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Abstract

In recent years, large databases of natural images have

become increasingly popular in the evaluation of face and

object recognition algorithms. However, Pinto et al. pre-

viously illustrated an inherent danger in using such sets,

showing that an extremely basic recognition system, built on

a trivial feature set, was able to take advantage of low-level

regularities in popular object [10] and face [11] recogni-

tion sets, performing on par with many state-of-the-art sys-

tems. Recently, several groups have raised the performance

“bar” for these sets, using more advanced classification

tools. However, it is difficult to know whether these im-

provements are due to progress towards solving the core

computational problem, or are due to further improvements

in the exploitation of low-level regularities. Here, we show

that even modest optimization of the simple model intro-

duced by Pinto et al. using modern multiple kernel learn-

ing (MKL) techniques once again yields “state-of-the-art”

performance levels on a standard face recognition set (“La-

beled Faces in the Wild” [7]). However, at the same time,

even with the inclusion of MKL techniques, systems based

on these simple features still fail on a synthetic face recog-

nition test that includes more “realistic” view variation by

design. These results underscore the importance of building

test sets focussed on capturing the central computational

challenges of real-world face recognition.

1. Introduction

The development of a robust face recognition algorithm

capable of functioning in unconstrained, real-world envi-

ronments will have far-reaching applications in our modern

digital world. While considerable progress has been made

towards building an artificial system that can match human

performance, no clear solution has emerged. At the core of

this challenge is the extreme diversity in viewpoint, light-

ing, clutter, occlusion, etc. present in real-world images of

faces, which allows any given face to produce a virtually in-

finite number of different images. A successful recognition

system will have to accurately recognize many individuals

while tolerating these variations.

To guide any serious effort towards solving face recog-

nition, one needs to define detailed specifications of what

the problem is and what would constitute a solution, so that

incremental progress can be precisely quantified and differ-

ent approaches can be compared through a standard proce-

dure. For the purposes of a recognition system, defining a

specification amounts to choosing a test set against which

an algorithm’s performance is evaluated. Recently, it has

become increasingly popular to evaluate models on large

test sets of “natural” images [4, 5, 7]. Such an approach

is appealing, as it is relatively easy to collect many images

from the Internet, and it is relatively efficient to label them

(e.g. [14, 20, 3]). However, there are significant downsides

to this approach as well. Importantly, there is no guaran-

tee that such a set accurately captures the range of variation

(e.g. view, lighting, etc.) found in the real-world. A vari-

ety of factors conspire to limit the range of variation found

in such image sets — e.g. posing and “framing” of pho-

tographs from the web, implicit or explicit selection criteria

in choosing images for the set, etc. Images collected in this

manner may also have subtle low-level confounds that “give

away” the task, such as image artifacts or backgrounds that

covary with face identity.

As a consequence, it is difficult to know if a given model

achieves its recognition performance by robustly solving

the problem (i.e., genuinely tolerating image variation), or

by exploiting accidental low-level regularities present in

the test set. This danger was recently demonstrated by

the studies of Shamir [15] and Pinto et al. [11, 10] on

popular face and object recognition test sets. Specifically,

Shamir showed that relatively high performance was pos-

sible on various face recognition sets using image patches

taken from the background, indicating that there was sig-

nificant, diagnostic covariation of background content with

face identity. At the same time, Pinto et al. demonstrated
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that an extremely rudimentary algorithm was able to match

or exceed the performance of many state-of-the-art vision

systems (on the Caltech101 [4], Caltech256 [5], AR [22],

ORL [26], CVL [23], YALE [28], and LFW [7, 24] sets).

Interestingly, the same “null” model was easily defeated by

ostensibly “simpler” synthetic recognition tests specifically

designed to better span the range of real world variation.

These results indicate that performance reports might better

be judged relative to simple baseline models (e.g. based on

pixels or wavelets) that are able take these low-level regu-

larities into account.

Recently, with the advent of large scale machine learn-

ing techniques [18], it has become possible to significantly

outperform the “trivial” baselines set forth in [11, 10] on

several object and face recognition test sets. These ap-

proaches work by optimally combining many image fea-

tures (e.g. [19, 6, 21, 2]). However, it unclear whether

these approaches tap into some deeper solution to the under-

lying problem, or derive their increased performance from

enhanced exploitation of low-level regularities.

To offer insight into this problem, we here apply a simi-

lar large-scale approach (“out-of-the-box” multiple kernel

learning, [31]) to the trivial representations described in

[10, 11]. Thus while the underlying representation (“front-

end”) remains unsophisticated in its processing of shape,

lacking any mechanism to help tolerate image variation, we

have added highly sophisticated “back-end” processing. We

combine variants of the trivial features proposed by Pinto et

al [11, 10] to investigate whether more low-level regulari-

ties can be captured using a large-scale (but not necessar-

ily smarter) classifier backend. We evaluate this method on

“Labeled Faces in the Wild”, a large natural face recogni-

tion set publicly-available [7] and contrast the results with

a small synthetic face recognition set, specifically designed

to include controlled image variations [11].

2. Combining Trivial Features

In the following experiments, the processing of images

was divided into two phases: a representation phase, in

which images were transformed into feature vectors, and

a classification phase. Since multiple kernel learning tech-

niques (see below) rely on blending of multiple representa-

tions, we generated a series of variants based on two basic

classes of representation:

1. Pixels: a representation based on raw pixel values

(with optional spatial resampling, and Gaussian blur-

ring)

2. V1-like: a simple representation inspired by the known

properties of cortical area V1 [11].

2.1. Trivial Representations

2.1.1 Pixel-based Representations

Here, the Pixels representation is simply based on unrolling

a preprocessed image into a n-dimensional feature vector.

Simple preprocessing steps were added as follows:

1. use color information if present or convert the image

to grayscale (2 variants: grayscale or color),

2. normalize the original image to have zero-mean and

unit-variance,

3. blur the image with a Gaussian filter (3 variants: no

blur, σ = 1, σ = 2).

By exhaustively crossing all possible variants of these three

steps, one can produce up to six pixel-based feature repre-

sentations (2 color spaces by 3 blurs).

2.1.2 V1-like Features

V1-like models are composed of a population of locally-

normalized, thresholded Gabor wavelets spanning a range

of orientations and spatial frequencies. For our purposes,

these models are intended as “null” models, as they only

represent first-order descriptions of the primary visual cor-

tex, and do not contain any particularly sophisticated repre-

sentation of shape, nor do they possess any explicit mecha-

nism designed to tolerate image variation (e.g. from varia-

tion in view, lighting, etc.).

Pinto and colleagues previously described two V1-Like

representations: V1-Like and V1-like+; code for both repre-

sentations is available upon request. In the “default” V1-like

representation, each input image is first resized by bicubic

interpolation (the largest edge is resized to 150 pixels while

preserving the aspect ratio), before conversion to grayscale

and normalization to zero-mean and unit-variance. Each el-

ement in the output representation correspond to the “activ-

ity” of a simulated V1-simple-cell-like unit. Each response

is computed by:

1. first locally normalizing the image (dividing each

pixel’s intensity value by the norm of the pixels in the

3x3 neighboring region),

2. applying a set of 96 spatially local (43x43 pixels) Ga-

bor wavelets to the image (with a one pixel stride),

3. and normalizing the output values (dividing by the

norm of the output values of all 3x3 spatial region

across all Gabor filter types);

4. output values are finally thresholded (values below

zero were clipped to zero) and clipped (values above

one were clipped).

2592



The 96 Gabors were chosen such that they spanned an ex-

haustive cross of 16 orientations (evenly spaced “around the

clock”) and 6 spatial frequencies (1/2, 1/3, 1/4, 1/6, 1/11,

1/18, 1/23, 1/35 cycles/pixel). The V1-Like+ representa-

tion includes all of the V1-Like features, plus a grab-bag of

easily-computed additional features (e.g. color and output

histograms, see [10]).

In this study, we refer to the original versions of these

representations as V1-like(A) and V1-like(A)+ and describe

six new instances, as follows.

• Both V1-like(B) and V1-like(B)+ resize the largest

edge of their input images by 75 pixels instead of 150.

V1-like(B)+ concatenates 37x37 raw grayscale pixels

to the feature vector instead of 75x75 (see [11]). Other

parameters are unchanged from (A);

• V1-like(C) and V1-like(C)+ use slightly bigger Ga-

bor filters (63x63 instead of 43x43) and cover an en-

larged panel of 8 spatial frequencies (1/2, 1/3, 1/4, 1/6,

1/11, 1/18, 1/23, 1/35 cycles/pixel), for a total of 128

Gabor filters). Their output stack is downsampled to

10x10x128 with a 21x21 box-car filter instead of the

original 30x30x96 with a 17x17 filter. The other pa-

rameters are unchanged from (A);

• V1-like(D) and V1-like(D)+ use much larger Gabor

filters (125x125 instead of 43x43), and cover an en-

larged panel of 24 spatial frequencies (1/2, 1/5, 1/8,

1/11, 1/14, 1/18, 1/22, 1/27, 1/31, 1/36, 1/41, 1/46,

1/52, 1/58, 1/64, 1/70, 1/76, 1/82, 1/89, 1/96, 1/103,

1/110, 1/117, 1/125) and 36 orientations (equally

spaced “around the clock”), for a total of 864 Gabor fil-

ters. Their output stack is downsampled to 10x10x864

with a 21x21 box-car filter instead of the original

30x30x96 with a 17x17 filter. The other parameters

are unchanged from (A);

These variants represent modest departures from the origi-

nal V1-Like representations described in [11]. Since MKL-

based blends benefit from the inclusion of as much diversity

as possible, the use of these variants represents just a first

step in optimization of the use of the V1-like representation

class.

2.2. Classification by Optimally Combining Kernels

The classification of face images was performed using

multi kernel learning (MKL) associated with a support vec-

tor machine (SVM). MKL allows the practitioner to opti-

mize jointly over a convex linear combination of p kernels

K∗ =
∑p

k=1
βkKk and the SVM parameters α ∈ R

n and

b ∈ R, where n is the number of training examples. The

value of the coefficients β, α and b are obtained by solving

the following optimization problem:






























min
β,α,b
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p
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k=1

βkαT Kkα

)

+ C

n
∑

i=1

ξi

s.t.

p
∑

k=1

βk = 1 and βk ≥ 0 ∀k

with ξi = max(0, 1 − yi(
∑p

k=1
βkKk(xi)

T α + b))

Where yi is the binary label ∈ {−1, +1} associated with

the i-th training example xi.

We solve this problem using the semi-infinite linear

problem (SILP) formulation described in [18]. The im-

plementation was taken “out-of-the-box” from the shogun-

toolbox [31]. The combined kernels were all linear and

were obtained after sphering the data – e.g. features were

made to be zero-mean and unit-variance, with sphering pa-

rameters being estimated from the training examples. To

avoid the MKL optimization unduely favoring any one ker-

nel during training, their traces were normalized to one (i.e.

by dividing each element of the training and testing matrix

by the sum of the training matrix diagonal).

The SVM’s regularization parameter C was fixed to 104

for all experiments. All the other parameters were set to

their default values (see [31] for more details).

A full discussion of MKL methods is outside of the scope

of the present paper, and is well covered elsewhere [1, 18,

13]. For the purpose of this work, MKL methods simply

represent an expedient and powerful means to more fully

exploit a large collection of features.

3. Experiments

3.1. Labeled Faces in the Wild Set

We first conducted experiments on the recent “Labeled

Faces in the Wild” (LFW) face set (using the “View 2” sub-

set from the LFW “funneled” version, see [7] for details).

This set contains 13,233 images (250x250 pixels) of 5,749

individuals (see Figure 1 for examples) and was created to

study the problem of face pair matching in unconstrained

environments (i.e., given two face images, decide if they

are from the same person or not). At a surface level, face

images from the LFW set appear to be quite varied in ap-

pearance, and this is hailed as one of set’s primary advan-

tages.

3.1.1 Pair Matching

In this pair-matching setting, each representation variant de-

scribed in Section 2 (i.e. each of the six variants for the Pix-

els representation and eight variants for the V1-Like repre-

sentation) was used to produce six linear kernels as follows.

• The first kernel was the same as in [11] where the fea-

ture mapping is the element-wise squared difference of
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(a) Examples of one individual from LFW.

“same”

“di erent”

(b) Examples of “same” and “different” pair of faces in LFW.

Figure 1. Examples taken from the “Labeled Faces in the Wild”

(LFW) test set [24].

the representation outputs computed on a given pair of

250x250 images.

• The second and third kernels were also computed from

250x250 images but using an absolute-value difference

or a square-root absolute-value difference respectively.

• The last kernels were computed using these three

different element-wise differences (i.e. squared,

absolute-value and square-root absolute-value) on

150x150 pair of images (cropped from the center).

Finally, for each training pair, the resulting feature vec-

tor was labeled as “same” or “different,” and the task of

labeling new (test) examples was treated as a two-category

classification problem (theoretical chance being 50%). We

followed the standard procedure described in [7, 24] and we

report the mean classification accuracy ± s.e.m. computed

Grayscale Color

no blur 66.02%±0.53 68.33%±0.50

Gaussian blur(σ = 1) 66.12%±0.54 67.47%±0.53

Gaussian blur(σ = 2) 66.12%±0.55 66.45%±0.64

All variants 68.22%±0.41

Table 1. Performance on the “Labeled Faces in the Wild” (LFW)

set using multiple-kernel learning (MKL) with kernels computed

from the Pixels representations. The score of each cell is the result

of the optimal combination of six kernels (see methods). All the

variants add up to 36 kernels. Note that using all kernels doesn’t

improve performance significantly over the optimal blend of non-

blurred color images.

V1-like V1-like+

Variant (A) 76.55%±0.49 78.52%±0.49

Variant (B) 73.23%±0.57 76.16%±0.56

Variant (C) 74.65%±0.38 77.30%±0.62

Variant (D) 73.43%±0.36 75.78%±0.49

All variants 79.35%±0.55

Table 2. Performance on LFW set using MKL with kernels com-

puted from the V1-Like representations. The score of each cell is

the result of the optimal combination of 6 kernels (see methods).

All the variants add up to 48 kernels. Note that using all kernels,

our approach can get close to 80% accuracy.

from the ten random folds of 5,400 training and 600 testing

examples from the “View 2” portion of the full LFW set.

3.1.2 Results

Table 1 summarizes the performance using MKL to com-

bine variants of the Pixels baseline model. The best perfor-

mance achieved is 68.33%±0.50 correct, using non-blurred

color images. This is substantially more than theoreti-

cal chance (50%). More importantly, already this sim-

ple pixel-based approach outperforms some previously re-

ported methods (e.g. see [21] for details).

The recognition accuracy of the V1-Like model variants

is presented in Table 2, and a corresponding ROC curve is

shown in Figure 2. Interestingly, an MKL blend of only six

V1-like(A)+ kernels (i.e., the representation taken, without

modification, from [11]) scored 78.52%±0.49, which is not

significantly different from the current state-of-the-art [21].

When all 48 V1-Like kernels were blended, performance

reached 79.35%±0.55, establishing a new record (as of the

time of writing of this manuscript) on this test set. Com-

bining all 36 Pixels and 48 V1-Like kernels did not improve

performance further.
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Reference Methods Performance

Huang08 [6]

Nowak [9] 73.93%±0.49

MERL 70.52%±0.60

Nowak+MERL 76.18%±0.58

Wolf08 [21]

descriptor-based 70.62%±0.57

one-shot-learning∗ 76.53%±0.54

hybrid∗ 78.47%±0.51

This paper
Pixels/MKL 68.22%±0.41

V1-like/MKL 79.35%±0.55

Table 3. Average performance comparison with the current state-

of-the-art on LFW. ∗note that the “one-shot-learning” and “hy-

brid” methods from [21] cannot directly be compared to ours as

they exploit the fact that individuals in the training and testing sets

are mutually exclusive (i.e. using this property, you can build a

powerful one-shot-learning classifier knowing that each test ex-

ample is different from all the training examples, see [21] for more

details. Our decision not to use such techniques effectively handi-

caps our results relative to reports that use themr).

Figure 2. ROC curve comparison with the current state-of-the art

on LFW. These curves were generated using the standard proce-

dure described in [24].

3.2. Synthetic Face Set

At this point, we have shown that a combination of MKL

techniques with previously described “trivial” feature rep-

resentations is able to yield record levels of performance

on a standard face recognition test set. However, this high

level of performance could be due one of to two possible

causes: 1) the powerful MKL back-end could be extracting

a sophisticated, robust solution to face recognition from the

relatively unsophisticated “parts” provided by the V1-like

representation, or 2) the LFW set itself could contain more

low-level regularities than previously appreciated, which

the MKL-based back-end is more adept at exploiting.

To investigate whether the large-scale combination of

kernels based on Pixels or V1-Like representations repre-

sents a robust solution to the face recognition problem, we

conducted experiments using an ostensibly simpler para-

metric face set described in [11], using the a similar protocol

as described in that work. Briefly, the image set consisted

of two individual 3D faces meshes (one male, one female

generated using the FaceGen software package [29]), ren-

dered using the POV-Ray raytracing package [30] (see Fig-

ure 3 for examples). Because this image set only contains

two individuals, it is arguably simpler than most other face

recognition sets, which typically contain many individuals

(e.g. almost 6,000, in the case of the LFW set). Critically,

however, these synthetic faces were rendered with paramet-

rically increasing amounts of variation in rotation, 2D po-

sition, and size, so that the performance of a system can be

assessed as a function of the amount of variation present

in the set. Here, as above, we used MKL-based classifiers,

with a combination of kernels from the six Pixels represen-

tation variants and the eight V1-Like variants (see Materials

and Methods). Test sets corresponding to seven levels of

increasing variation (see Figure 3, x-axis labels) were cre-

ated. For each level of variation, classifiers were trained

with 150 randomly generated faces per individual and were

tested using 150 examples.

Figure 3 shows the performance of the MKL combina-

tions of the Pixels and V1-like baseline models with this

synthetic set, as a function of the amount of parametric im-

age variation. (i.e. position, viewpoint, scale, etc.). Echoing

the results of [11], performance degrades rapidly as a func-

tion of image variation, with even modest amounts of vari-

ation resulting in chance performance. Interestingly, per-

formance falls to a level statistically indistinguishable from

chance at the same variation level as in [11] (the fourth data

point in 3) and the use of a powerful large-scale classifier

back-end does not rescue performance at this level. While

the addition of an MKL back-end did produce some gains

at smaller levels of image variation relative to that reported

in [11] (e.g. the second and third points in Figure 3), it is

clear that an MKL-based classifier built atop these simple

features does not represent a particularly robust solution to

the problem of unconstrained face recognition.

4. Discussion

In this study, we combined variants of the Pixels and V1-

Like baseline models [11, 10] using a large-scale statisti-

cal learning tool (“out-of-the-box” MKL, [18]) to investi-

gate how far you can get using only simple features. We

presented evidence that this simple approach is capable of
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Figure 3. Performance of the Pixels and V1-like Representations with a MKL back-end on a synthetic face recognition task. Left top:

examples of the faces to be discriminated in their default views, without any background (shown for illustration purposes); Left Bottom:

examples of face images used here. The faces could appear in variety of sizes, positions, and orientations, and were randomly composited

onto natural image backgrounds. For a human observer, this task is trivial, however even modest amounts of controlled view variation

severely degrade performance of the MKL-backed Pixels and V1-like representations, confirming that these representations are not well

suited for real-world face recognition, even with the addition of a more sophisticated back-end.

performing at a state-of-the-art level on the large “Labeled

Faces in the Wild” (LFW) face recognition set, while fail-

ing on (an ostensibly simpler) synthetic set that includes

more realistic view variation by design. Taken together,

these results again urge for caution, as more sophisticated

large scale kernel learning-based classifiers have the power

to leverage good performance even from collections of rela-

tively unsophisticated features. While it is still possible that

this powerful machinery is building something “deeper” out

of the simple parts provided to it, the extent of this sophis-

tication is limited, at the very least. The MKL-backed sys-

tem’s inability to tolerate even modest amounts of varia-

tion (trivial for a human observer), raises the possibility that

the MKL-backed system’s gains on the LFW set may have

more to do with extraction of low-level regularities than

with progress towards the “core” problem.

4.1. The Importance of Good Benchmark Test Sets

These results underscore the importance of building test

sets focussed on capturing the central computational chal-

lenges of real-world face and object recognition. The use of

very large sets of “natural” images, while important, may

not necessarily be optimal if used alone, as there is no clear

way to ensure a realistic range of variation is present and

there is no obvious way to control for undesired low-level

regularities. A central concern with databases of “found”

images from the internet is that photographers typically

pose and frame their photos such that a limited range of

views are highly over-represented. This effect may be fur-

ther amplified by the manner in which the sets are assem-

bled. For example, every face image included in the LFW

set was the product of a successful detection by the Viola

Jones algorithm applied to a set of pictures gathered from

news articles on the Internet [7]. Even if the image diver-

sity in LFW seems large, applying this face detector “filter”

leads to an under-representation of lighting conditions and

face views where the Viola-Jones detector does not excel

(e.g. views from above, below or side; which can arguably

be more challenging than frontal views). Obviously, such

concerns are subject to practical trade-offs — though this

automated procedure has biases, it enabled the authors to

collect more than ten thousand images at a reasonable cost

in terms of labor.

Large-scale methods are undoubtedly very powerful.

However, this power represents a double-edged sword. On

one hand, the use of large scale methods are now routinely

responsible for the highest levels of performance in a vari-

ety of object and face recognition tests (e.g. [19, 2]). On

the other hand, while such methods are adept at “wringing”

substantial performance out of a test set and representation,

there is no guarantee that such an exercise brings us closer

to a real solution. Indeed, while large scale methods al-

lowed us to achieve a high level of performance gains on

the LFW set, we are unconvinced that these gains represent

real progress. The cost of potentially false progress is mag-

nified by the computational expense of large scale methods,

which favor massive computational and memory footprints.

It is important to note that we are not claiming that
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any previously reported result necessarily represents “false”

progress. Previously reported methods may very well rep-

resent significant progress towards a solution. However, we

argue that this progress will be difficult to see until, as a

field, we are able to develop test sets that include realistic

ranges of image variation. This will not be an easy task.

One approach that we advocate here is the complemen-

tary use of parametric, rendered image sets along with nat-

ural photographic sets. While synthetic sets have in some

circles fallen out of favor, considered to be “toy” sets, our

results here (along with previous reports [11, 10]) suggest

that synthetic sets may in some ways be paradoxically more

“natural” than a database of “found” photographic images,

because they can span a realistic range of view, lighting,

etc. variation, by design. In addition, because ground-truth

is known, one can assess performance as a function of that

variation. Finally, as computer graphics continue to become

ever more realistic and accessible, the lines between natu-

ral and synthetic images are increasingly blurred, allowing

a more natural interplay between both kinds of sets.

Of course, using synthetic images is not the only way

to achieve controlled image variation. An alternative ap-

proach would be to use (or create) controlled photographic

sets such as the PIE Face Set [16, 27] (or the NORB Object

Set [8, 25]), which systematically vary parameters such as

camera and lighting angle. However, while such sets have

the appeal of being “real,” it is extremely difficult and time-

consuming to create a set that spans a sufficient number of

axes of variation (i.e. six degrees of freedom in view, mul-

tiple light sources, different backgrounds, etc.), and failure

to span enough axes results in an incomplete surrogate for

the full range of variation in the real world. As a point of

reference, for the PIE set, a simple unblended V1-like(A)+

already achieves 87.9%±0.3 performance 1, indicating that

low-level regularities are likely nonetheless present. While

a controlled photographic set with adequate variation is cer-

tainly theoretically possible, we are not aware of a set that

meets this goal. Meanwhile, synthetic sets offer extreme

practicality and flexibility.

4.2. New Baselines for Face Recognition

As previously argued in [11, 10], one function for low-

level “baseline” models, such as the V1-Like model, is to

set a baseline mark against which performance of other sys-

tems can be compared. Test sets where a “trivial” model

performs well can still be highly useful, provided the level

of performance of that “trivial” model is taken into account

when evaluating performance, and provided that there is

still “headroom” left with respect to the test set (i.e. the triv-

ial model doesn’t perform at 100%). That is, to be reassured

that a purpose-built system is going beyond low-level regu-

168-way one-against-all, chance is at 1.5%

larities, the performance of the purpose-built vision system

should ideally be substantially higher than the performance

of a “trivial” model.

The nature of multiple kernel methods also opens up an

additional avenue for integrating trivial baselines directly

into the discovery process. In particular, if the simple V1-

like representation presented here were added to the collec-

tion of representations under evaluation (i.e. including the

purpose-built representation under study), then the V1-like

representation can “soak up” some of the performance gains

due to low-level regularities, making clearer what contribu-

tions are made by the purpose-built representation. In such a

scenario, one would want the inclusion of the purpose-built

representation to result in substantial improvement over the

V1-like representation alone. To some extent, interpreta-

tion of the weights produced by the MKL approach [18, 17]

could offer valuable insights into what contributions the

purpose-built representation is making.

We are clearly not the first to identity the importance of

evaluation in driving progress in face and object recognition

[12]; our results add to a long-standing process of evalua-

tion and re-evaluation of how algorithms and systems are

evaluated. Going forward, large-scale techniques such as

MKL will have an important role to play in face and object

recognition, however, their use will also require redoubled

efforts in collecting and creating test sets that properly chan-

nel and direct that power.
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