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Abstract

Ranking large scale image and video collections usually
expects higher accuracy on top ranked data, while toler-
ates lower accuracy on bottom ranked ones. In view of this,
we propose a rank learning algorithm, called Imbalanced
RankBoost, which merges RankBoost and iterative thresh-
olding into a unified loss optimization framework. The pro-
posed approach provides a more efficient ranking process
by iteratively identifying a cutoff threshold in each boost-
ing iteration, and automatically truncating ranking feature
computation for the data ranked below. Experiments on the
TRECVID 2007 high-level feature benchmark show that the
proposed approach outperforms RankBoost in terms of both
ranking effectiveness and efficiency. It achieves an up to
21% improvement in terms of mean average precision, or
equivalently, a 6-fold speedup in the ranking process.

1. Introduction
Recent years have seen unprecedented growth of image

and video data. The cases of Youtube1 (13 hours of video

uploaded every minute) and Flickr2 (5000 images uploaded

per minute) are emblematic. Such a growth has led to a

greater need for developing efficient algorithms for ranking

and retrieving large-scale image/video collections. Learn-

ing to rank, which aims to automatically identify better

ranking function using historical data, has become increas-

ingly important in this domain.

The success of rank learning have been demonstrated in

many other applications, such as online search engines, col-

laborative filtering and recommendation systems. Numer-
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Figure 1. Example of ranking application which ranks an un-

ordered image collection (top) into a sorted list of images (bot-

tom). Most general users spend more time in examining the top

ranked examples on the left, while ignoring the bottom-ranked

ones on the right.

ous learning-to-rank algorithms have been proposed before,

such as RankBoost[6, 15, 2], active learning[10], ranking

logistic regression[17], RankSVM[4]. However, none of

them account for the fact that, a vast majority of users pre-

fer to browse only a limited number of top ranked exam-

ples [12], while completely ignore the rest of them. With-

out any distinctions among ranked results, existing methods

is prone to allocate a considerable amount of computational

resources to less visible bottom-ranked examples, and thus

lead to an inefficient ranking process. For large scale col-

lections, it is desirable to develop a ranking algorithm that

has more emphasis on the efficiency and accuracy of top

examples rather than bottom ones.

To this end, we propose a rank learning algorithm called

Imbalanced RankBoost by integrating the principles of

RankBoost with an iterative thresholding scheme. In ad-

dition to iteratively selecting and combining weak rank-

ing features, the proposed approach provides a more effi-

cient ranking process by automatically identifying a cutoff

threshold in each run, and truncating model computation

for the examples ranked below. A unified loss optimiza-
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tion framework is provided to jointly learn the ranking fea-

tures, cut-off thresholds and combination weights. Our ex-

periments on the TRECVID 2007 high-level feature detec-

tion benchmark confirms that the proposed approach out-

performs RankBoost in terms of both ranking effectiveness

and efficiency. In more details, it achieves either up to 21%

performance improvement in terms of mean average preci-

sion with the same amount of ranking time, or equivalently,

a 6-fold speedup when they reach the same level of ranking

performance.

The rest of the paper is organized as follows: we present

in Section 2 relevant work on the ranking problem, Section

3 reviews the RankBoost algorithm, Section 4 introduces

and discusses the proposed Imbalanced RankBoost algo-

rithm, and Section 5 presents experimental results on the

TRECVID 2007 high level feature extraction benchmark.

We conclude and discuss future directions in Section 6.

2. Related Work
Numerous algorithms have been recently proposed to ad-

dress the rank learning problem. For example, Burges et al.

[3] use a neural network to model the underlying pairwise

ranking function, and optimize the probabilistic cost with

gradient descent. In [10] an active learning approach is in-

troduced, which aims to find the most useful unlabeled data

for learning the ranking function. RankBoost [6] automati-

cally selects and combines a pool of weak ranking features

into an composite ranking function. It has been successfully

applied in computer vision, e.g. [16] for face alignment. In

[15] a rejection sampling variant of RankBoost tries to al-

leviate the computational burden by sampling the training

data. Despite the effectiveness of such sampling-based rank

learning methods, the entire set of ranking features are un-

selectively applied to every example, which thus wastes a

considerable amount of resources on less important data.

Dedicating more computations to the small fraction of

top examples shares resemblance with re-balancing data

distribution in imbalanced collections, if we assume top

ranked data are mostly relevant. Popular approaches for

mitigating the data imbalance issue includes synthetic pos-

itive data generation [7], over-sampling relevant data, and

down-sampling irrelevant data [5]. More recently, Masnadi-

Shirazi et al. [9] introduced a cost sensitive extension of the

Adaboost algorithm. Wang et al. [14] balanced the distri-

bution of examples by down sampling the irrelevant data

before boosting a pool of soft margin SVMs. Cao et al.

[4] proposed a variant of RankSVM, which assigns higher

penalties to top examples that are mis-ranked. All the afore-

mentioned algorithms, however, do not take into consider-

ation the issue of learning and prediction efficiency. As an

alternative, our proposed work can improve ranking accu-

racy as well as efficiency by assigning more complex rank-

ing functions to more important examples.

RankBoost

1. Input: training set X , a pool H of ranking features

hk (x) ∈ [0, 1]

2. For t = 1, . . . , T

(a) Choose a ranking feature hk
t (x) from H to opti-

mize exponential ranking loss L in Eq. 1

(b) Compute αt to optimize L

(c) Update ranking function ft ← ft−1 + αth
k
t

3. Output: final ranking F (x) =
∑T

t=1 αth
k
t (x)

Figure 2. Outline of RankBoost (loss optimization version).

For the task of object detection, Viola and Jones [13]

proposed a cascaded classification framework for face de-

tection, which use simple classifiers to quickly filter out

most of irrelevant examples at the early stage of cascad-

ing process. To some extent, the proposed approach adopts

a similar cascading principle in the ranking problem. But

in our case, the ranking algorithm is not allowed to discard

or prune any examples because of the requirement of com-

plete ordering. Instead, it only allocates less computational

resources to the bottom ranked examples, which are still

retrievable. Moreover, rather than resorting to heuristics to

determine the cascading thresholds, we provide a principled

solution by unifying the selection of cutoff thresholds and

ranking features into a loss optimization framework.

3. RankBoost
The goal of rank learning consists in producing a ranked

list of originally unordered image/video examples, so that

the relevant ones are placed as close as possible to the

top. Formally, a rank-learning algorithm orders the data

by learning a ranking function F (x) : R
n → R, where

F (xi) > F (xj) means that xi is ranked higher than

xj . The algorithm takes as input a set of training data

{x1, . . . , xN} as well as the ranking ground truth expressed

as a feedback function Φ : X × X → R. Such feedback

function encodes pair-wise preferences on data examples.

Given any two samples xi and xj , Φ (xi, xj) > 0 if xi is

ranked higher than xj , Φ (xi, xj) < 0 means the opposite,

Φ (xi, xj) = 0 means no preference between the two sam-

ples. However, because it is time-consuming to obtain full

pairwise preferences, we typically consider a simplified set-

ting called “bipartite ranking”, i.e., X is partitioned into

two disjoint subsets where X0 contains relevant samples

and X1 contains irrelevant ones, such that Φ (x1, x0) = 1
∀x0 ∈ X0, x1 ∈ X1, and 0 otherwise.

RankBoost is a rank learning algorithm proposed by Fre-
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und et al. [6]. As outlined in Figure 2, it essentially learns to

order a set of examples by combining a pool of K “weak”

ranking features hk (x) ∈ [0, 1] into a more accurate com-

posite ranking function F (x). In the bipartite setting, the

ranking loss function of RankBoost can be represented as

an exponential function on the margin of training data,

L =
∑

x0,x1

Φ (x0, x1) exp [−(F (x0)− F (x1))]

=
∑
x0

∑
x1

ZtCt(x0, x1) exp
[
αth

k
t (x1)− αth

k
t (x0)

]
,

(1)

where Ct (x0, x1) = exp[ft−1 (x1) − ft−1 (x0)]/Zt is a

sampling distribution of the training pair between x0 and

x1, Zt is the normalization factor. Minimizing the Rank-

Boost loss function is closely related to minimizing the

number of ranking errors. This follows from the fact that

the RankBoost loss is an upper bound of the misranking er-

ror. In order to minimize L, RankBoost iteratively chooses

a ranking feature hk
t (x) from the feature pool, followed by

computing a combination weight αt for the selected rank-

ing feature. The details of the optimization method can be

found in [6]. In this work, since weak ranking features can

take any real values in the range [-1,1], we approximate the

exponential loss function with a linear upper bound using

inequality 2e−αx < (1 + x)e−α + (1 − x)eα. This up-

per bound can be minimized in a closed form for a given

ranking feature hk
t (x),

αt =
1
2

ln
(

1 + rt

1− rt

)
, (2)

where rt is a weighted pairwise mis-ordering rate

rt =
∑
x0

∑
x1

Ct(x0, x1)
[
hk

t (x1)− hk
t (x0)

]
. (3)

RankBoost and its variants constitute a family of widely

used algorithms for ranking problems, because they can of-

fer good generalization performance by jointly selecting the

ranking features and optimizing their combination weights.

Yet, they present a limitation that every unranked sample

are treated equally, no matter where it is localized in the

ranked list. In both learning and prediction stage, Rank-

Boost must evaluate every weak feature ht on the entire col-

lection, whereas users tends to focus more on top ranked re-

sults in a typical ranking and retrieval scenarios. Therefore,

its ranking process will become unnecessarily prohibitive if

similar resources are spent in the top samples as the data re-

siding at bottom. An efficient ranking process, on the other

hand, should exploit fewer resources for as many irrelevant

data as possible.

Imbalanced RankBoost

1. Input: training set X , a pool H of ranking features

hk (x) ∈ [0, 1]

2. For t = 1, . . . , T

(a) Select hk
t and θn

t that achieves the minimal value

L′t in the loss matrix Lt computed by Eq. 17

(b) Find the corresponding αt for the optimal L′t
(c) Go to Step 3 if Lt converges, i.e., |L′t−L′t−1| < ε

(d) Update ranking function

ft ← ft−1 + αth
k
t I [ft−1 ≥ θt]

3. Output: final ranking

F (x) =
∑T

t=0 αtht (x) I
[∑t−1

q=0 αqhq (x) ≥ θt

]

Figure 3. Outline of Imbalanced RankBoost.

4. Imbalanced RankBoost
In order to gradually migrate computational resources

to more relevant data in the learning process, we develop

a rank learning algorithm called Imbalanced RankBoost,

which augments RankBoost with an iterative thresholding

scheme in a unified loss optimization framework. In each

iteration t, the proposed approach can learn, select and com-

bine a set of weak ranking features by choosing ranking fea-

tures hk
t and weights αt. Simultaneously, it is also able to

identify a monotonically increasing cutoff threshold θt, and

automatically truncate ranking feature computation for the

lower-ranked examples. This enables the learning process

to iteratively assign additional weak features to re-order the

top ranked data, with the lower ranked samples being intact.

To implement such a thresholding approach, we introduce

a new identification function for each ranking feature, and

this leads to the following ranking function,

F (x) =

T∑
t=0

αth
k
t (x) I [ft−1 (x) ≥ θt]

=

T∑
t=0

αth
k
t (x) I

[
t−1∑
q=0

αqh
k
q (x) ≥ θt

]
, θt ≥ θt−1. (4)

Figure 3 presents the Imbalanced RankBoost algorithm.

The initialization step computes α0 and h0 in the same way

as RankBoost, because there are no thresholds involved in

the first iteration. θ0 is set to α0 · min
xn

h0 (xn), which triv-

ially takes all the data into account. After the first iteration,

the algorithm starts to diverge from RankBoost due to the

more aggressive cut-off threshold. At each iteration t, the

loss function Lt is estimated for all possible values of hk (x)
and θ, and both of them will be jointly optimized (Section
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4.2). Ideally, the optimal threshold θt is expected to skip the

prediction of irrelevant data as early as possible, while keep

most of relevant samples in the loop. At the same time, the

optimal αt can be obtained in a closed form (Section 4.1).

These estimation steps will iterate until the loss function

converges, or a certain iteration T is reached. Finally, the

ranking function F (x) is a linear combination of selected

ranking features ht, weighted by αt together with an prun-

ing indicator function against the cut-off threshold θt.

With a monotonically increasing cutoff threshold, our al-

gorithm can iteratively incorporate more ranking features

on a smaller set of higher ranked examples. While gener-

ally beneficial, such a learning process could occasionally

become counterproductive when the cut-off thresholds in-

creases too aggressively without any constraints. For in-

stance, if an large θt is unexpectedly selected an an outlier,

there will be only very few examples left to be continuously

updated in the following runs, and it will lead to pre-mature

optimization process. To mitigate this overfitting issue, we

can introduce an additional regularization term Ω (θ) to the

original RankBoost exponential loss function when learning

the threshold θt,

L =
∑

x1,x0

exp [− (F (x0)− F (x1))] + λΩ (θ) . (5)

At iteration t, the loss function Lt can be rewritten as,

Lt =
∑

x1,x0

ZtCt(x0, x1) exp[−A (x1, x0)] + λΩ (θ) , (6)

where Zt and Ct are similarly defined as Eq. 1 to encode

the normalized distribution at iteration t, λ is the regulariza-

tion factor, Ω (θ) is the regularization term, and A(x1, x0)
is defined as

A (x1, x0) = hk
t (x1) I [ft−1 (x1) ≥ θt]

− hk
t (x0) I [ft−1 (x0) ≥ θt] . (7)

The regularization term Ω (θ) should be designed based

on the following principles, i.e., it should penalize larger

distance between the neighbor thresholds θt and θt−1 un-

der the assumption that θt ≥ θt−1∀t. We proposed three

following regularizers Ω (θ) consistent with such principle,

including two quadratic and one exponential,

Ω (θt) =

⎧⎪⎪⎨
⎪⎪⎩

∑t
l=1 (θl − θl−1)

2∑t
l=1 exp (θl − θl−1)∑t
l=1

(
θl −min

fl−1
(fl−1 (x) > θl−1)

)2

.

(8)

In the rest of this section, we describe in detail how the

parameters hk
t , αt and θt are computed at each iteration.

4.1. Learning combination weights αt

In the following discussions, we study the optimization

approaches for the combination weights αt. Since the reg-

ularization term λΩ (θ) does not involve αt, we discard

λΩ (θ) for the sake of simplicity. To derive a closed form

solution for the optimal αt, we relax the exponential loss

function to its upper bound by using a similar exponential

inequality adopted in RankBoost,

Lt ≤ Zt

[(
1− rt

2

)
eαt +

(
1 + rt

2

)
e−αt

]
, (9)

where rt is a weighted pairwise mis-ordering rate

rt =
∑

x1,x0

Ct (x1, x0) A (x1, x0) . (10)

By simply setting the derivative of Lt to 0, we can find a

closed form solution for the optimal αt,

αt =
1
2

ln
(

1 + rt

1− rt

)
. (11)

This minimizer αt bears a similar form as the minimizer

in Eq. 2, but in this case rt is derived from a “pruned” set

of weak ranking functions. Substituting αt back to the loss

function L yields the approximate upper bound as follows,

Lt ≤ L′t = Zt

√
1− r2

t + λΩ (θ) . (12)

4.2. Learning threshold θt and ranking features hk
t

By minimizing the approximate upper bound L′t in Eq.

12, we can learn the optimal threshold θt and ranking fea-

ture ht together in a joint process. Because the ranking fol-

lows the bipartite structure, we can decompose Ct (x1, x0)
into two independent multipliers,

Ct (x1, x0) =
exp− (ft−1 (x0))

Zt1
· exp (ft−1 (x1))

Zt0

= vt (x1) · vt (x0) . (13)

This then converts rt to an aggregate form that can be com-

puted more efficiently,

rt =
N∑

n=1

s(xn)vt (xn)
[
hk

t (xn) I [ft−1 (xn) ≥ θt]
]
, (14)

s (xn) =
{

+1 if xn ∈ X1

−1 if xn ∈ X0.
(15)

However, because θt is embedded in the threshold func-

tion, it is difficult to directly optimize L′t by using any

gradient-descent based methods. It is also impossible to

enumerate all possible values of θt which is infinite. As

2610



an alternative, we describe an efficient method for exact op-

timization as follows. First, we reduce the search space of

θt from R to F = [ft−1 (x1) , . . . , ft−1 (xN )]. This reduc-

tion is sensible, because the thresholds θt only appear in

the indicator function I [·]) when only the boundary sce-

narios are required to be considered, and the regularization

term Ω(θt) is a monotonically increasing function when θt

is constrained to be larger than θt−1.

The next step is to sort the training examples xn with a

descending order of the latest ranking function ft−1 (xn),
which constitute the possible choices for θt. All the pos-

sible values of upper bound L′t can be now organized into

a matrix Lt as shown in Figure 4, of which the columns

correspond to base models h, and the rows correspond to

training examples. Based on the definition of rk
t , we can

use the following iterative update rules to efficiently com-

pute the values of rk
t (xn),

rk
t (xn) = rk

t (xn−1) + s (xn) vt (xn) hk
t (xn) . (16)

The values rk
t (xn) can then be substituted back into

Eq. 12 to compute each loss entry lkt (xn).

lkt (xn) = Zt

√
1− (

rk
t (xn)

)2 + λΩ (θn
t ) . (17)

Figure 4 shows an example of the matrix Lt and the joint

optimization steps of θt and ht. Without the pre-sorting

approach presented in Eq. 16, it would require a computa-

tional time of O(KN) to build the loss matrix with a di-

rect computation of rk
t in Equation 14. However, our pre-

sorting method can significantly improve the computational

efficiency. Since the sorting operation can be performed in

O(N log N), the time complexity of each learning round

can be reduced from O(K2N) to O(N log N) + O(KN).
As K is typically much larger than log N , Imbalanced

RankBoost can learned in a similar duration as the standard

RankBoost, while it is able to significantly reduce the pre-

diction time with aid of the increasing cut-off thresholds.

The advantage of Imbalanced RankBoost consists in a

more efficient ranking process without degrading, yet even

improving the output performance. To better understand

how the newly introduced cut-off thresholds θ can speed

up the ranking process, we provide an illustrative example

in Figure 5 to show how the final ranking function F (xn)
is applied to each instance for both RankBoost and Im-

balanced RankBoost. Initially, both methods evaluate the

ranking score to be f0 (xn). But in the successive steps,

RankBoost will start to merge a weighted ranking feature

hk
t with the existing ranking function for the entire collec-

tion, but Imbalanced RankBoost will only do so when the

ranking function ft−1 (xn) exceeds the threshold θt. As can

be observed from Figure 5, the number of ranking features

evaluated by RankBoost is a constant no matter where the

examples are positioned. Imbalanced RankBoost, on the

Figure 4. Matrix Lt representing the possible values of the loss

function at step t, ordered by thresholds θn
t (columns) and ranking

features hk
t (rows). Finding the minimum value of Lt automati-

cally enforces the choice of θt and ht

Figure 5. Illustrative example of RankBoost vs. Imbalanced Rank-

Boost. RankBoost applied the same number of ranking features

to both the top and bottom ranked examples (red dash line). Im-

balanced RankBoost, instead, applied the learned thresholds θt to

prune ranking features on the bottom rank data (blue solid line),

while preserving most of the features for the top ranked ones. This

thus resulting in a more efficient ranking process.

other hand, does not compute the ranking feature hk
t unless

the ranking function exceeds the threshold θt (e.g., the ex-

amples x1 to xj in our case). As a result, it deploys fewer

features to order the examples with lower ranks, which also

have decreasing values from a user perspective.

5. Experimental Results

In this section, we present the a series of experimental re-

sults on the TRECVID high-level feature extraction bench-

mark [11] in order to compare the performance between the

proposed approach and its baseline algorithm.
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Figure 6. Mean average precision computed as function of the ranking time at top ranked 100 samples (left), top ranked 500 samples

(center), full depth (right). Comparison of Imbalanced RankBoost and original RankBoost on the TRECVID 2007 benchmark.

5.1. Experimental setting

We evaluated the performance of Imbalanced RankBoost

on the TRECVID 2007 high level feature extraction bench-

mark [11], which is currently the largest annotated video

collection publicly available. It consists of 100 hours of

news magazine, science news, news reports, documentaries,

educational programming, and archival videos. We ob-

tained a total of 52,347 keyframes of the development set

from [8] and [1]. Each keyframe is annotated with the 20 se-

mantic concepts officially provided in the TRECVID 2008

high level features extraction task (mainly in the categories

of people, places, things, activities). On average, the ratio of

the number of irrelevant to relevant keyframes is 49.47, with

a peak of 385.75 for the ’Airplane flying’ concept. This

demonstrates a high data imbalance in the collection. In our

experiments, we randomly split the development collection

into the following: 50% as training data for learning ranking

features, 20% as the held-out data for estimating boosting

parameters, and the remaining 30% as testing data.

The input ranking features are generated by SVMs with

RBF kernel on a number of bags of training data, while

the SVM parameters are automatically selected through a

3-fold cross-validation. Each bag of training data was ran-

domly sampled with a balanced number of positive and neg-

ative samples, where the maximum sizes are fixed to 800

examples. Moreover, each bag is generating from 1 out of

100 types of low-level visual features, including color his-

togram, color correlogram, color moment, wavelet texture

and edge histogram computed at different granularities. We

generated 2 weak models for each feature type, which re-

sults in 200 base models for each concept. Although these

SVM-based ranking features are more robust than the most

common base feature used in boosting, i.e., binary decision

stumps on a single visual feature, they can still be consid-

ered “weak” due to the small data sampling rate, and simple

feature space. In all the experiments, the outputs of above

models is normalized to the range [-1,1]. For Imbalanced

RankBoost, unless stated otherwise, we use the squared

distance
∑t

l=1 (θl − θl−1)
2

as the regularization term, and

λ = 105 as the regularization factor.

We evaluate the effectiveness for ranking systems using

mean average precision (AP). For each concept, let TP be

the total number of relevant samples in the collection (which

contains a total N samples). Let TPd be the number of

relevant samples found in the top d ranked samples returned

by the system. Let Id = 1 if the dth sample in the ranked list

is relevant and 0 otherwise. The average precision (AP) is

then defined as 1
TP

∑N
d=1

TPd

d Id. The AP can be computed

at different depths by changing the value of N . The mean

of average precision over all the concepts is defined mean

average precision (MAP).

5.2. Results

Figure 6 compares the mean average precision of Im-

balanced RankBoost against RankBoost as a function of

ranking time for the testing collections. The performance

of both algorithms is evaluated on several depths including

100 keyframes, 500 keyframes, and full depth. 3 Measuring

performances at intermediate depths is important in light of

the fact that users typically focus on a limited number of

top ranked examples. The running times were empirically

measured during the experiments. We choose to limit all

the figures up to 50 seconds because we observed that both

algorithms tend to converge to its asymptote performance

afterwards.

From Figure 6, we can find that Imbalanced RankBoost

outperforms the original RankBoost in all three cases. One

interesting observation is that the improvement becomes

more evident when the MAPs are computed at smaller

depths. For example, with a depth of 100, it registers up to

a 6-fold speed-up in the ranking process when both of them

reach a mean average precision of 0.046. When the perfor-

3The concept of “depth refers to the number of instances which are

considered in the evaluations. For example, Average Precision computed

at depth 100 means that the AP was computed only on the top 100 instances

ranked by the system.
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mance are evaluated at the full depth, it can still achieve the

same levels of performance with a 3-fold speedup. From

another perspective, instead of degrading the ranking per-

formance, the speedup of ranking process of Imbalanced

RankBoost also brings additional improvement gain by fo-

cusing more on relevant examples, which achieves an rela-

tively improvement ranged from 7% to 21% at a fixed time

(50 seconds). These observations demonstrate that the pro-

posed Imbalanced RankBoost algorithm can effectively re-

distribute the computational resources among relevant and

irrelevant examples, and dedicate more accurate examina-

tion to the most valuable results.

To further analyze the properties of Imbalanced Rank-

Boost, Figure 7 depicts the performance comparison on a

per concept basis. The average precise at full depth is com-

puted at the ranking time t = 7 seconds, where the dif-

ference between the two algorithms is maximum. For 17

out of 20 concepts, Imbalanced RankBoost presents an ei-

ther better or equivalent average precision scores, which is

statistically significant. Figure 8 shows the performance of

four representative concepts including “Cityspace”, “Class-

room”, “Hand” and “Flower”. For the first three concepts,

the performance gain between Imbalanced RankBoost and

RankBoost is quite considerable. On the other hand, for

the concept of “Flower”, the thresholding process in Im-

balanced RankBoost becomes too aggressive and thus de-

grade the ranking performance after incorporating more

base models.
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Figure 7. Average precision per concept computed at full depth

at t = 7 seconds. Comparison of Imbalanced RankBoost and

original RankBoost methods on the TRECVID 2007 benchmark.

Finally, Figure 9 investigates the ranking performances

when the different regularization terms are applied with a

range of regularization factors λ. It shows that the ranking

performances are not sensitive to one or another regular-

ization terms, which verifies the robustness of the proposed

algorithm over choices of regularizers.

6. Conclusion and future work

In this paper, we proposed a new rank learning algorithm

called Imbalanced RankBoost, which combines RankBoost

and iterative thresholding into a unified loss optimization

framework. Unlike the RankBoost algorithm which has

equal treatment for all the data, the proposed approach pro-

vides a more efficient ranking process by applying a thresh-

olding process to automatically emphasize top ranked ex-

amples and truncate ranking feature computation for less

important bottom-ranked ones. This property makes Imbal-

anced RankBoost particularly suitable for the ranking prob-

lems on large-scale data collections with a significant im-

balance between relevant and irrelevant instances. Experi-

ments on the TRECVID 2007 high-level feature detection

benchmark showed that the proposed approach can outper-

form RankBoost in terms of both ranking effectiveness and

efficiency. It achieves an up to 21% improvement in terms

of mean average precision, or equivalently, a 6-fold speedup

in the ranking process. Future directions involve directly

incorporating the processing time of ranking features in the

learning process, so that faster ranking features will be se-

lected even when they produce a slightly inferior loss re-

duction than slower features.
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Figure 8. Average precision for single concepts computed as function of the ranking time at full depth on the TRECVID 2007 benchmark.

Imbalanced RankBoost performs better for ’Citycape’, ’Classroom’ and and ’Hand’(a, b and c), worse on ’Flower’ (d).
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