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Abstract

Shape registration is often involved in computing statisti-

cal differences between groups of shapes, which is a key as-

pect of morphometric study. The results of shape difference

are found to be sensitive to registration, i.e., different regis-

tration methods lead to varied results. This raises the ques-

tion of how to improve the reliability of registration proce-

dures. This paper proposes a perturbation scheme, which

perturbs registrations by feeding them with different resam-

pled shape groups, and then aggregates the resulting shape

differences. Experiments are conducted using three typical

registration algorithms on both synthetic and biomedical

shapes, where more reliable inter-group shape differences

are found under the proposed scheme.

1. Introduction

Evidence suggests that morphological difference in

anatomical structures often reflect the underlying functional

variation. With the development of medical imaging and

image analysis techniques, morphometric study is becom-

ing one of the most accessible approaches for investigating

the functions of biological structure, quantifying develop-

ment, and identifying pathology, potentially leading to bet-

ter diagnosis and treatment.

A key scenario in morphometric analysis is to compute

the morphological difference between two groups of shapes.

In the current literature, there are two ways to quantify this

shape difference. One is by statistical significance test-

ing [2], where the resulting p-value or z-score represents the

difference. The other is by estimating shape classifiers [12],

whose classification ratios are used as the measurement. In

this case, the shape difference can also be visualized by de-

forming the mean shape along the orthogonal direction of

a classifier [13]. However, in many real applications it is

difficult to find a practical useful classifier, and as a result,

significance testing has been adopted widely [21].

For either significance testing or classifier estimation,

discrete descriptors need to be obtained for the original

contours or surfaces. Historically, many location-invariant

measurements, such as lengths, angles, areas and volumes,

have been used [3]. Descriptors that reflect a shape’s

global properties, like Fourier descriptors, spherical har-

monic functions, and wavelet descriptors, have also been

employed. They can represent the full information of the

original shape, but most of them are not able to compare

localized shape differences [1] (Some recent works using

spherical harmonics and wavelet [6,20] can do this but reg-

istration is also required). Thus, descriptors such as dense

landmarks and deformation fields are preferred in many

cases. However, to obtain such descriptors, shapes are re-

quired to be registered, which unfortunately still largely re-

mains a research topic [13]. The overall procedure for com-

puting the inter-group shape difference is briefly illustrated

in Fig.1.

In this paper, we follow the simplest definition of shape

difference: using a set of dense landmarks as shape descrip-

tors, and for each set of corresponding landmarks, applying

Hotelling’s T squared testing on their coordinates to find a

p-value as the local shape difference. Here shape registra-

tion is posed as first to find corresponding landmarks along

different shapes, and second to align the shapes so as to

eliminate the scaling, translation, and rotation. Both parts

can be done by different methods. Alignment is a mature

process and different methods lead to similar results [19],

and in this paper we use Generalized Procrustes Analy-

sis [9]; However, for the first part–registration, different

methods result in significantly dissimilar correspondences

and consequentially to varied shape differences. This may

not be surprising because as an ill-posed problem, its so-

lution really depends on the prior/regulation that assumed

in each method. Given the shape data and a collection of

registration methods, which result is the most trustworthy?

This is a serious question, but to our best knowledge, it has

seldom been discussed before.

In order to answer this question, we need to design a cri-
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Figure 1: Three basic modules involved in computing the inter-group shape difference.

terion to compare shape registration methods. Established

criteria do exist in shape generative analysis [7], such as

model generalization error, model specificity, and model

compactness, etc. However, it is hard to tell whether they

can also be applied for discriminative analysis. Generative

analysis concerns the determination of a compact rule to

represent different shapes. The landmarks are positioned so

that shapes look as similar as possible to each other. This

process may ignore subtle differences among the shapes in

spite of their potential value in discriminative analysis. In

shape discriminative analysis, the classification ratio might

be the most sounding candidate as a criterion. However, our

extensive experiments found that this is doubtful. Numer-

ous classifiers and feature selection methods exist, and eval-

uations based on different combinations often do not con-

form to each other. Furthermore, in some cases, worse reg-

istration leads to better classification ratios for many classi-

fiers. The pseudo shape differences introduced by incorrect

registration could serve as good discriminative features and

improve the classification ratio.

So here we turn to a closely related but less difficult ques-

tion: Given shape data and a registration method, how can

we find more reliable results of shape comparison? This pa-

per tries to answer it by developing a universal scheme to re-

duce the sensitivity of the computation of shape differences

to the registration procedures. The intuition is that shape

registrations are often unstable, affected by either their pa-

rameters or the data under registration. Such procedures

have a good chance to be improved by perturbing them-

selves and aggregating the results.

The remainder of this paper is organized as follows: Sec-

tion 2 introduces the perturbation scheme, goes over a con-

ceptual justification for it, and describes a detailed imple-

mentation; In Section 3 we conduct some preliminary ex-

periments and demonstrate the results on both synthetic and

real biomedical data. Section 4 concludes the paper with a

brief discussion.

2. Method

2.1. A perturbation scheme for registration

We considered two ways to perturb a registration pro-

cedure. One is to perturb the parameters of registration,

which include the initial conditions. The other is to per-

turb the shape data – most shape registration algorithms are

data-driven processes. If two shapes are inputted into an

algorithm with different other shapes, the resultant corre-

spondence between them normally changes.

This paper chooses the latter one because: (1) Parame-

ters are very diverse among different algorithms. It is dif-

ficult to design a unified scheme to perturb parameters for

different algorithms. However, the scheme of resampling

the input data can be identical. (2) Given a group of shapes,

a certain registration algorithm performs the best with a

certain set of parameters. Deviating parameters from their

optima could result in less accurate or incorrect correspon-

dence. It is unlikely for a sub-optimal or even wrong cor-

respondence to make a positive contribution in aggregation.

On the other hand, if the distribution of the resampled data

is similar to the original one, it is reasonable to believe that

the “true” shape differences are well preserved, so each reg-

istration is pursuing the same objective whose results have

a good chance to be integrated to find a more reliable esti-

mation. The schemes based on perturbing the input data has

also been successfully adopted in machine learning [4,8,11]

to improve the performance of classifiers.

When the ground truth of shape difference is given, it

is very straightforward to evaluate the computed shape dif-

ference. In this paper, a group of synthetic bump boxes

are generated for this purpose. For real biomedical data

whose true difference is never known, we compare the re-

sults from different registration methods: the more similar

they are, the more reliable the computations are considered

– This idea has also been adopted in image registration lit-

erature [10, 15], to evaluate the registration accuracy when

no ground truth exists.

2.2. Why perturbation works

Given a group of shapes S = {sn, n = 1, . . . , N},

the goal of shape registration is to find the correspondence

across all {sn}. One explicit way to represent the cor-

respondence is locating a set of corresponding landmarks

xn = {xn,m = (xn,m, yn,m),m = 1, . . . ,M} (in 2D

cases) for each shape sn. For simplicity, we assume there

exists a mean shape s0 (not necessarily in the given S)

whose landmarks are given and fixed as x0. In this case, the
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registration procedure is for each sn to find M landmarks

xn which correspond to x0.

Registration is a data-driven process. If we denote the

correspondence resulting from a certain registration proce-

dure as φ, we can write xn = φ(sn,S). This is true when a

group-wise registration algorithm is adopted, where the re-

sulting correspondence is effected by every member of S.

In other words, any change, say, by excluding, or including

any single s, would make the whole group of {xn} differ-

ent. It is also true when a pair-wise registration algorithm is

adopted, in which case we need to select a template shape

and register all the others to this template. The registration

results are often largely affected by the template, while the

template shape is selected from all the members in S.

To evaluate the effect of perturbation, we consider a se-

quence of shape groups {Sk} each consisting of N indepen-

dent observations from the same underlying distributions

as S. The simplest way to get the final correspondence

from perturbation is to replace φ(sn,S) by the average of

φ(sn,Sk) over k, which ideally is φA(s) = ESφ(s,S),
where ES denotes the expectation over S, and the subscript

A in φA denotes aggregation. Here we do a simple com-

parison between φ(s,S) and φA(s), which is similar to the

Bagging procedure in classifier aggregation [4].

Assume the joint distribution of (x, s) to be P once x0 is

given. Let (x, s) be independently drawn from P , and take

s to be a fixed input value and x an output value. Then

ES(x − φ(s,S))2 =

x2 − 2xESφ(s,S) + ESφ2(s,S). (1)

Using ESφ(s,S) = φA(s) and applying the inequality

EX2 ≥ (EX)2 to the third term in (1) gives

ES(x − φ(s,S))2 ≥ (x − φA(s))2. (2)

Integrating both sides of (2) over the joint distribution of

(x, s), we get that the mean-squared error of φA(s) is lower

than the mean-square error averaged over S of φ(s,S),
which means statistically φA(s) will yield better correspon-

dence than φ(s,S).
How much better depends on the degree of inequality:

ESφ2(s,S) ≥ [ESφ(s,S)]
2
. (3)

This is apparently affected by the instability of φ(s,S). If

φ(s,S) does not change too much with replicate S the two

sides will be nearly equal, and aggregation will not help.

The more highly variable the φ(s,S) are, the more improve-

ment aggregation may produce.

In practice, we only have a single shape group S with-

out the lavish replicates {Sk}. To imitate the perturbation

procedure, we can take repeated bootstrap samples, {S(B)},

and take φB as φB = EBφ(s,S(B)). In this case, we are

considering φB(s) = φA(s, PS) instead of φA(s, P ), where

PS is the distribution that concentrates mass 1/N at each

point (xn, sn). Then φB is caught in two currents: On the

one hand, if the procedure is unstable, it can give improve-

ment through aggregation; On the other hand, if the proce-

dure is stable, then φB = φA(s, PS) will not be as accurate

for data drawn from P as φA(s, P ). There is a cross-over

point between instability and stability at which φB stops

improving on φ(s,S) and does worse.

Once the correspondence is established, the inter-group

statistical shape difference we discuss in this paper is also

determined since significance testing is a fixed routine. As

mentioned in Section1, a simple computation of shape dif-

ference is to find a p-value for each set of corresponding

landmarks {xn,m,∀n} by doing Hotelling T 2 Testing on

their coordinates. In other words, {pm,m = 1 . . . M}
are fully determined by {xn,m}, which can be written as

{pm} = P({xn,m}) = P({φ(sn,Sk)}). By applying the

same inequality as above, we may also have

ES [P({xn}) − P({φ(sn,Sk)})]
2

≥ [P({xn}) − (ES(P({φ(sn,Sk)}))]
2
. (4)

This suggests that both aggregating the correspondences

before doing significance testing, and directly aggregating

the testing results, have chance to improve the computation

of final inter-group shape difference, which is the ultimate

goal of our task. Because aggregating the correspondences1

is more complicated than aggregating the significance test-

ing results, the latter is adopted in this paper.

2.3. Implementation

To implement the perturbation scheme, we need to take

care of a number of issues: (1) How to select the mean shape

s0 and its x0? (2) How to form the resampled shape group

{S
(B)
k }? (3) How to compare shape differences? We would

also like to test aggregation methods other than averaging.

2.3.1 Selecting the mean shape s0

To find a perfect mean s0 for a group of shapes is beyond

the scope of this paper. Here, a “typical” shape s′0 is chosen

to approximate s0, and we simply take all its points to be

x0. This typical shape is chosen to have the least distance

to all the others. The distance between two shapes can be

set as the norm of the coordinate difference of a set of cor-

responding landmarks after Procrustes alignment. We can

register the whole shape group to obtain the landmarks, but

as a rough approximation, simply distributing landmarks by

evenly sampling each shape contours often works well.

1In practice, aggregating the correspondences is not as trivial as aver-

aging the coordinates of landmarks. The justification in this section is only

a conceptual one.
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Since we need to establish the correspondence between

any sn and s0, s′0 will join all the resampled groups {S
(B)
k }

during registration. Furthermore, because the resulting

landmarks on s′0 after registering S
(B)
k , say x

reg
0 , would

never automatically locate exactly at x0, we need to get

the corresponding landmarks on sn for x0 by interpolation.

Since we are aggregating the results of significance testing

as mentioned at the end of Section 2.2, we will interpolate

the p-values from x
reg
0 onto x0, which can be achieved by

linear interpolation along the contour of s′0.

2.3.2 Forming the resampled groups {S
(B)
k }

In this paper each S
(B)
k is formed by randomly sampling the

original group with replacement. Suppose we are comput-

ing the shape difference for two groups SA and SB , where

S = {SA,SB}. Each S(B) will include shapes from both

of them, where NA samples are randomly drawn from SA

and NB samples from SB . This is repeated for K times to

obtain {S
(B)
k , k = 1, . . . ,K}. Often NA and NB are cho-

sen to be equal to the size of SA and SB when bootstrap

replicates are sampled, but it is found in our experiments

that adopting smaller NA and NB often leads to better re-

sults. This is probably due to reason mentioned in the last

section: On the one hand, NA and NB both should be as

big as possible, so as to reflect the shape distribution in the

original group; on the other hand, they can not be too big

so {S
(B)
k , k = 1, . . . ,K} will not be different enough from

each other to perturb the registration procedures. We need

to reach a balance here. In this paper, we make them around

80% of the size of original SA and SB .

Another way to form S(B) is also tried in this paper: For

each shape s in S, choose NA of its closest shapes from SA

and NB from SB , which will yield {S
(B)
k , k = 1, . . . ,K},

where N is the total sample number in original shape group.

Our initial intention is that this “cluster” scheme could im-

prove the quality of shape registration because we observed

that most registration algorithms tends to do a better job for

shapes less deformed from each other. However, it turns

out that the results are not so good as the random sampling

scheme, and the reason are probably twofold, (1) the shape

distribution in the sub-set S
(B)
k is very different from the

original group S; and (2) the pre-defined s0, which needs

to be included in every S
(B)
k , becomes an outlier of most

sub-sets, thus can not be well registered.

2.3.3 Aggregating perturbation results

After registering all {S
(B)
k }, we now have K sets of p val-

ues for each landmark x0,m, {pm,k,m = 1, . . . ,M, k =
1, . . . ,K}. To aggregate them, we can:

1. Classify {pm,k} to be significant or insignificant for a

given significance level α, and the final classification

can be decided by a majority voting.

2. Simply let pm = 1
K

∑K

k=1 pm,k, as described in Sec-

tion 2.2. We denote it as p1
m. This might be a less

sounding aggregation method since p is highly nonlin-

ear. But in our experiments, its performance has been

consistently good.

3. First cluster {pm,k, k = 1, . . . ,K} into two groups,

and let pm to be the mean of the larger one, denoted

as p2
m. This is based on the observation that occa-

sionally the registration procedure finds incorrect cor-

respondence for some {S
(B)
k }.

4. Conduct statistical testing on {pm,k, k = 1, . . . ,K},

where the null hypothesis is p > α and α is the signif-

icance level. The resulting pm is denoted as p3
m.

In the first case, we do not have a p value for each landmark

any more, and instead a label lm is obtained, which still

enables the comparisons between shape differences.

2.3.4 Comparing the resulting shape differences

Finally, to compare {pm,m = 1, . . . ,M} resulting from

different registration methods, we need to define a similar-

ity metric. Since p values are always used together with a

significance level, α, and whether it is significant or not is

more important than the actual p, here we count the number

of pms that are both significant or insignificant in different

results, i.e.,

sim(α) =
1

M

(

nr({m, pA
m > α} ∩ {m, pB

m > α})

+ nr({m, pA
m ≤ α} ∩ {m, pB

m ≤ α})
)

, (5)

where the superscripts of p indicate the registration ap-

proach. In practice, α is typically 0.05. In this paper, we

compute the similarity over α ∈ (0.01, 0.1). For the first

aggregation method described in the above section, we sim-

ply count the number of common labels between shape dif-

ferences.

Normally, multiple comparison correction is needed af-

ter significance testing to find an appropriate α to eliminate

the over-optimal results. In this paper, it is not performed

since we focus on comparing shape differences, and this

comparison has been carried out over a large range of α.

The full approach is described in Algorithm 1.

2.4. Registration methods

We study three typical registrations methods [5,16,18] in

this paper, which assume different priors for the shape trans-

formation and also adopt distinctive shape distance met-

rics. Thodberg [18] followed the Minimum Description
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Algorithm 1: The proposed perturbation scheme

input : SA,SB ,K,NA, NB .

output: {p1
m, p2

m, p3
m,m = 1, . . . ,M}.

begin
Find a typical shape s′0.

for k = 1 to K do
Form bootstrap replicates Sk by randomly

choosing NA, NB examples from SA,SB

with replacement;

Enclose s′0 into Sk

Register Sk and get landmarks set {xn,k},

where the landmark on s′0 is x0,k;

Do significance testing for {xn,k} and get pk

Interpolate pk from x0,k to x0

Aggregate {pk, k = 1 . . . K} into final p1, p2,

and p3.

end

Length (MDL) principle in information theory to formulate

the prior on transformation. The algorithm slides landmarks

along the shape contours or surfaces, codes their locations

(after minimizing the Procrustes distance) using Point Dis-

tribution Models (PDM) and assumes that the true corre-

spondence will achieve the shortest code length; Instead of

using any information metric, Chui et al. [5] adopted the

bending energy derived from Thin Plate Spline (TPS) to

measure the goodness of transformation. The bending en-

ergy is alternatively minimized together with a fuzzy shape

distance until convergence; Huang et al. [16] did not mea-

sure the shape distance directly in space, instead, they con-

verted shapes into images by distance transform, and mea-

sured the image similarity first by mutual information (MI)

and then by the sum of square difference (SSD). A dense

transformation field which is modeled by B-spline free-

form deformation is utilized to impose a smoothness prior

on the transformation. Both [5, 18] are group-wise regis-

tration algorithms. They involve estimation for the mean

shape, to which every sample shape is registered during the

whole registration procedure; while [16] is a pure pair-wise

registration algorithm, for which a template shape needs to

be chosen before registration. The implementations of [5]

and [16] are publicly accessible from the authors’ websites.

The implementation of [18] can be requested from the au-

thor.

3. Results

We test the perturbation scheme on both synthetic shapes

and real biomedical shapes. The synthetic shapes are a set

of bump boxes, for which the true correspondence between

shapes is given. The real biomedical shapes are a set of

femur and corpus callosum profiles.

3.1. Results on synthetic shapes

As shown in Fig 2, each bump box is a rectangle box

with three semi-circles on the edges. The bump locations,

{P1, P2, P3}, are different from sample to sample and uni-

formly distributed along the corresponding edge. The whole

set is divided into two groups, where the first one has larger

top but smaller right bumps. A small scale of Gaussian

noise is imposed on all the shapes. Fig. 3 shows the re-

sults on bump boxes. Each column shows the results ob-

tained by a particular registration method. Here both NA

and NB are equal to 6, which means the size of each resam-

pled shape group is 13. 24 resampled groups are formed.

For all registration methods, the perturbation scheme has

resulted in shape differences that are obviously closer to the

ground truth with the exception of the majority voting and

p2 resulted by MDL-based registration [18]. This exception

probably implies that the algorithm implemented by [18]

is less stable, for which it is difficult to decide whether p2

should be equal to the mean of the major cluster or reverse.

The similarities of p1 shows that [18] also gains most by the

perturbation among all the three registration methods. This

may also indicates its instability according to the analysis in

Section 2.2.

The figure also shows that the correspondences estab-

lished by shape registration all look good by visual inspec-

tion. The shape generalization results (Not shown here)

are also found to be very similar to that obtained by the

ground truth correspondence. However, large areas of in-

correct shape difference are observed, especially for the re-

sults of [5, 18], if compared with the ground truth shape

difference. This suggests that the inter-group shape differ-

ence could set a much stricter or more sensitive criterion for

shape registration, compared with the criteria for general-

ization analysis. One reason is that the difference here is

defined by a p value from significance testing, which is not

decided by the magnitude of any error, but only by statisti-

cal significance.

Perturbations with different size and number of resam-

pled group were also tested and the results are not very sen-

sitive to them. Optimal results are found with resampled

group size NA, NB equaling 6 or 7. Once NA, NB ex-

ceed 9, the results remain nearly unchanged. We also tested

the perturbation scheme on synthesized boxes with other

number of bumps. It is found that the advantage of the per-

turbation scheme is more significant with boxes with fewer

bumps, or in other words, with less complicated shapes.

3.2. Results on real biomedical shapes

We computed shape differences for two sets of real

biomedical shapes: one contains 32 contours of femurs

extracted from supine projection X-rays, which are pub-

licly accessible from the Division of Imaging Science and
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Figure 2: Two groups of three-bump boxes. {P1, P2, P3} are uniformly distributed for both groups. R1 are greater in the first group,

while R2 is greater in the second group. R3 is identical for both groups.

 

 

0.050

0.044

0.038

0.031

0.025

0.019

0.012

0.006

0.000

 

 

0.050

0.044

0.038

0.031

0.025

0.019

0.012

0.006

0.000

 

 

0.050

0.044

0.038

0.031

0.025

0.019

0.012

0.006

0.000

 

 

0.050

0.044

0.038

0.031

0.025

0.019

0.012

0.006

0.000

 

 

0.050

0.044

0.038

0.031

0.025

0.019

0.012

0.006

0.000

 

 

0.050

0.044

0.038

0.031

0.025

0.019

0.012

0.006

0.000

 

 

0.050

0.044

0.038

0.031

0.025

0.019

0.012

0.006

0.000

 

 

0.050

0.044

0.038

0.031

0.025

0.019

0.012

0.006

0.000

0 0.02 0.04 0.06 0.08 0.1
0.75

0.8

0.85

0.9

0.95

1

Significance level α

S
im

ila
ri
ty

 

 

Register once
Aggregated P1
Aggregated P2
Aggregated P3
Majority voting

0 0.02 0.04 0.06 0.08 0.1

0.4

0.5

0.6

0.7

0.8

0.9

1

Significance level α

S
im

ila
ri
ty

 

 

Register once
Aggregated P1
Aggregated P2
Aggregated P3
Majority voting

0 0.02 0.04 0.06 0.08 0.1
0.65

0.7

0.75

0.8

0.85

0.9

Significance level α

S
im

ila
ri
ty

 

 

Register once
Aggregated P1
Aggregated P2
Aggregated P3
Majority voting

Figure 3: Results on bump boxes. Each column shows the results obtained by a particular registration. The first column is obtained by

ground truth correspondence; the second, third, and forth columns are obtained by registration algorithms [16], [18] and [5], which are

denoted by authors’ names, ‘Huang’, ‘Thodberg’, and ‘Chui’ respectively. The first row shows the correspondence between two typical

shape samples. The second row illustrates the shape difference computed without perturbation (register the whole shape group at once).

The third row demonstrates the shape difference {p1} (cf. Section 2.3) computed with perturbation (In the first column, this is identical to

the second row). The forth row gives the similarity between the ground truth and the shape differences computed by these three

algorithms.
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Figure 4: Shape differences of femur. From left to right, the results are computed by [16], [18], and [5] respectively. First row shows the

results without perturbation while the second row shows {p1} obtained by perturbation. The graph at right shows the similarity between

different results.
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Figure 5: Shape difference of corpus callosum profiles. The arrangement of the figures are the same as in Fig. 4. Here the aggregation

results from majority voting shows similar performance as those without perturbation, but results from other aggregation methods show

significantly improved similarity between different registration methods.
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Figure 6: The femur shape difference computed by [18] when

the significance level α is scaled up to 0.6 to allow less significant

difference to appear. The aggregated results {p2} show difference

on the top of lesser trochanter, while no significant result is

observed without perturbation. Such a high α does not make

much sense in statistics, but since we focus on comparing shape

differences, this observation still provides useful hints.

Biomedical Engineering, The University of Manchester,

and the other encloses 30 profiles of corpus callosum man-

ually traced from brain MRI images. The femur shapes are

divided into two groups according to the size of the lesser

trochanter – a small bump just below the femur head. The

first group has 6 shapes with smaller lesser trochanter. The

corpus callosum shapes are also divided into two groups,

each with 15 samples. They have different size anterior

genus, the left most area of the corpus callosum.

We compute the sum of all the similarities between any

two methods chosen from the three. As shown in Fig. 4

and 5, large differences are observed between the results

from different registration methods. But this difference is

very much reduced after the perturbation scheme is em-

ployed. This indicates that the perturbation scheme leads

to more reliable computation of shape difference.
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The perturbation method does not appear to sacrifice

sensitivity to obtain more reliable shape differences. In

Fig. 6, the aggregated results show more significant differ-

ences compared with registration at once.

4. Discussion and future work

This paper proposes a perturbation scheme to improve

the reliability of the computation for inter-group shape dif-

ference. It provides a easy way to improve an existing reg-

istration method, since all that is needed is to add a loop in

front to feed different resampled groups to the registration

procedures, and a back end that aggregates all the results.

Both experimental and theoretical evidence have shown that

the method can gain increased reliability in computation.

The proposed scheme works for both pair-wise and

group-wise methods. For pair-wise registration algorithms,

it is also found that simply perturbing the registration tem-

plate would achieve a similar effect (only tested for [16]).

This scheme would not work for the basic SPHARM-based

registration methods [17], where each shape is registered to

a circle/sphere individually. However, it should be applica-

ble to some more recent methods [6,14], where registration

between different shapes is involved.

Although only 2D shapes are examined in this paper,

the proposed scheme is a generic one and can be directly

applied for 3D shapes, which will be studied in the future.

We would also like to examine the effects of perturbation

on registration and significance testing separately, which

are largely considered together in this paper. The effects

of a number of other factors also need to be investigated,

including (1) shape complexity; (2) data noise; and (3) the

aggregation methods. Methods to gain more sensitivity by

perturbation, as briefly mentioned in Fig. 6, may also be

studied. It would also be interesting to consider aggregating

the results from different registration methods.
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