therefore diffi-
cult to directly apply the GMP for factorization. However,
Buntine [4] presents a simpler way to find out the general
formulation of factorizing the JPD represented by a hybrid
graph G. This method is based on the concepts of com-
ponent subgraphs and master graph. We briefly recall the
definitions of these concepts:

• Definition 1: Given a chain graph G over some vari-
ables X , the component subgraphs are a coarser par-
tition of variables X than the chain components, and
are the coarsest partition where the set of subgraphs
induced by the partition are connected, undirected or
directed (but not mixed) subgraphs of the chain graph.

• Definition 2: The master graph is a directed graph GM
whose nodes are component subgraphs and arcs con-
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Figure 5. (a) the master graph of the single-scale hybrid model. (b)
the component subgraphs of the single-scale hybrid model.

nect two component subgraphs Ui and Uj if a variable
in Ui has a child in Uj in the graph G.

This method basically works as follows: a hybrid model
is first represented by its master graph and component sub-
graphs. Based on the master graph, the JPD of the hybrid
model is decomposed into the product of functions defined
on component subgraphs. Since each component subgraph
is not a hybrid model, its probability function can be easily
factorized into products of potentials or conditional proba-
bilities. Buntine has proved the equivalence of this method
to the Global Markov Property (cf. Theorem 2 in [4]). We
use it to factorize the JPD of the proposed hybrid model.

For notational simplicity, we use the superscript (l) to
indicate that the random variables y,x, e,v,Me,Mv be-
long to the lth layer. Let Al denotes the variables in the
undirected part of the lth layer, i.e. Al = {y(l),x(l)},
where y(l) represents all the region nodes at the lth layer
and x(l) represent all region features calculated from the
down-sampled image at this scale. Similarly, let Bl de-
notes all the random variables in the directed part of the lth
layer, i.e. Bl = {e(l),M(l)

e ,v(l),M(l)
v }. Let Cl = {e(l)}

and Dl = {M(l)
e ,v(l),M(l)

v } denote the subset of nodes in
Bl = Cl ∪Dl.

Figure 5(a) shows the master graph of the single-layer
hybrid model. Its component subgraphs are shown in Figure
5(b). Based on the master graph and Butine’s theory [4], the
JPD is factorized as

P (A
l
, B

l
) = P (A

l
, C

l
, D

l
) = P (D

l|Cl
)P (C

l|Al
)P (A

l
) (1)

Each term in Eq.(1) can be formulated according to the
component subgraphs. The factorization of P (Dl|Cl) di-
rectly follows the d-separation rule of a directed acyclic
graph [23], i.e.

P (D
l|Cl

) = P (M
(l)
e ,v

(l)
,M

(l)
v |e(l)

) (2)

=
Y

ej∈Cl

P (Mej
|ej)

Y
vt∈Dl

P (vt|pa(vt))P (Mvt |vt)

where pa() denotes the parents of a node.
According to the component subgraph that consists ofAl

and Cl, we choose the conditional probability P (Cl|Al) as
the following formulation,

P (C
l|Al

) ∝
Y

ej∈Cl

P (ej |pa(ej))
Y

<j,k>,(ej,ek)∈Cl

h(ej , ek) (3)

where ej and ek correspond to the adjacent edge segments
in the lth layer. The function h(ej , ek) is a pairwise po-
tential function that measures the compatibility of the edge
labels according to the smoothness constraint. It depends
on the angle ωjk between the edges ej and ek. The function
h(ej , ek) is defined as

h(ej , ek) = {αδ(ej)δ(ek) + (1− α)[1− δ(ej)δ(ek)]} · δ(ωjk < ω
∗
)

+ (1− α)δ(ωjk ≥ ω
∗
) (4)

where δ is the indicator function and ω∗ = π
6 is a threshold

of the small angle. α is a weight to balance the penalty and
set as 0.1. This definition penalizes the case that two edge
segments along a small angle are both labeled as true. Oth-
erwise, a sharp corner may exist in the boundary. It there-
fore encourages a smooth connection between edges.

With the factorization in Eq.(2) and Eq.(3), the condi-
tional probability P (Bl|Al) can be finally factorized as

P (B
l|Al

) = P (D
l|Cl

)P (C
l|Al

) (5)

∝
Y

ej∈Cl

P (Mej
|ej)

Y
vt∈Dl

P (vt|pa(vt))P (Mvt |vt)

Y
ej∈Cl

P (ej |pa(ej))
Y

<j,k>,(ej,ek)∈Cl

h(ej , ek)

In addition, we borrow the idea of Conditional Random
Field to model the spatial correlations between region la-
bels. We directly model the posteriori probability distribu-
tion of the region labels using potential functions, i.e.

P (y|x) ∝
Y
i∈V

φ(yi, xi)
Y
i∈V

Y
j∈Ni

exp(yiyjλ
T
gij(x)) (6)

where V is the set of all region nodes and y is the joint la-
beling of all region nodes. Ni denotes the neighborhood
of the ith region, which is automatically detected from the
topological relationships among the regions. λ is the param-
eter vector. gij(·) represents the feature vector for a pair of
region nodes i and j.

The first part φ(yi, xi) is the unary potential, which la-
bels the ith region according to the local features. It indi-
cates how likely the ith region will be assigned the label yi
given the local features xi. We use a discriminative classi-
fier based on a multi-layer perceptron (MLP) to define the
unary potential, which is similar to [11].

The second part exp(yiyjλT gij(x)) is the pairwise po-
tential that defines the interactions between region labels.
We use a log-linear model to define this potential, which
depends on the inner product of the weight vector λ and
the pairwise feature vector gij(x). The pairwise feature
vector gij(x) is defined as [1, |xi − xj |]T , where | · | is
the component-wise absolute value operator. Similar defi-
nitions have been used in [15].

Substituting Eq.(5) and Eq.(6) into Eq.(1), the JPD of all
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nodes in the lth layer is factorized as

P (A
l
, B

l
) (7)

= P (B
l|Al

)P (y
(l)|x(l)

)P (x
(l)

)

=
1

Zl

Y
ej∈Cl

P (Mej
|ej)

Y
vt∈Dl

P (vt|pa(vt))P (Mvt |vt)

Y
ej∈Cl

P (ej |pa(ej))
Y

<j,k>,(ej,ek)∈Cl

h(ej , ek)

Y
i∈V

φ(yi, xi)
Y
i∈V

Y
j∈Ni

exp(yiyjλ
T
gij(x))

where Zl is a normalization constant. Since the image x(l)

is observed, P (x(l)) becomes a constant and is therefore
merged into the normalization constant.

Among these factorized terms, P (Mej
|ej) and

P (Mvt
|vt) are the likelihood models of the measurements

of edges and vertices. P (vt|pa(vt)) and P (ej |pa(ej))
are the conditional probabilities of the vertex nodes and
the edge nodes. The term h(ej , ek) is the smoothness
term defined in Eq.(4). The remaining terms φ(yi, xi) and
exp(yiyjλT gij(x)) are the potential functions.

4.2. Factorization in the Multiscale Hybrid Model

The multiscale hybrid model consists of several directed
parts and undirected parts. Its factorization of the JPD is
more complex and requires more derivations. We can fac-
torize the JPD based on the Global Markov Property. For
convenience, we still use the method in [4] to factorize the
joint probability. The master graph of the multiscale hybrid
model (with 3 layers) is represented as Figure 6(a). Among
these layers, the layer 1 corresponds to the finest layer. The
component subgraphs of the multiscale hybrid model are
shown in Figure 6(b).

According to the master graph, the joint probability
in the multiscale hybrid model with 3 layers can be first
coarsely decomposed as follows:

P (A
1
, B

1
, A

2
, B

2
, A

3
, B

3
) (8)

= P (A
3|A2

)P (B
3|A3

)P (A
2|A1

)P (B
2|A2

)P (A
1
)P (B

1|A1
)

Based on the component subgraphs, we use the Theorem
2 and Lemma 4 in [4] to further decompose each term into
the product of potential functions or conditional probabili-
ties. The conditional probability P (Bl|Al) can be similarly
factorized as the single-scale hybrid model in Eq.(5). The
conditional probability P (Al+1|Al) is actually the transi-
tion function between the adjacent layers. It has also been
used in the multiscale MRF models (eg. [3, 27]). Our defi-
nition of P (Al+1|Al) is as follows:

P (A
l+1|Al

) (9)

= P (y
(l+1)

,x
(l+1)|y(l)

,x
(l)

)

= P (y
(l+1)

,x
(l+1)|y(l)

)

∝
Y

yj∈Ll+1

φ(yj , x
(l+1)
j )

Y
<j,k>∈Ll+1

exp(yjykλ
T
gjk(x

(l+1)
)) ·

Y
ys∈Ll+1,pa(ys)∈Ll

ψ(ys, pa(ys))

where pa(ys) denotes the parents of ys at the next finer
layer. The second equation is due to the Global Markov
Property because {y(l+1),x(l+1)} is conditionally indepen-
dent of x(l) given y(l). The term φ(yj , x

(l+1)
j ) is the unary

potential. The term exp(yjykλT gjk(x(l+1))) is the pair-
wise potential. The term ψ(ys, pa(ys)) is defined according
to the causal inter-layer relationships between region nodes.
For example, if 60% pixels of the region ys are classified as
the label +1 at the next finer layer given the configuration
of pa(ys), then ψ(ys = 1, pa(ys)) is set as 60%. In other
configurations, ψ(ys, pa(ys)) are similarly defined.

For a K-layer multiscale hybrid model, the JPD is fac-
torized as follows:

P ({Al
, B

l}K
l=1) (10)

= P (A
1
)P (B

1|A1
)

K−1Y
l=1

P (A
l+1|Al

)P (B
l+1|Al+1

)

=
1

Z
Y

yj∈L1

φ(yj , x
(1)
j )

Y
<j,k>∈L1

k∈Nj

exp(yjykλ
T
gjk(x

(1)
)) · P (B

1|A1
) ·

K−1Y
l=1

[
Y

yj∈Ll+1

φ(yj , x
(l+1)
j ) ·

Y
<j,k>∈Ll+1

k∈Nj

exp(yjykλ
T
gjk(x

(l+1)
)) ·

Y
ys∈Ll+1,pa(ys)∈Ll

ψ(ys, pa(ys)) · P (B
l+1|Al+1

) ]

where Z is the normalization constant. Nj is the neighbor-
hood of the jth region at the (l + 1)th layer. The terms
P (B1|A1) and P (Bl+1|Al+1) can be factorized according
to Eq.(5).

Substituting Eq.(5) into Eq.(10), the JPD in the multi-
scale hybrid model is finally factorized as follows:

P ({Al
, B

l}K
l=1) (11)

= P (A
1
)P (B

1|A1
)

K−1Y
l=1

P (A
l+1|Al

)P (B
l+1|Al+1

)

=
1

Z
Y

yj∈L1

φ(yj , x
(1)
j )

Y
<j,k>∈L1,k∈Nj

exp(yjykλ
T
gjk(x

(1)
)) •

K−1Y
l=1

[
Y

yj∈Ll+1

φ(yj , x
(l+1)
j )

Y
<j,k>∈Ll+1

k∈Nj

exp(yjykλ
T
gjk(x

(l+1)
))

Y
ys∈Ll+1,pa(ys)∈Ll

ψ(ys, pa(ys))] •

KY
l=1

[
Y

ej∈Cl

P (Mej
|ej)

Y
vt∈Dl

P (vt|pa(vt))P (Mvt |vt)

Y
ej∈Cl

P (ej |pa(ej))
Y

<j,k>,(ej,ek)∈Cl

h(ej , ek)]

4.3. Parameter Learning

The parameter setting in the multiscale hybrid model is
not a trivial task. However, we can decompose the parame-
ter learning due to the conditional independence encoded in
the graphical structure. For the child nodes in the directed
part of the hybrid model, they follow the same conditional
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(a)

(b)

Figure 6. (a) the master graph of the multiscale hybrid model. (b)
the component subgraphs of the multiscale hybrid model.

independence rules analogous to the d-separation rules [23]
in a standard Bayesian Network. This property can simplify
the parameter learning of the conditional probability distri-
butions (CPDs). Given the complete training data (i.e. all
labels are given), the CPDs of each child node can be inde-
pendently learned with the labels of the child node and of
its parents. For example, we can separately learn the likeli-
hood model of edge measurements by Mixture of Gaussian
analysis. The learning of CPDs for discrete nodes is simpli-
fied as counting the frequency of certain joint parent-child
configurations in the training data.

The parameter learning for the undirected links is more
difficult. We first learn the unary potential φ by training the
MLP classifier. We then learn the weight λ of the pairwise
potential by Maximum Likelihood Estimation (MLE). We
can prove that the partial derivative of the log-likelihood
w.r.t the weight λ is proportional to the difference between
the empirical distribution and the expected distribution of
the pairwise region labels. This result is due to the use of
a log-linear model to define the pairwise potentials. It is
similar as the standard MLE parameter learning in a CRF
model. The main difference is that the expected distribution
should be estimated directly from the hybrid model, which
is more complex than the inference in a CRF model. Due to
the space limitation, we omit the full derivations here.

5. Factor Graph Inference
The hybrid graphical model consists of both the directed

links and the undirected links. To perform a consistent in-
ference, it is necessary to convert the hybrid model into a
Factor Graph (FG) representation [14, 8] since it is difficult
to directly perform inference in such a hybrid model. A fac-
tor graph is a bipartite graph that expresses the structure of
the factorization of a global function over a set of variables.
The FG consists of two types of nodes: the variable nodes
and the factor nodes. The variable node corresponds to a

random variable, while the factor node represents the fac-
torized local function. There is an edge connecting a vari-
able node to a factor node if and only if the variable is an
argument of the factorized function.

Since we already factorize the JPD of the proposed hy-
brid model (Eq.(11)), we can easily convert it into a factor
graph representation, following the rules in [8]. Given the
factor graph, there are different ways to perform probabilis-
tic inference. Besides the sum-product and max-product al-
gorithm, there are other algorithms that also can solve the
inference problem. The stochastic local search (SLS) [22]
is one of such algorithms. In [13], Hutter et al. improve
SLS to achieve a more efficient algorithm for solving Most
Probable Explanation (MPE) inference problem. Given the
FG model, we use the inference package provided by Hutter
et al. to perform MPE inference in the factor graph, i.e.

{y∗, e∗, v∗}K
l=1 = arg max

{y,e,v}K
l=1

P ({yl
, x

l
, e

l
, v

l
,M

l
e,M

l
v}

K
l=1) (12)

where the JPD is calculated by Eq.(11). In the MPE so-
lution, the region nodes with the foreground labels at the
finest layer yield the final segmentation.

6. Experiments
We have tested the proposed multiscale hybrid graphical

model on the Weizmann horse dataset [1] and the VOC2006
cow images [6]. The Weizmann horse dataset includes
many horses that have different appearances, poses, as well
as complex backgrounds. Several related works [5] [19]
[28] also did experiments on this dataset. We can therefore
compare our results with these state-of-the-art works.

We use 60 horse images as the training data to learn the
model parameters. The testing images include 120 images
from the Weizmann horse dataset. Compared to the training
images, the foreground horses and the background scenes in
the test images are more complex. The appearances of the
horses have a much larger range of variations. The back-
ground includes more different kinds of scenes, some of
which have never been seen in the training set.

We use the average CIELAB color features and their
standard deviations as the local features xi for each region.
In this case, the three-layer perceptron has a structure with
6 nodes in the input layer, 35 nodes in the hidden layer and
1 node in the output layer.

For simplicity, we use a two-layer multiscale hybrid
model in our experiments. All the training images and
the test images are first oversegmented. Our framework
does not require a specific algorithm for the oversegmen-
tation. To demonstrate this, we use the Edgeflow-based
Anisotropic diffusion method [26] to oversegment the im-
age at the fine scale. The original image is then downsam-
pled to 60% to generate the coarse level image. We use a
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(a) (b) (c)

Figure 7. An example image and its oversegmentation. a)the color
image; b)oversegmentation by Anisotropic diffusion at the fine
scale; c)oversegmentation by Normalized Cut at the coarse scale.

Figure 8. Examples of the color image segmentation results pro-
duced by the proposed method, arranged in 2 groups of 2 rows. In
each group, the first row includes the color images. The second
row includes the segmentation masks produced by the multiscale
hybrid graphical model.

standard Normalized Cut [25] to segment the coarse image.
Figure 7 shows the oversegmentation at the fine scale and
at the coarse scale by different methods. Given the training
images and their ground truth labeling, we automatically
train the hybrid graphical model.

After training the model, we perform image segmenta-
tion on the test images using the inference process described
in section 5. Figure 8 shows examples of the color horse
images and their segmentation masks. We achieved encour-
aging results on these images. Most small errors happen
on the horse feet where the appearances of these parts are
different from the horse body.

In order to quantitatively evaluate our segmentation re-
sults and compare with those aforementioned approaches,
we calculate the average percentage of correctly labeled
pixels (i.e. segmentation accuracy) in all test images. The
quantitative results of our experiments are listed in Table
1. From the quantitative results in Table 1, we conclude
that our results are better than the results produced by other
state-of-the-art approaches. Note that we have not per-
formed the feature selection like the work [19] has done.
Besides, we have not utilized the additional object shape in-
formation as some works have exploited [5]. In Table 1, we
also list the performance using a simple CRF model (Eq.(6))
as a baseline model for comparison. Apparently, its perfor-

Figure 9. Examples of the segmentation results of cow images ar-
ranged in 2 groups of 2 rows. In each group, the first row in-
cludes the color images. The second row includes the segmenta-
tion masks produced by the multiscale hybrid graphical model.

Table 1. The quantitative comparison of our approach with several
related works for segmenting the Weizmann horse images. The
average percentage of correctly labeled pixels (i.e. segmentation
accuracy) is used as the quantitative measurement.

method image type segmentation accuracy
Cour et al. [5] color 94.2%

Levin et al. [19] color 95%
Winn et al. [28] color 93.1%

our multiscale hybrid model color 96%
our CRF model alone color 92.5%

mance is inferior to the multiscale hybrid graphical model
because the latter exploits more useful contextual relation-
ships and information.

We have also performed the experiments on a set of cow
images from the VOC2006 database [6]. This database is
primarily used for object categorization. In this work, we
use it to test our image segmentation framework. Since
there are no original ground-truth segmentations, we man-
ually segment a set of cow images from this database. We
use about a half set of the images (57 images) for training
our model and use the rest half set of images (51 images)
for testing. Figure 9 shows some examples of the image
segmentation results. We have achieved good segmentation
results on them. Although those cows have different ap-
pearances and sizes and there might be multiple cows in the
image, our approach successfully segment them out. Be-
sides the qualitative inspection of these results, we use the
manual segmentation as the ground truth to calculate the
segmentation accuracy. We achieve a good segmentation
accuracy of 96.7% on these cow images.

We implement the whole model using Matlab software.
The average size of the test horse images is 255×207 pixels.
The average size of the cow images is 256 × 192 pixels.
The segmentation speed mainly depends on the complexity
of the constructed graphical model. It typically takes about
10 to 30 seconds to segment one image using the efficient
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Factor Graph inference [13] in a Pentium 1.7GHz laptop.

7. Conclusions

In this paper, we present a multiscale hybrid model that
can systematically model heterogeneous contextual rela-
tionships between random variables. We use this frame-
work to capture the natural causalities between multiple im-
age entities, the spatial relationships between region nodes,
the inter-layer consistency between region nodes at different
scales, and the smoothness constraint between edges, etc.

Based on the advanced graphical model theory, we fac-
torize the joint probability distribution of the hybrid model
into the products of conditional probabilities and potential
functions. With this factorization, we convert the hybrid
model into a factor graph representation to perform joint
probabilistic inference in a principled way. Our experiments
on the figure/ground image segmentation problems demon-
strate the usefulness of the proposed framework for effec-
tive and robust image segmentation. Moreover, the applica-
tion of the proposed framework is not limited to image seg-
mentation. In fact, it can be applied to many computer vi-
sion problems where heterogeneous contextual information
is important, including object tracking, object recognition,
activity recognition, etc. We will explore the applications
of this model to other computer vision problems in future.
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