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Abstract

In this work we propose a convex relaxation approach
for computing minimal partitions. Our approach is based
on rewriting the minimal partition problem (also known as
Potts model) in terms of a primal dual Total Variation func-
tional. We show that the Potts prior can be incorporated
by means of convex constraints on the dual variables. For
minimization we propose an efficient primal dual projected
gradient algorithm which also allows a fast implementa-
tion on parallel hardware. Although our approach does not
guarantee to find global minimizers of the Potts model we
can give a tight bound on the energy between the computed
solution and the true minimizer. Furthermore we show that
our relaxation approach dominates recently proposed relax-
ations. As a consequence, our approach allows to compute
solutions closer to the true minimizer. For many practical
problems we even find the global minimizer. We demon-
strate the excellent performance of our approach on several
multi-label image segmentation and stereo problems.

1. Introduction

Many Computer Vision problems can be formulated as

labeling problems, where each pixel in the image is as-

signed one of several labels. The major challenge is to find

an optimal label configuration for all image pixels among all

possible configurations. Since most Computer Vision tasks

are highly ill-posed [15], optimal solutions are typically de-

termined as the lowest energy configurations of some ob-

jective function that appropriately describes the respective

Computer Vision problem. The energy of a configuration
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(a) Input image (b) Discrete MRF (c) Proposed method

Figure 1. Piecewise constant Mumford-Shah segmentation of a

natural color image using the proposed approach. (a) shows the

input image, (b) is the result of a discrete MRF formulation us-

ing alpha expansion (image is courtesy of D. Mumford [23]). (c)

shows the result with the proposed spatially continuous formula-

tion. One can see that in contrast to the discrete MRF approach,

the proposed method produces spatially consistent boundaries.

serves as a measure of its quality, better solutions corre-

spond to lower energies. It is well known that the process

of energy minimization is equivalent to a Bayesian max-

imum a posteriori estimation, where the prior probability

gives rise to corresponding regularity terms in the energy.

Labels can either be defined on a discrete grid or in a spa-

tially continuous domain. In the discrete setting, respective

optimization problems can be addressed on a graph with

nodes and edges in the framework of Markov Random Field
(MRF) theory [19]. If the set of possible labels is binary,

and the pairwise terms are submodular, combinatorial algo-

rithms such as graph cuts can be used to compute global

minimizers [14, 21]. Applications of binary labeling prob-

lems include two-label image segmentation, shape denois-

ing and 3D reconstruction.

1.1. Multi-Label Problems in Computer Vision

A substantially larger class of Computer Vision prob-

lems, including image restoration, inpainting, multi-region
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image segmentation, motion and stereo, can be cast as

multi-label optimization problems. Unfortunately, most

multi-label problems cannot be minimized globally. They

can only be solved approximately either by transforming the

problem to a sequence of binary labeling problems [5, 28],

via various linear programming relaxations [3, 29] or via

roof duality relaxation [16] which has recently attracted re-

newed interest in the MRF community (cf. [27]). A no-

table exception is the work of Ishikawa [17], who showed

that exact solutions for certain multi-label problems can

be computed in polynomial time as binary cuts of higher-

dimensional graphs provided that the pairwise interaction

terms are convex with respect to a linearly ordered label

set. Unfortunately, many interesting Computer Vision prob-

lems are not covered by the class considered by Ishikawa.

First, in order to preserve discontinuities in the solution, re-

searchers favor energies with non-convex regularizers. Sec-

ond, many multi-labeling problems in Computer Vision do

not provide an ordering on the space of labels (e.g. segman-

tation). Nevertheless, one can impose a regularity which

favors labels of neighboring points to be identical. The re-

sulting energy is known as the Potts model [26]. How to effi-

ciently compute solutions for the spatially continuous Potts

model is the focus of this paper.

Much work has been done to tackle multi-label problems

in the discrete setting but only little work has been done

on optimal solutions for labeling problems defined in a spa-

tially continuous domain. The major difference between the

discrete and the continuous setting is, that in the continu-

ous setting, the label configuration is replaced by a labeling

function. Hence, the discrete energy is now given by an en-

ergy functional. Here, the calculus of variations provides

the suitable mathematical theory. Its fundamental theorem,

the Euler-Lagrange differential equation, provides a neces-
sary condition to describe the functional at stationary points

(e.g. minimizers). The clear advantage of the spatially con-

tinuous formulation is, that it does not suffer from grid bias,

also known as metrication error [20]. Notable examples

in the continuous setting are the level set methods which

allow to compute locally optimal solutions (cf. [13]), con-

vex relaxation and thresholding techniques which allow to

compute optimal binary labelings [11], optimal continuous

multi-labelings in the case of convex regularity terms [25]

and calibration methods [1, 8].

1.2. The Potts Model

The Potts model [26] has its origin in statistical mechan-

ics to model phenomena of solid state physics. It is the

generalization of the two-state model of Ising [18] to mul-

tiple states (labels). A spatially continuous formulation of

the Potts model is the partitioning problem

min
El

{
1
2

k∑
l=0

Per(El; Ω) +
k∑

l=0

∫
El

fl(x) dx

}
,

such that

k⋃
l=0

El = Ω, Es ∩ Et = ∅ ∀s �= t ,

(1)

Minimizing (1) partitions the domain Ω ⊂ R
d into k + 1

pairwise disjoint sets El. The first term measures the

perimeter of the set El which leads to smooth segmenta-

tion boundaries. The second term is the data term which

is based on non-negative weight functions fl : Ω → R
+.

Model (1) includes as a special case the piecewise constant

Mumford-Shah functional [24], which arises when choos-

ing

fl(x) = λ(I(x)− cl)2, (2)

which is the squared difference of the input image I(x) to

some mean intensity cl scaled by λ (cf. Figure 1).

Several algorithms have been proposed to approximately

minimize the Potts model. While the discrete problem

can be tackled using iterated binary optimization via α-

expansion [5] or roof duality relaxation [27], such algo-

rithms tend to exhibit a grid bias (metrication errors) in

representing the continuous perimeters in (1). In the con-

tinuous domain, popular methods are based on the level set

method (e.g. Chan and Vese [13]) The most crucial draw-

back of these methods is, that there is no guarantee to find a

globally optimal solution.

In this paper, we propose a convex relaxation of the Potts

model. It is formulated in a continuous setting and therefore

does not exhibit metrication errors. The proposed method

also allows to compute a bound between the solution of the

relaxed problem and the true optimum. In practice, we often

observe convergence to globally optimal solutions.

2. Convex Representation of the Potts Model
In this section we develop a convex representation of the

Potts model. We start by reviewing the two-label case which

was presented in [11]. We then show how to generalize their

work to the multi-label case.

2.1. The Two-Label Case: k = 1

In [11], Chan, Esedoglu and Nikolova gave a convex for-

mulation of (1) for k = 1, by rewriting it in terms of the

variational model

min
θ

{∫
Ω

|Dθ|+
∫

Ω

(1− θ(x))f0(x) + θ(x)f1(x) dx

}
,

(3)
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(a) Two label case

θ1 = 0, θ2 = 0

θ1 = 1, θ2 = 1

E0

θ1 = 1, θ2 = 0

E1

E2

(b) Three label case

Figure 2. (a) The two-label case: A binary function θ is used to

partition the image domain Ω into two regions. (b) The three-label

case: Two binary functions θ1 ≥ θ2 are used to partition the image

domain Ω into three regions.

where θ : Ω → {0, 1} is a binary function, used to model

the partition of the image domain into two regions, i.e.

θ(x) = 0 if x ∈ E0 and θ(x) = 1 if x ∈ E1. See Fig-

ure 2(a), where the function θ is used to partition the image

domain Ω into two regions. The term
∫
Ω
|Dθ| is the Total

Variation of θ. For binary functions θ, it is equal to the total

interface area. Dθ is the distributional derivative which is,

in an integral sense, also well-defined for non-smooth func-

tions θ. On the other hand, if θ is a smooth function, the

Total Variation of θ is simply
∫
Ω
|∇θ|dx.

There exists also a more general formulation of the Total

Variation [7, 12, 9]∫
Ω

|Dθ| = sup
ξ:|ξ(x)|≤1

{
−

∫
Ω

θ div ξ dx

}
, (4)

where ξ = (ξ1, . . . , ξd)T : Ω→ R
d is the dual variable and

| · | denotes the Euclidean vector norm. This formulation is

also called the dual formulation of the Total Variation. The

main advantage of the dual formulation over the original

formulation is, that it is valid for any L1 integrable function,

but it comes along with inequality constraints on the dual

variable ξ which brings some additional complexity to the

formulation.

2.1.1 Convex Relaxation

Although (3) is convex in θ, the variational problem is still

non-convex since the minimization is carried out over bi-

nary functions θ, which comprise a non-convex set of func-

tions. A straightforward approach is to relax (3) by allowing

θ to vary smoothly in the interval [0, 1]. Furthermore, is can

be shown that solutions of the relaxed problem can be trans-

formed to solutions of the binary problem by thresholding

of the solution of the relaxed problem. It is remarkable that

this works for any threshold s ∈ (0, 1).

2.2. The General Case: k ≥ 1

Let u : Ω → {0, . . . , k} be the labeling function such

that u(x) = l if and only if x ∈ El. We can equiva-

lently represent this multi-label function by k binary func-

tions θ(x) = (θ1(x), . . . , θk(x)) defined by

θl(x) =
{

1 if u(x) ≥ l
0 otherwise , (5)

representing its upper level sets. In turn, the labeling func-

tion u can be recovered from these functions via the relation

u(x) =
k∑

l=1

θl(x) . (6)

Figure 2(b) shows an example for k = 2, where two func-

tions θ1 and θ2 are used to partition the image domain Ω
into three regions.

A one-to-one correspondence between multi-label func-

tions u(x) and vectors θ(x) of binary functions is guaran-

teed by imposing the ordering

0 ≤ θk(x) ≤ . . . ≤ θ1(x) ≤ 1, ∀x ∈ Ω . (7)

It is therefore appropriate, to define the set of admissible

vector functions θ as

B0 =
{

θ = (θ1, . . . , θk) : Ω→ {0, 1}k,

0 ≤ θk(x) ≤ . . . ≤ θ1(x) ≤ 1, ∀x ∈ Ω
}

. (8)

Furthermore, from the definition of (5) one can see that we

can use the following relation to indicate whether a pixel

belongs to the set El or not:

θl(x)− θl+1(x) =
{

1 if u(x) = l
0 otherwise , (9)

where we use θ0(x) = 1 and θk+1 = 0 to simplify no-

tations. The goal is now to rewrite the Potts model (1) in

terms of θ. First, we can make use of (9) to rewrite the data

term of the Potts model as

k∑
l=0

∫
El

fl(x) dx =
k∑

l=0

∫
Ω

(θl+1(x)−θl(x))fl(x) dx (10)

The length term in (1) requires some additional consider-

ations. A natural generalization of (3) would be to simply

approximate the boundary length by the length of the binary

sets:
k∑

l=0

Per(El; Ω) ≈
k∑

l=0

∫
Ω

|Dθl| . (11)

Unfortunately, this turns out to be a bad approximation. As

shown in Figure 2(b), interfaces where m functions θl jump

from 0 to 1 are counted m times. As a result, the approxi-

mation (11) would count the boundary between E0 and E2

twice.
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How can this systematic error be resolved in a computa-

tionally tractable manner? It turns out that the dual formu-

lation (4) allows to suppress a multiple counting of bound-

aries when combined with an additional constraint on the

dual variables. More specifically we have the equality:

k∑
l=0

Per(El; Ω) = sup
ξ∈K

{
k∑

l=0

−
∫

Ω

θldiv ξl

}
, (12)

where the dual variables ξ = (ξ1, . . . , ξk) : Ω → R
d×k are

constrained to lie in the set K defined as:

K =
{

ξ = (ξ1, . . . , ξk) : Ω→ R
d×k,

∣∣∣∑l1≤l≤l2
ξl(x)

∣∣∣ ≤ 1,∀x ∈ Ω, 1 ≤ l1 ≤ l2 ≤ k
}

.

For the case shown in Figure 2(b), for example, the above

constraint implies that |ξ1(x) + ξ2(x)| ≤ 1. This assures

that the transition between E0 and E2 is counted exactly

once.

The following proposition is of central importance to as-

sure a computationally tractable algorithm:

Proposition 1. The set K is convex.

Proof. Let ξ, ξ′ ∈ K. Using the triangle inequality it fol-

lows for any α ∈ [0, 1] that αξ + (1− α)ξ′ ∈ K :

∣∣∣∑l1≤l≤l2
αξl(x) + (1− α)ξ′l(x)

∣∣∣ ≤
α
∣∣∣∑l1≤l≤l2

ξl(x)
∣∣∣+ (1− α)

∣∣∣∑l1≤l≤l2
ξ′l(x)

∣∣∣ ≤ 1 ,

We are now ready to give a convex representation of the

Potts model.

min
θ∈B0

sup
ξ∈K

{
k∑

l=0

−
∫

Ω

θldiv ξl dx

+
∫

Ω

(θl+1(x)− θl(x)) fl(x) dx

}
. (13)

Note that θ still has to fulfill the ordering constraints of (7).

To further simplify the problem, it turns out that we can

eliminate the ordering constraints by slightly modifying the

energy functional to

E = min
θ∈B

sup
ξ∈K

{
k∑

l=0

−
∫

Ω

θldiv ξl dx

+
∫

Ω

|θl+1(x)− θl(x)| fl(x) dx

}
, (14)

where the convex set B is defined as

B =
{

θ = (θ1, . . . , θk) : Ω→ {0, 1}k
}

. (15)

The equivalence of minimizers is characterized by the fol-

lowing proposition:

Proposition 2. The minimizer of problem (13) is equivalent
to the minimizer of problem (14).

Proof. To proof the equivalence of the minimizers it suf-

fices to show that the minimizer of (14) is ordered in the

sense of (7). A complete proof is presented in [10], Propo-

sition 4.3.

2.2.1 Convex Relaxation

In order to solve (14) we apply the same convexification

as in the two-label case. We again relax the set of binary

solutions to the set of functions which can take all values in

[0, 1], that is

R =
{

θ = (θ1, . . . , θk) : Ω→ [0, 1]k
}

. (16)

Unfortunately, the thresholding technique of the two-label

case no longer holds in the general setting. However, we

can give a bound on the energy difference between the true

minimizer of the binary problem and the minimizer of the

relaxed problem.

Proposition 3. Let θ∗ ∈ R be the solution of the relaxed
problem (14) and let 1{θ∗≥s} ∈ B be a thresholded binary
version for any s ∈ [0, 1]. Furthermore, let θ′ ∈ B be
the true global minimizer of the binary problem (14). Then
we can provide the following bound on the solution of the
relaxed problem.∣∣E(θ∗)− E(θ′)

∣∣ ≤ ∣∣E(θ∗)− E(1{θ∗≥s})
∣∣ . (17)

Proof. It suffices to show that energetically the thresholded

solution lies between the optimal of the relaxed problem

and the optimal of the binary problem. First, by convexity

of (14), the energy of the relaxed solution is the lowest. Sec-

ond, any thresholded version, i.e. a projection of the relaxed

solution onto the binary set must achieve a higher energy:

E(θ∗) ≤ E(1{θ∗≥s}). Clearly the energy of the true bi-

nary minimizer lies somewhere between the energy of the

relaxed solution and the energy of the thresholded version,

i.e. E(θ∗) ≤ E(θ′) ≤ E(1{θ∗≥s}).

As a direct consequence of Proposition 3 we see that, if

the solution of the relaxed problem is already binary, then

we have found a true global minimizer of the binary prob-

lem, i.e. we have found the solution of the Potts model.
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(a) Input image (b) Lellmann et al. [22] (c) Zach et al. [30] (d) Proposed relaxation

Figure 3. Synthetic three-label image segmentation problem. The optimal segmentation is given by a 120◦ triple junction. The alternative

relaxation techniques (b) and (c) end up with a non-binary solutions whereas our method (d) finds an almost binary solution.

2.2.2 Alternative Approaches

Zach et al. in [30] proposed a different relaxation ap-

proaches to tackle the Potts model. More recently, Lellman

et al. in [22] proposed a qualitatively comparable approach

with a slightly different length term. The idea is to intro-

duce a relaxed labeling function v = (v0, . . . , vk), with

vl(x) ∈ [0, 1] and the equality constraint
∑k

l=0 vl(x) = 1,

Then the Potts model (1) simply becomes

min
v

{
1
2

k∑
l=0

∫
Ω

|Dvl|+
k∑

l=0

∫
Ω

vl(x)fl(x) dx

}
. (18)

Indeed, for vl(x) ∈ {0, 1}, this energy clearly equals the

Potts energy (1). Yet, the relaxation is not as tight as the

one we have proposed in (14).

Proposition 4. The relaxation (14) strictly dominates (18).

Proof. It suffices to show that the set K used in (14) al-

lows for a larger set of feasible functions than the above

approach. For space limitations we refer to the technical

report [10] for more details.

Figure 3 shows a comparison of the proposed approach

to the relaxation approach of [30] and [22] by means of a

simple three-label segmentation problem. We used the data

term (2), where the means cl correspond to pure red (1, 0, 0)
green (0, 1, 0) and blue (0, 0, 1). The input image also con-

tains a grey area, where all data terms are equal, i.e. the

length term dominates in this region. It is remarkable that

the proposed method finds the true binary solution, a triple

junction where all three interfaces meet with an angle of

120◦. On the other hand the alternative approaches do not

find a binary solution. This is also reflected by the obtained

energies. The solution of our approach achieves an energy

of E = 13975 which is clearly above E = 13972 achieved

by [30] and E = 13960 achieved by [22]. The energy of the

true binary segmentation is E = 14006. Note that a higher

energy also gives a tighter bound in (17).

3. Numerical Algorithms
In this section we present numerical algorithms to com-

pute the solution of the relaxed problem (14).

3.1. Discrete Setting

We consider only the 2D case (d = 2) here were we as-

sume thatΩ = (0, 1)2. For discretization, we use a standard

Cartesian grid defined by

Ωh =
{
(ih, jh) : 1 ≤ i, j ≤ N

}
, (19)

where (i, j) are the indices of the discrete locations on the

grid and the width of the spatial discretization is given by

h = 1/N . In the following we will use the superscript

“h” to indicate the discrete setting. A spatially continuous

function u is now approximated by a spatially discretized

function θh : Ωh → R. Next, we define a discrete version

of the Total Variation

h2
∑
i,j

∣∣(∇θh)i,j
∣∣ = max

|ξh
i,j |≤1

−h2
∑
i,j

θh
i,j(div ξh)i,j , (20)

where | · | denotes the standard Euclidean norm, ∇ and div

are now discrete versions of the gradient and divergence op-

erators involving a 1/h factor. See [9] for more details. Be-

fore we proceed by defining a discrete version of (14), let

us give the following fundamental result which applies for

our type of discretization.

Proposition 5. The discrete version of the Total Variation
Γ-converges to the Total Variation as h → 0.

The complete proof of this proposition is presented

in [10], Proposition 3.1. This proposition states that by only

refining the discretization width h, the discrete Total Varia-

tion converges to the true continuous Total Variation. Note

that this is not the case for MRF based approaches, where in

addition to the grid refinement, the number of pairwise in-

teractions has to go to infinity [4]. Note that this proposition

is also true for the Potts model.
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Figure 4. Convergence of the primal dual algorithm for the

Tsukuba stereo example of Figure 7. The upper bound can be

used to determine convergence of the algorithm.

3.2. Primal-Dual Algorithm

In order to make (14) continuously differentiable, we in-

troduce an additional dual variable η = (η1, . . . , ηk) : Ω→
R

d×k such that, in a discrete setting (14) can be rewritten as

min
θh∈Rh

max
ξh∈Kh

ηh∈Wh

⎧⎨
⎩

k∑
l=0

−h2
∑
i,j

(θh
l )i,j(div ξh

l )i,j

+h2
∑
i,j

(
(θh

l+1)i,j − (θh
l )i,j

)
(ηh

l )i,j

⎫⎬
⎭ . (21)

We have also introduced the convex setWh is given by

Wh =
{

ηh = (ηh
1 , . . . , ηh

k ) : Ω
h → R

k,

|(ηh
l )i,j | ≤ (fh

l )i,j ,∀(ih, jh) ∈ Ωh, 1 ≤ l ≤ k
}

. (22)

The algorithm we propose for minimizing (21) is

a Arrow-Hurwicz type primal-dual gradient flow algo-

rithm [2]. Basically the algorithm consists of alternating

a gradient descend in the primal variable and a gradient as-

cend in the dual variable. After each update step the primal

and dual variables are re-projected to the respective sets.

The outline of the algorithm is as follows:

1. We fix the time steps τp > 0 and τd > 0.

2. Let n be the iteration number. We set n = 0 and ini-

tialize (θh)0 = 0, (ξh)0 = 0 and (ηh)0 = 0.

3. For all i, j, l update the primal and dual variables by

(a) Input image (b) Segmented Image (c) Mean = 0.00

(d) Mean = 0.25 (e) Mean = 0.50 (f) Mean = 0.90

Figure 5. Gray and white matter segmentation of a brain MRI im-

age with 4 labels, fixed means and using λ = 50. (a) shows the

input image, (b) shows the piecewise constant approximation and

(c)-(f) depict the corresponding labels.

the following projected gradient schemes:

(θh
l )

n+1
i,j = ΠRh

(
(θh

l )
n
i,j + τp

(
div ξh

l

)
i,j

)
,

(ξh
l )

n+1
i,j = ΠKh

(
(ξh

l )
n
i,j + τd

(∇θh
l

)
i,j

)
,

(ηh
l )

n+1
i,j = ΠWh

(
(ηh

l )
n
i,j + τd

(
θh

l+1 − θh
l

)
i,j

)
,

where ΠRh , ΠKh and ΠWh are Euclidean projectors

to the respective convex sets.

We found the numerical scheme to be stable as long as the

product τpτd ≤ 1/(3h2). This bound seems to be sharp,

we do not have any proof for that. In practice we choose

τp = τd = 1/(
√
3h). In our numerical scheme we need

to re-project the primal and dual variables on the convex

sets Rh, Kh and Wh. The projections of θh onto Rh and

ηh onto Wh are easy. They can be performed by simple

point-wise truncation operations. The projection of ξh onto

Kh is more complicated since it involves constraints over

several levels. In order to perform the projection, we use

the iterative projection algorithm of Dykstra [6].

Our primal-dual algorithm allows for computing the so-

called primal-dual gap G = Ep − Ed, where Ep is the max-

imum of (21) with respect to the dual variables (ξh, ηh)
and Ed is the minimum of (21) with respect to the primal

variable θh. Computing the energy of the dual problem Ed

is easy since it can be computed by solving simple point-

wise optimization problems. However, computing the en-

ergy of the primal problem Ep can be tedious since it will

itself need an iterative algorithm to compute the maximum
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(a) Input image (b) Segmentation for k = 4, λ = 4 (c) Segmentation for k = 8, λ = 5

Figure 6. Piecewise constant Mumford-Shah color segmentation of a natural image using a different number of labels.

(a) Left input image (b) Ground truth disparity (c) Estimated disparity map with occlu-

sions

Figure 7. Stereo estimation using 16 labels. Occluded pixels were determined using a left-right consistency check.

with respect to the dual variables. We therefore propose to

compute an upper bound of the primal energy by comput-

ing the Potts energy of a thresholded version of the primal

variable. Note that in this case the gap is not guaranteed to

go to zero but it still provides a suitable criterion to check

for convergence. Figure 4 shows the dual energy and the

corresponding upper bound on the primal energy computed

for the stereo example provided in Figure 7. One can see

that after 1000 iterations, the dual energy is very close to

the upper bound of the primal energy.

3.3. Parallel Implementation

The first order primal dual algorithm we developed in

the last section is known to be slow in terms of the num-

ber of iterations, but it turned out to be convenient, since

it can be effectively parallelized on GPUs. We therefore

implemented the algorithm using the CUDA framework of

NVidia. Using a Nvidia Tesla C1060 GPU, we achieved a

speedup of approximately a factor 30 compared to an opti-

mized C/C++ implementation. Typical runtimes for image

segmentation problems for 5122 images and 10 labels are in

the range of 50 seconds.

4. Experimental Results
In the first experiment, we apply our algorithm to gray

and white matter segmentation of a brain MRI image which

is a classical problem in medical image analysis. Figure 5

shows the segmentation result using the piecewise constant

Mumford-Shah model for 4 labels and using the data term

(2) using λ = 50. The mean values were hand selected.

One can see that the functions θl − θl+1 are binary, i.e. the

algorithm has found the optimal labeling.

In the second experiment we apply the algorithm to color

segmentation of a natural image using again the data term

in (2). In this case the mean values were initialized using a

k-means algorithm. After computing the optimal segmen-

tation, the mean values were updated accordingly and the

segmentation process was repeated. Figure 6 shows the seg-

mentation result using 4 and 8 labels. The parameter λ was

set to 4 and 5, respectively

In the last experiment, we apply the proposed method

to disparity estimation on a standard benchmark stereo im-

age pair. We use 16 labels corresponding to disparity values

ranging from 0 . . . 15. The data term was the pixel-wise

sum of the absolute differences of the RGB color channels.

Figure 7 depicts the left input image, the ground truth dis-

parity and the compute disparity. Occluded pixels were de-

termined using a left-right consistency check. Note that the

algorithm accurately restores the disparity of fine structures

such as the lamp.

5. Conclusion

We proposed a convex relaxation approach for minimiz-

ing the spatially continuous Potts model. Based on a pri-

mal dual formulation of the Total Variation functional we

showed that the Potts prior can be elegantly incorporated by
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means of convex constraints on the dual variables. For min-

imization we propose an efficient primal dual projected gra-

dient algorithm which also allows a fast implementation on

parallel hardware. Although our approach is not guaranteed

to find global minimizers of the Potts model we can give a

tight bound on the energy between the computed solution

and the true minimizer. Furthermore we show that our re-

laxation approach dominates recently proposed relaxations.

This implies that computed solutions are closer to the true

minimizer. For many practical problems we actually find

global minimizers. We demonstrate the excellent perfor-

mance of our approach on problems of multi-label image

segmentation and stereo reconstruction.
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