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Abstract

We propose a biologically inspired framework for visual

tracking based on discriminant center surround saliency.

At each frame, discrimination of the target from the back-

ground is posed as a binary classification problem. From a

pool of feature descriptors for the target and background, a

subset that is most informative for classification between the

two is selected using the principle of maximum marginal di-

versity. Using these features, the location of the target in the

next frame is identified using top-down saliency, complet-

ing one iteration of the tracking algorithm. We also show

that a simple extension of the framework to include motion

features in a bottom-up saliency mode can robustly iden-

tify salient moving objects and automatically initialize the

tracker. The connections of the proposed method to existing

works on discriminant tracking are discussed. Experimen-

tal results comparing the proposed method to the state of

the art in tracking are presented, showing improved perfor-

mance.

1. Introduction

Object tracking is a pre-requisite for important applica-

tions of computer vision such as surveillance, activity or

behavior recognition. Many years of research on the track-

ing problem has produced a diverse set of approaches and a

rich collection of tracking algorithms [32]. A popular sub-

set among these are the so-called appearance based meth-

ods, which learn and maintain a model of target appearance

and use it to locate the target as time evolves [8, 19, 20, 24].

All of these methods rely uniquely on models of object ap-

pearance and do not take the background into account. This

limits tracking accuracy when backgrounds are cluttered, or

targets have substantial amounts of geometric deformation,

such as out-of-plane rotation. To address this limitation,

various authors have proposed the formulation of “discrim-

inant tracking” - object tracking as continuous object detec-

tion, by posing the problem as one of incremental “target vs.

background” classification [3, 7, 17]. Given a target bound-

ing box at video frame t, a classifier is trained to distinguish

target features from those of the background. This classi-

fier is then used to determine the location of the target in

frame t + 1. The bounding box is moved to this location,

the classifier updated, and the process iterated.

In the biological world, object tracking is closely related

to attentional tasks, such as the guidance of eye movements.

Due to the evolutionary advantages of solving these tasks

accurately, it is not surprising that biological vision systems

have developed extremely efficient tracking mechanisms,

in terms of both accuracy and speed. The effectiveness of

these mechanisms, even under the most adverse conditions

(e.g. highly cluttered scenes, low-light, etc), is a conse-

quence of the availability of robust saliency mechanisms,

that cause pre-attentive pop-out of salient locations in the

visual field [23]. These salient locations become the focus

of attention (FoA) for the post-attentive stages of visual pro-

cessing, where top-down feedback from higher level corti-

cal layers is used to solve problems such as tracking or vi-

sual search [31] with modest amounts of computation. The

robustness of the biological solutions has motivated com-

puter vision researchers to augment conventional tracking

algorithms with FoA mechanisms. For instance, Toyama

and Hager [27] proposed an incremental FoA procedure to

combine multiple trackers, leading to increased robustness.

Nevertheless, there has been little work aimed at deriving

a principled understanding of what computational mecha-

nisms could be used by biological vision to solve the track-

ing problem, how these mechanisms relate to the state-of-

the-art algorithms from computer vision, and how these

connections could be exploited to achieve increased com-

puter vision performance.

In this work, we present a contribution along these three

dimensions. We consider tracking in the context of center-

surround saliency mechanisms that are prevalent in biolog-

ical vision [5, 16]. In particular, we consider a recently

proposed computational principle for visual saliency, de-

noted by discriminant saliency [16]. This principle has

been shown to have a number of attractive properties for

both the biological and computer vision communities. In
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the area of biological vision, is has been shown 1) to lead

to computational models of saliency that replicate an ex-

tensive collection of psychophysics from both saliency and

visual search [13], and 2) to have a one to one mapping to

the standard neurophysiological model of the area V1 of the

brain [16]. For computer vision, it has been shown to pro-

duce algorithms that achieve state-of-the-art performance in

the problems of interest point detection [15], object recog-

nition [14], and background subtraction [22].

In this work, we show that discriminant tracking can be

posed as a particular instance of this generic principle. In

particular, we show that it provides a unified and principled

framework for the solution of the three problems posed by

the design of a discriminant tracker: target initialization,

feature selection and target detection. This unifies tracking

with prior work on background subtraction, enabling highly

robust automatic target initialization. By exploiting connec-

tions between discriminant saliency and the statistics of nat-

ural images, it also enables highly computationally efficient

tracking algorithms without compromise of discrimination

optimality. This is shown not to be the case for previous

computer vision solutions to discriminant tracking, which

the proposed discriminant tracking algorithm is shown to

outperform experimentally.

2. Tracking Using Discriminant Saliency

Discriminant saliency [16] poses the saliency problem as

one of optimal decision-making between two classes of vi-

sual stimuli: a class of stimuli of interest, and a background

or null hypothesis, consisting of stimuli that are not salient.

This is implemented by establishing a binary classification

problem which opposes the stimuli of interest to the null hy-

pothesis. The saliency of each location in the visual field is

then equated to the discriminant power (expected classifica-

tion accuracy) of a set of visual features, extracted from that

location, for the differentiation between the two classes.The

locations that can be classified, with lowest expected prob-

ability of error, as containing stimuli of interest are denoted

as salient.

The discriminant saliency principle is generic and can be

applied to various vision problems, by suitable definition of

class of interest and null-hypothesis. For example, it can

be used to implement one-vs-all object detection, by defin-

ing the class of interest to be an object class, and the null

hypothesis as a collection of other object classes [14]. In

the biological vision literature, this is commonly referred

as top-down saliency, due to the requirement of feedback

from high-level cortical areas for the specification of ob-

ject classes. On the other hand, the principle can be equally

applied to the solution of bottom-up saliency, which is pre-

attentive and purely stimulus driven. This is implemented

by defining the classification problem as one of discrimina-

tion between the visual stimulus contained in a pair of cen-

ter (class of interest) and surround (null hypothesis) win-

dows, at every location of the visual field [16]. For com-

puter vision, this type of saliency is of interest for the so-

lution of problems such as background subtraction, where

the goal is to identify any object that does not belong to the

background.

Assuming that the initial location of a target object is

known, the tracking problem reduces to two of the three

questions listed above, namely, feature selection and target

detection. Since this assumption underlies all current im-

plementations of discriminant tracking [3, 7, 17], we start

by discussing how top-down discriminant saliency can be

used to solve these two problems, in the remainder of this

section. Later, in Section 3, we show how bottom-up dis-

criminant saliency can be used for automatic tracker initial-

ization.

2.1. Discriminant Saliency

Let V be a d dimensional visual stimulus (d = 3 for

grayscale, d = 4 for color video) and let l indicate the ini-

tial position of the target. Two windows are defined around

this location: a target window W1
l containing the target, and

a surrounding annular window W0
l containing background.

A classification problem opposing the two classes, target

class with label C(l) = 1 and background class with la-

bel C(l) = 0, is posed at location l. A set of features Y

from a predefined feature space Y (e.g. raw pixel values,

Gabor, DCT, wavelet, or SIFT features), are computed for

each of the windows Wi
l , i ∈ {0, 1}. Features extracted

from the target window are assumed to be drawn with prob-

ability density pY|C(l)(y|1) and those from the background

window with probability density pY|C(l)(y|0).
The saliency of location l, S(l), is defined as the extent

to which the features Y can discriminate between the two
classes. This is quantified by the mutual information be-
tween feature responses, Y, and class label, C,

S(l) = Il(Y ; C) (1)

=

1
∑

i=0

∫

pY ,C(l)(y, i) log
pY ,C(l)(y, i)

pY (y)pC(l)(i)
dy,

and can be shown to approximate the expected probabil-
ity of correct classification of the optimal target/background
classifier. More precisely, the mutual information of (1) is
an approximation to one minus the Bayes error rate of the
classification problem [30]. The mutual information can
also be written as

S(l) =

1
∑

c=0

pC(l)(i)KL[pY |C(l)(y|i)||pY (y)] (2)

where KL (p ‖q ) =
∫

X
pX(x) log pX(x)

qX(x)dx is the

Kullback-Leibler (KL) divergence between the probability

distributions pX(x) and qX(x).
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2.2. Learning Salient Features

The connection between discriminant saliency and the

Bayes error rate for target/background classification, leads

to a very natural criteria for salient feature selection: the

features that enable optimal discrimination between target

and background are those of largest mutual information

with the class label. These salient features can be seen as ei-

ther the most informative features for the target/background

classification, or as the feature set of (approximately) lowest

Bayes error rate for this classification.
Discriminant salient feature selection can also be per-

formed efficiently. Let the feature space Y have dimen-
sion N and denote by Y = (Y1, . . . , YN ) the random pro-
cess from which all vectors of feature responses are drawn.
Defining Y1,k = (Y1, . . . , Yk), the mutual information
of (1) can be expanded ( [29]) into

I(Y; C) (3)

=
∑

k

I(Yk; C) +
∑

k

[I(Yk;Y1,k−1|C) − I(Yk;Y1,k−1)]

where

I(Y;C|Z) (4)

=
∑

i

∫

PY,C,Z(y, i, z) log
PY,C|Z(y, i|z)

pY|Z(y|z)pC|Z(i|z)
dydz

is the conditional mutual information between Y and C
given the observation of Z. In (3), the term I(Yk; C) rep-
resents the discriminant power of the kth feature individu-
ally, and is denoted its marginal diversity (MD). The terms
I(Yk;Y1,k−1|C)−I(Yk;Y1,k−1) quantify the discriminant
information contained in feature dependencies between the
kth feature and the set of k − 1 previously selected fea-
tures [29]. This decomposition allows as substantial sim-
plification of the mutual information, by exploiting a well
known property of band-pass features extracted from natu-
ral images: that such features exhibit consistent patterns of
dependence across an extremely wide range of natural im-
age classes [4, 18]. This implies that the dependencies be-
tween features carry little information about the class from
which the features are extracted, allowing the approxima-
tion [29] of (3) by

I(Y;C) ≈

N
∑

k=1

I(Yk; C) (5)

=
∑

k

∑

i

PC(i)KL
[

PYk|C(y|i)||PYk
(y)

]

Since the mutual information is always non-negative, it

follows that the selection of the optimal subset of K (K <
N ) salient features has very little complexity [30]. It con-

sists of 1) ordering the N features by decreasing I(Yk, C),
and 2) selecting the first K . This procedure is denoted as

feature selection by maximum marginal diversity (MMD)

in [30]. The terms in the right hand side of (5) only require

Figure 1. MMD feature selection for target/background discrimination.

Feature responses are computed at the target location, from the center (tar-

get) and surround (background) windows. Features are ordered by their

MD, and the most discriminant are selected.

marginal density estimates. In this work, we adopt a fea-

ture set composed of 8× 8 DCT features at multiple scales.

The fact that the DCT features belong to the set of bandpass

features (as would Gabor coefficients, wavelet features, or

image derivatives) makes these marginal density estimates

extremely simple to compute.

2.3. Efficient Computation of the MD

The probability distribution of feature responses of a
bandpass feature, to natural images, is well known to fol-
low a generalized Gaussian distribution (GGD) [18]

PY (y;α, β) =
β

2αΓ(1/β)
exp

{

−

(

|y|

α

)β
}

, (6)

where Γ(z) =
∫ ∞

0 e−ttz−1dt, t > 0, is the Gamma func-
tion, α a scale parameter, and β a shape parameter. The
parameter β controls the rate of decay from the peak value,
and defines a sub-family of the GGD (e.g. Laplacian when
β = 1 or Gaussian when β = 2). The GGD parameters
can be estimated from a sample of feature responses by the
method of moments [25], using

σ2 =
α2Γ( 3

β
)

Γ( 1
β
)

and κ =
Γ( 1

β
)Γ( 5

β
)

Γ2( 3
β
)

, (7)

where σ2 and κ are, respectively, the variance and
kurtosis of Y , σ2 = EY [(Y − EY [Y ])2], and κ =
EY [(Y −EY [Y ])4]

σ4 . Furthermore, when the class-conditional
densities PY |C(y|i) and the marginal PY (y) are GGDs

PY (y; αi, βi) and PY (y; α, β) respectively, the KL diver-
gences of (5) have closed form [9]

KL[PY (y; αi, βi)||PY (y;α, β)] (8)

= log

(

βiαΓ(1/β)

βαiΓ(1/βi)

)

+
(αi

α

)β Γ((β + 1)/βi)

Γ(1/βi)
−

1

βi
.

These properties enable an extremely efficient computation

of the marginal diversity of (5). The maximum MD (MMD)

feature selection procedure is illustrated in Figure 1.

2.4. Target tracking by saliency detection

Once the salient features that best discriminate target
from background at time step t have been computed, the
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goal is to identify the target location at time t + 1. This
reduces to detecting the locations of feature response y that
can be most confidently assigned to the target class in video
frame t + 1, given the discriminant features selected at time
t. Under the information theoretic definition of discrimina-
tion, classification confidence is measured by

I(C; Y = y) =
1

∑

i=0

pC|Y (y|i) log
pY,C(y, i)

pY (y)pC(i)
,

Given the response Yk of the kth feature to the frame at
time t + 1, this results in the saliency measure

Sk(y) =

{

I(C;Yk = yk) if yk ∈ Sk

0, otherwise,
(9)

with

Sk =

{

y

∣

∣

∣

∣

PC,Yk
(1, yk)

PC(1)PYk
(yk)

>
PC,Yk

(0, yk)

PC(0)PYk
(yk)

}

. (10)

Sk contains the set of points that are classified as belong-

ing to the target class (C = 1) by the likelihood ratio test

PYk|C(yk|1)/PYk|C(yk|0) > 1 and I(C; Yk = yk) encodes

the confidence of the classification, according to the kth fea-

ture. Points such that the likelihood under the target hypoth-

esis is much larger than that under the background hypothe-

sis are very informative for target detection, and have large

saliency.
For GGD features this saliency measure can be com-

puted very efficiently, using the fact that [16]

I(C;Y = y) = s[g(y)] log
s[g(y)]

π1
+ s[−g(y)] log

s[−g(y)]

π0
,

(11)

where s(y) = (1 + e−y)−1 is a sigmoid function, πi =
PC(i) is the prior for class i, and

g(y) =

(

|y|

α0

)β0

−

(

|y|

α1

)β1

+ T, (12)

with T = log α0β1π1Γ(1/β0)
α1β0π0Γ(1/β1)

.

The total confidence measure for the set of K feature
responses y is

ST (y) =

K
∑

k=1

Sk(yk). (13)

The salient features selected at time t can be seen as
matched filters for the detection of the salient visual at-
tributes of the target, according to the appearance of the
latter at that time. This follows from the fact that Sk is a
set of the form

S =
{

y
∣

∣PYk|C(y|1) > PYk|C(y|0)
}

, (14)

and, for GGD features, this reduces to Sk =
{yk ||yk| > tk }, where tk is a threshold that depends on the

parameters of the two GGDs. Hence, only regions of large

magnitude feature response are considered salient. This im-

plies that the features are matched to the visual stimuli con-

sidered salient and pertain to the target class. The location

of largest saliency at time t + 1 is selected as the new po-

sition of the target. Feature selection is then repeated from

target and background windows centered at this location, to

learn the appearance model at time t+1. The resulting fea-

tures are then used for saliency detection at time t + 2 and

the procedure is iterated.

3. Automatic tracker initialization

Most tracking algorithms assume that the initial target

position l and a bounding box are manually provided [3,7].

This is frequently not practical in real applications, where

manual supervision is expensive or unavailable. While

many ad-hoc initialization strategies, such as background

subtraction, and blob or motion detection, have been pro-

posed [7], most of these have limited scope. For example,

they tend to fail when the background is itself dynamic, as

is the case for many natural scenes [22]. A more principled

approach, based on bootstrapping a weak and generic tar-

get model for automatic initialization, has been proposed by

Toyama and Ying [28]. It, however, requires a target model

to begin with, and some degree of supervision to adapt to

different scenes.

Under the discriminant saliency principle, there is no

fundamental difference between tracker initialization and

the tracking operation itself. The only difference is that,

while the latter is a top-down saliency procedure, the for-

mer is a problem of bottom-up saliency. In fact, it has been

shown that bottom-up discriminant saliency with suitable

models for spatiotemporal stimulus statistics is a state of the

art solution for the problem of (unsupervised) background

subtraction [22].

To compute saliency in the unsupervised or bottom-up

mode, a classification problem is posed at every location l
of the visual field, between a center window W1

l around

l, and a surround annular window W0
l . The union of the

two windows is denoted the total window, Wl = W0
l ∪

W1
l . Through the inclusion of spatiotemporal features in

the feature space, this classification problem can identify

locations which are most different from their surround, in

terms of both spatial and temporal stimulus statistics. The

regions of highest saliency can then be associated with a

potential target.

The requisite spatiotemporal features can be selected

based on the nature of the scene. For scenes shot with

static cameras, optical flow features can be used [13]. In

this case, the features y used in the saliency formulation (2)

are the magnitude and direction of optical flow vectors.

For more complex backgrounds, following [22], we use

the dynamic texture (DT) model of [10] as the probabil-

ity model pY |C(l)(y|c) for the spatiotemporal stimuli y(τ)
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Figure 2. Illustration of automatic target identification for initializing the

tracker. By using spatiotemporal features (e.g.optical flow or dynamic tex-

tures) to represent center and surround windows, (2) is used compute the

saliency of every location l. The saliency measure S(l) is highest for re-

gions containing salient moving objects. By finding the location of highest

motion saliency, the initial position and scale of the target can be estimated.

in (2). DT parameters are learned from center, surround,

and total windows, to obtain the densities pY |C(l)(y|1),
pY |C(l)(y|0), and pY (y), respectively. S(l) is finally com-

puted with (2). This procedure is illustrated in Figure 2.

Further details are available in [22], where the procedure is

shown to have great robustness to complex background dy-

namics, and camera motion. In our experience, the compu-

tation of spatiotemporal saliency, from the initial frames of

a video sequence, is a robust automatic procedure to iden-

tify the moving targets of typical interest for surveillance

and monitoring applications. The locations of these targets

are then used to initialize the discriminant tracker described

in Section 2.

4. Experiments and Results

To validate the proposed algorithm, we performed two

types of experiments - the first set comparing the discrimi-

nant saliency tracker (DST) with other tracking approaches

when the target location is known and 2) automatic initial-

ization and tracking on video clips without any prior knowl-

edge.

Comparison to Existing Trackers: We compared the

performance of DST with three other trackers : two dis-

criminant trackers, (the method of Collins et al. [7], and

the ensemble tracker [3]), and the incremental visual tracker

(IVT) [24], a representative of the state of the art in appear-

ance based tracking.

The test clips for tracking were selected from diverse

sources (e.g previous works, standard databases, and from

the web). All clips include challenging situations such as

varying illumination, complete object rotation and change

in perspective. For instance, the “motinas toni change ill”

of [21] shows a person turning around 360◦ in extremely

low light (Figure 3(a)), while the “gravel” clip has perspec-

tive distortion induced by the person moving away from

the camera (Figure 4). Since the test clips are grayscale,

we implemented a version of the Collins tracker that uses

DCT features instead of the R,G,B color features proposed

in the original publication [7]. All four algorithms were ini-

tialized with target location and bounding box in the first

frame. The background bounding box was assumed to have

an edge 3 times larger than the corresponding edge of the

target box. Each training image from target or background

was decomposed using a two-level Gaussian pyramid and

8 × 8 DCT features computed at each location (for a total

of N = 64 × 2 = 128 features). The number of MMD fea-

tures selected for each frame was set to K = 5. To enforce

temporal coherence, the discriminant features were learned

using the target appearance of the current frame and 2 past

frames, and tracking was performed using the method de-

scribed in Section 2.

The results of tracking on three of the clips tested are

shown in Figures 3 and 4. For these clips, the qualitative

performance of IVT and the Collins tracker is extremely

poor and they fail to track the target in all three scenes.

The ensemble tracker fails to track the object when it un-

dergoes extreme appearance variation due to illumination

changes or target rotation (e.g.“motinas toni change ill” in

Figure 3(a), “karlsruhe” in Figure 3(b)), while DST tracks

the targets successfully in all the clips. For each clip, a

quantitative estimate of tracking error was also obtained us-

ing groundtruth data. Tracking error was defined as the av-

erage pixel difference, between the groundtruth bounding

box and the bounding box obtained by the tracker. The re-

sults for the three clips are tabulated in Table 1. DST clearly

outperforms all other trackers. The videos (and larger pic-

tures) of all results are available online [2].

Results for Automatic Initialization and Tracking: The

result of tracking using automatic initialization for a static

camera scene is shown in Figure 5(a). From the initial

frames of the clip, a motion saliency map is generated us-

ing optical flow features, and the regions of maximal motion

saliency are identified as potential targets. These are input

to the DST algortithm, which then tracks the targets through

the remaining frames.

For scenes with extremely dynamic backgrounds, a dy-

namic texture based motion saliency algorithm is used. Fig-

ure 5(b) shows the motion saliency map obtained using this

procedure for a surfing scene, and a few of the subsequently

tracked frames. These results demonstrate the ability of the

discriminant saliency framework to perform robust target

initialization even for scenes with extremely dynamic back-

grounds. The video results are available in [2].

5. Connections to other discriminant trackers

At an abstract level, the proposed discriminant saliency

tracker is similar to the previously proposed discriminant

trackers [3, 7]. In this section we provide an analysis of

these two trackers, to highlight the connections, and show
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(a)

(b)

Figure 3. Results of tracking on a)“motinas toni change ill” [21] - the person is turning around and the illumination changes drastically b) “karlsruhe” [1]

- the car makes a U-turn. The target locations obtained by the four methods on four frames are shown : DST - thick red (pale gray when not in color) box,

Collins - thick black box, ensemble - white dashed box, IVT black dashed box.

Figure 4. Results of tracking on “gravel”. The target locations obtained

by the four methods on six frames are shown : DST - thick red (pale gray

when not in color) box, Collins - thick black box, ensemble - white dashed

box, IVT black dashed box.

Clip Name IVT Collins Ensemble DST

motinas toni change ill × 0.70 × 0.71 × 0.52 X0.15

karlsruhe × 0.29 × 0.34 × 0.56 X0.04

gravel × 0.62 × 0.71 X0.10 X0.03

Table 1. Performance comparison of four tracking algorithms on

three clips. In addition to the average tracking error for each

method, a ‘×’ (loses track) or ‘ X’ (maintains track) is shown

to indicate tracking continuity as observed visually.

(a)

(b)

Figure 5. Results of automatic initialization and tracking on a) “pedestri-

ans”. The motion saliency map obtained using the bottom-up formulation

with optical flow features is shown on the extreme left. b) “wave”, the

motion saliency map computed using dynamic textures is shown on the

extreme left. Positions of the targets for three frames are shown in red

boxes.

that each stage - center-surround training, feature extrac-

tion, goodness of discrimination to select features and fi-

nally, goodness of fit to identify target locations, is equiva-

lent to the corresponding stage of the proposed tracker.

Feature Selection and Discriminability: In all three

methods, the set of features is analyzed in terms of its dis-

criminability for the classification task - separating the tar-

get from the background. Collins et al. [7] first compute

histograms of filter responses applied to the R,G,B color

channels of both target and background, and construct a log

likelihood ratio between the two class histograms, treating

this as a new non-linear feature. The feature discriminabil-

ity is a Fisher discriminant-like variance ratio that measures

how tightly clustered the log-likelihood ratios are for the

two classes. This is equivalent to transforming the features

into a non-linear space and learning a linear classifier that

minimizes the classification error in the feature space, under

the assumption that the new feature has a Gaussian distri-

bution.

In [3], a set (“ensemble”) of weak hyperplane classifiers

are trained to separate target from background in the feature

space. However, each classifier is obtained after weight-

ing the points by a diagonal matrix of weights. This corre-

sponds to a linear transformation and each re-weighting is

equivalent to creating a new feature. The discriminability in

this case is directly equal to the error rate of classification.

Hence, while the features themselves might be different,

all approaches to discriminant tracking use discriminabil-

ity based on the minimum probability of error criterion to

select the best features, albeit under different assumptions.

Target Detection as a goodness of fit: The next step in-

volves using the selected features to perform target detec-

tion in a new frame. In [7], the confidence measure used to

classify points in the next frame is simply the log-likelihood

ratio between the probability of target and the probability of

background as learned from the current frame. This acts as

a matched filter and finds regions that best correspond to the

probabilistic description of the target, while corresponding

least to that of the background. This definition of the confi-

dence measure is similar to the saliency measure of (13).

In ensemble tracking, the selected features are a set of
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weak classifiers and the confidence measure for locations in

the new frame is simply a weighted combination of the (nor-

malized) classification margin at that location. The margin

represents the level of belief in the classification result, and

is directly analogous to saliency of (5).

In summary, both ensemble tracking and the Collins

tracker, are fundamentally similar to the proposed discrim-

inant tracker. However, the formulation of discriminant

tracking as a center-surround saliency problem has several

merits over other discriminant trackers. This is discussed

below.

5.1. Merits of the Discriminant Saliency Tracker
Over Other Discriminant Methods

The Collins tracker uses a heuristic discriminability mea-

sure similar to a Fisher’s discriminant. While this measure

has been empirically shown to work for color features, it

lacks a generic principled justification. Furthermore, the

distribution of log-likelihood ratios is hard to character-

ize [6]. The assumption of unimodality also does not hold

in general (i.e. for all features), and is especially troubling

when there is background clutter. This partially accounts

for the results above where, for the DCT features used, the

Collins tracker performed as poorly as the IVT. In addition,

the use of histogram based features is computationally in-

efficient, and the procedure cannot be extended to include

spatiotemporal features, such as dynamic textures for mo-

tion assisted tracking.

In ensemble tracking, the selected weak classifiers are

combined using AdaBoost. This could be a disadvantage,

in the tracking context, for two reasons : a) boosting is com-

putationally expensive, and b) it tends to overfit the limited

training data available. As a result, the tracker does not

perform well when there are large variations of appearance,

such as the rotating objects of Figures 3 and 4. On the other

hand, MMD-based feature selection is computationally ef-

ficient and, as seen from the results above, seems to achieve

a better trade-off between classification accuracy and gen-

eralization. A similar outcome has been reported for image

classification, where a mutual information based feature se-

lection procedure been shown to outperform boosting based

methods [11].
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