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Abstract

Traditional dynamical systems used for motion tracking
cannot effectively handle high dimensionality of the motion
states and composite dynamics. In this paper, to address
both issues simultaneously, we propose the marriage of the
switching dynamical system and recent Gaussian Process
Dynamic Models (GPDM), yielding a new model called the
switching GPDM (SGPDM). The proposed switching vari-
ables enable the SGPDM to capture diverse motion dynam-
ics effectively, and also allow to identify the motion class
(e.g. walk or run in the human motion tracking, smile or
angry in the facial motion tracking), which naturally leads
to the idea of simultaneous motion tracking and classifica-
tion. Moreover, each of GPDMs in SGPDM can faithfully
model its corresponding primitive motion, while performing
tracking in the low-dimensional latent space, therefore sig-
nificantly improving the tracking efficiency. The proposed
SGPDM is then applied to human body motion tracking
and classification, and facial motion tracking and recogni-
tion. We demonstrate the performance of our model on sev-
eral composite body motion videos obtained from the CMU
database, including exercises and salsa dance. We also
demonstrate the robustness of our model in terms of both
facial feature tracking and facial expression/pose recogni-
tion performance on real videos under diverse scenarios in-
cluding pose change, low frame rate and low quality videos.

1. Introduction

Traditional dynamical systems and their variants are
widely used to tackle the tracking problems. Traditional
dynamical models include the popular Kalman filtering and
particle filtering as shown in Figure 1(a). Although these
dynamical systems are commonly used to represent dynam-
ics in the motion space, they have two main limitations: (1)
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they are not efficient in modeling complex dynamics with a
large number of model parameters, and (2) they are inher-
ently limited to modeling single monolithic motion dynam-
ics, inappropriate to account for composite motions with di-
verse dynamics.

In the community, the two issues of high dimension-
ality of the motion and composite dynamics have been
tackled considerably, but often individually. For instance,
the switching dynamical systems [8] can resolve the lat-
ter issue, yet suffering from modeling complexity. On the
other hand, the recent Gaussian Process Dynamic Mod-
els (GPDM) [5, 12] (Figure 1(b)), which are inspired by
the Gaussian Process Latent Variable Model [4], can alle-
viate the first limitation by discovering the intrinsic low-
dimensional latent representation of the model dynamics.
The latent embedding, latent dynamics and reconstruction
mapping can be learned simultaneously from the training
sequences [12]. However, the model capacity of GPDMs
may be insufficient to capture multiple heterogeneous dy-
namics by nature.

In this paper, we propose to combine Switching Model
with the Gaussian Process Dynamic Models to produce a
dynamic model called the Switching Gaussian Process Dy-
namic Model (SGPDM) as shown in Fig.1(e) and Fig.1(f).
This model has a switching layer on top of the latent vari-
ables. Hence, it enjoys both worlds of switching dynam-
ics and low dimensional dynamics with significantly re-
duced number of parameters. By incorporating a switching
layer this model also allows simultaneous motion tracking
and recognition. To demonstrate the proposed model, we
then consider two representative composite motion track-
ing problems, the human body motion tracking and facial
motion tracking. Human motion tracking or facial motion
tracking(in this paper, facial motion tracking refers to fa-
cial feature tracking) is a task of predicting the sequence
of X , which are body poses (typically 3D joint angles of
human body) or facial features (typically coordinates of the
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fiducial points of facial features) from the image measure-
ment sequence V. The image measurement is represented
by the moment features extracted from the silhouette im-
ages as shown in Fig. 2 or Gabor features around the facial

feature points.
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Figure 1. Graphical representation of dynamic models for track-
ing. X,V,Z and S represent the state (body or facial pose), image
measurement, latent variable and switching state respectively. (a)
is the traditional dynamic system, such as Kalman filter and parti-
cle filter. (b) is the GPDM model used in [12]. (c) is the proposed
shared-space GPDM model (Section 3.2.2). (d) is the switching
dynamic system used in [8]. (e) is the Switching GPDM model,
an extension of (b) (Section 4.2) (f) is the Switching Shared-Space
GPDM model, an extension of (c) (Section 4.1)
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Figure 2. The state X and image measurement V' for body pose
tracking
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The dynamic systems of Human body/facial motion have
high dimensionality of X and multiple heterogeneous dy-
namics. For example, the body pose or facial features is
typically composed of several dozens of joint angles or fidu-
cial points which would produce too many parameters for
modeling dynamics directly in the X space. Human body/
facial motion also contain different styles and contents (e.g,

facial feature points are subject to the pose and expression
change), which may not be faithfully represented by stan-
dard dynamic models incorporating a single dynamics.

We first apply the Switching GPDM model on the hu-
man body motion estimation/tracking problem, where we
predict the body pose (3D joint angles) from the observed
sequence of image silhouettes. Then we consider the prob-
lem of simultaneous facial feature tracking and facial ex-
pression/pose recognition on real video, under diverse sce-
narios including pose change, low frame rate and low qual-
ity videos.

2. Related works

In this section, some works related to latent variable
models, switching systems, and simultaneous motion track-
ing and recognition methods are reviewed. The high dimen-
sionality of state space in the tracking problem can be cir-
cumvented by introducing the low dimensional latent vari-
ables (Z) on top of the state variables, and model the dy-
namics in this low dimensional space. For example, Urtasun
et.al [12] introduced the Gaussian Process Dynamic Model
(GPDM) for body tracking (as shown in Fig.1(b)). Z indi-
cates the intrinsic manifold maps that generate the pose X.
With the incorporated nonlinear Gaussian Process based di-
mensionality reduction methods, GPDM showed significant
performance improvement in Human motion tracking.

Besides the standard GPDM model in Fig.1(b), we also
introduce another form of GPDM in this paper, as shown in
Fig.1(c). Similar to the standard model, it also models the
dynamics in a learned low-dimensional latent space based
on Gaussian Process, where the latent space is shared by
both the pose (X) and the image measurement (V). We call
it Shared-Space GPDM, and more details are discussed in
section 3.2.2. Please notice that since Z is hidden and is not
known, V' and X are dependent.

However, these dimensionality reduction approaches ba-
sically assume a single dynamics, preventing it from being
successfully applied to composite motions. To address the
composite motion issue, the so-called switching dynamic
systems have been proposed by [8] (Fig.1(d)). Here, the la-
tent switching variables (.5) effectively represent switching
over different motion dynamics. Specifically, in the switch-
ing dynamic systems, the latent switching variable (S) has
several discrete states. It automatically selects the current
member from a set of dynamic models to increase the ro-
bustness and accuracy of the motion tracking, and also per-
forms classification of current motion. This naturally leads
to the idea of simultaneous motion recognition and tracking.

Tracking and recognition have been often tackled indi-
vidually as independent task. For example most existing
methods for facial expression recognition generally involve
two steps, tracking facial features is followed by the expres-
sion recognition based on extracted facial features.
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Simultaneous tracking and recognition which aims to
exploit the synergy of tracking and recognition is not a
new idea and some efforts for simultaneous tracking and
recognition [7, 15, 1] already exist in the literature. In [7],
a simultaneous tracking and recognition method based on
mixed-state CONDENSATION [3] is designed for track-
ing and recognizing the juggled balls. Zhou et al. [15]
proposes a probabilistic framework allowing simultaneous
tracking and recognition of Human face from video. In [1],
a method is presented for simultaneous facial action track-
ing and expression recognition. In this method, there are
three layers in the graphical model. The first layer repre-
sents the expression states which decide the dynamic model
of the facial action control vector of the employed 3D face
model in the second layer. The facial action control vec-
tor along with the face pose parameters recovered from a
separate deterministic optimization framework are used for
warping the face into geometrically free facial patch, which
is then compared with an on-line appearance model to out-
put an observation likelihood. Inference of this model is
also based on the mixed-state CONDENSATION.

However, like other switching systems, existing simulta-
neous methods based on particle filter either are limited to
tracking a motion of limited dimension because the work-
able dimensionality for particle filter is small (e.g. the fa-
cial action control vector in [1] involves only the eyebrow
and mouth of the face, and has a dimension of six), or em-
ploy weak (linear) dynamic models (e.g. the auto-regressive
(AR) model is used as the transitional model of facial action

in [1]).

Compared to the existing simultaneous methods in
the literature, by combining GPDM with switching vari-
ables, our Switching GPDM model for simultaneous mo-
tion tracking and recognition is capable of tracking high-
dimensional motion (e.g. there are 59 dimension for the
joint angles in the human pose tracking model and 56 di-
mensions for 28 facial feature points in our simultaneous
facial feature tracking model. None of the simultaneous
methods mentioned above can track such high-dimensional
motion), and has the power of handling more complex (non-
linear) dynamics.

In summary, the contributions of this paper are listed
as follows: First, a new model called Switching Gaussian
Process Dynamic Model is proposed by combining GPDM
and switching variables. It addressed the two issues of tra-
ditional tracking system simultaneously. Second, besides
pure tracking problems, the proposed Switching GPDM can
also perform simultaneous tracking and recognition. We
test its capability in both tracking and recognition in the ex-
periments.

3. Proposed Approach
3.1. Gaussian Process Latent Variable Model

Here we briefly review the Gaussian Latent Variable
Model (GPLVM), which is the basis for GPDM. GPLVM
proposed by Lawrence [4] is an efficient tool to model the
distribution in a high dimensional space with a compact low
dimension representation. It has been previously used to
provide a prior probability of human pose for animation [2]
and body tracking [13, 10]

3.1.1 Gaussian Process

We first start with the Gaussian Process (GP). GP is a
non-parametric approach for solving regression problem,
which learns a mapping y = f(z) from some training pairs
{z;,y,}}*,, where each y, € R”, and z; € R. Arrange
the training vectors into the rows of matrices Y *P =
Vi, Y] F and ZV*5 = [z, ...,zx]". The conditional
probability of Y given Z is defined based on GP:

D
p(Y|Z, 8) = ] N(Y..4l0,K(Z,Z)) 6
d=1

Y. 4 indicate the dt" column of Y, which is a N x 1 vec-
tor constructed from the d** dimension of the training data.
K(Z,Z) is a N x N covariance matrix whose entries are
given by the kernel function:

k(zi,2;) = exp(—f|z; — z;]%) 2

The learning process of GP is to adjust the parameter 3 to
maximize the probability in Eq. 1.

Once the parameters have been learned, the GP predic-
tion of y, given a new input z, can be derived as a Gaussian
distribution (For full details, please refer to [4] or [9]):

p(ylz) = p(ylz, Y, Z, 8) = N(u(z),0*@)1) ()
with:

1w(z) = Y'K(Z,2) " *k(z,Z)

02(z) = k(z,2) — k(z,Z)" K(Z,Z) *k(z,Z) @

where k(z, Z) is a N x 1 vector whose i*" entry is k(z, z;).

Notice that, the covariance matrix of this Gaussian dis-
tribution is diagonal, which means given z, each dimension
of y is conditionally independent with others.

3.1.2 GPLVM

Instead of knowing the complete training pairs {z;,y, }}¥,,

GPLVM learning is an unsupervised process where we are
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given only Y, and we need to optimize the kernel functions
and the latent variable Z together:

7", 3" =arg Hzlg}jxp(YIZ B)p(Z) S)

where the first term is from Eq. 1 and the second term,
i.e., the prior of the latent variable, is defined as Gaussian
[2, 13, 10]:

p(Z) = HN (2:10,1) (6)

It is known that this optimization is non-convex, and it does
not admit a closed-form solution. The scaled conjugate gra-
dient (SCG) method search is often used, and known to be
effective [4]. We use the SCG for optimization where the
latent positions Z are initialized as the PCA coefficients of
Y

Usually, the latent space Z has much lower dimension
than Y. For example, in human pose estimation, the pose y
usually have 20-50 dimensions, while the latent variable z
only need 2-3 dimensions, which is a widely believed mani-
fold dimensionality for single motions like walking and run-
ning. So, once GPLVM is learned, the pose can be repre-
sented by a low-dimensional variable z, and the mapping
from z to y (p(y|z)) is modeled as Eq. 3.

3.2. Gaussian Process Dynamic Model

The basic idea of using GPLVM for tracking is modeling
the dynamics in the low-dimensional latent space instead of
modeling it in the high-dimensional pose space. Two typ-
ical latent variable tracking models are shown in Fig. 1(b)
and Fig. 1(c).

3.2.1 GPDM

Fig. 1(b) shows the standard GPDM proposed in [12]. x; €
RP represent the current body pose, z, € R represent the
corresponding low-dimensional latent variable.

Same as GPLVM, given the training sequence:
[X1,...,x7]T, the mapping from low-dimensional latent
space to pose space is modeled by GP regression:

XTXD —

D
p(X|Z, Bx) :H (X.,a0,Kx(Z,Z)) @)

where [x is the kernel parameter for this mapping GP re-
gression. Taking one step further, the dynamics in the latent
space is also modeled by GP regression:

S
p(ZHZ", Br) = [[ N(Z1)0,Kr(Z7,27))  (8)

s=1

where O is the kernel parameter for the dynamic GP re-
gression, and Z* = [zo,...,27]", Z~ = [z1,...,27_1]T.
The GPDM is then trained to maximize:

Z*vﬁXvﬁT d‘rg %1‘1}[% p(X|Z ﬂX) (Z+|Z77ﬁT) (9)

Once the model is learned, following Eq.3, the condi-
tional probabilities needed for tracking can be written as
Gaussian distribution: p(x¢|z;) = p(x¢|z:, X, Z, Bx) and
p(2e|ze—1) = p(ze|ze—1, 27,27, Br).

Notice that, for this standard GPDM tracking model,
the relationship between pose X; and measurement vy (
p(v¢|X¢), the link from x; to v; in Fig.1(b)) is not modeled
by Gaussian Process. In [12], this likelihood of pose is de-
fined based on the detected joint points. In our face tracking
algorithm, the likelihood is defined based on Gabor feature
matching (Section 4.2).

3.2.2 Shared Space GPDM

However, in our body tracking experiment (Section 4.1), the
measurement is a moment feature from silhouette. It is dif-
ficult to directly model the relationships between pose and
the moment feature. Although some other learning based
method, such as neural network [10], has been used to learn
this relationship, we propose to model it also though Gaus-
sian Process for consistency. Fig. 1(c) shows our GPDM
for body tracking. The pose v; and measurement x; are
combined as the training data:

Y = < :Z ) (10)

Then we learn the latent space from the training se-
quence Y = [yy,...,yp|T. The learning process is same
as the standard GPDM. However, because Y includes
both pose and measurement, we call the learned latent
Z space “shared latent space”. (More detailed discus-
sion of shared latent space using GPLVM can be found
in [6]). Similarly, once the GPDM is learned, the con-
ditional probability can be written as Gaussian distribu-
tions p(yt|zt) = p(Yt|Zt7Y7Z76Y) and p(zt|zt71) =
p(zs|z:—1,ZF, 2, Br) (Eq.3). Notice that in Eq.3, the co-
variance matrix of this Gaussian is diagonal matrix, so the
conditional probability can be factorized as Eq.11, and y,
can be represented by two separate nodes: x; and v; con-
nected to z; in Fig.1(c).

sty = ol

X¢
Vi

) |zt) = p(x¢|ze)p(Ve|2zt) (11)

3.3. Switching Gaussian Process Dynamic Model

The above GPDMs basically assume a single dynamics
in the latent Z space. In order to deal with the compos-
ite motion dynamics, we extend the GPDM to the Switch-
ing GPDMs whose graphical representations are shown in
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Fig.1(e) and Fig.1(f). The three layers of a Switching
GPDM are denoted in Fig.3, which is an extension of shared
space GPDM. We also extended the standard GPDM as
shown in Fig.1(e). But due to the similarity of two mod-
els, we will only discuss the model in Fig.3.

Pose Image
Figure 3. The three layers of a Switching GPDM

Roughly, a Switching GPDM is composed of the dynam-
ics of the switching component p(s;|s;—1), and for each
switching state s; = ¢, we have a specific GPDM(motion
dynamic model) denoted by GPDM¢,where ¢ = 1,..., M
(Assuming M different dynamics).

3.3.1 Learning

We first discuss how to train the Switching GPDM model
in the supervised case, where we are given the true switch-
ing state values S = [sy,..., s7]. Notice that the learning
criterion is the joint log-likelihood:

logp(S,Z,Y) = logp(S) + log p(Z|S) + log p(Y|S,Z).
(12)
Knowing the switching variables makes the objective de-
composed along the switching values, and we indepen-
dently learn the individual GPDM models. We need to es-
timate the parameters (6, A\('"M)), where 6 denotes the dy-
namics of the switching state, and \(¢) = (Z(c), ﬂ,(/c), B<TC))
denotes the parameters of the " GPDM, ¢ = 1..M.
For example, given a 10-frame labeled sequence where
t = 1.4 and t = 8..10 are labeled as the 1°* GPDM, and
the rest frames are labeled as the 2" GPDM. Then, we can
maximize the following log-likelihood:

log p(S, Z, Y|0, \(1+2)) =
log p(s1..10]0) + log p(s1..4,8..10, 21..4,8..10, Y1.A4,8“10|)\(1))
+log p(ss..7,25.7, Y5 _71A?)
(13)
While training individual GPDMs, we should take care of
some boundary slices(e.g., t=4 and t=7), which commonly
appears in two GPDMs.
For the unsupervised case, where the switching states are
not labeled in the training sequence, we optimize p(S, Z,Y)
with respect to S and Z iteratively. In each iteration, we first

estimate the most likely S given the current model, then the
model is updated using the estimated S through the super-
vised learning algorithm.

3.3.2 Tracking

Tracking in the SGPDM is the task to compute
P(X¢|V1, ..., v¢) or to find its mode or mean. The two hidden
layers (s; and z;) can be merged into a single layer, namely
by introducing the so-called super-node u; = (s¢,z:), and
we can readily run the standard particle filtering algorithm.
More specifically, we assume the weighted samples (parti-
cles) are given at time ¢ — 1, namely,

plaavi v & {uy e Y (14
Then, we estimate the particles at time ¢ by the following
steps:
: (@) () n
1. Re-sample from {w;”, w; " }7y
2. Let the samples from step.l undergo the dynamics
p(uguy_1), which is done by first propagating the
switching state p(s;|s;—1) followed by the Gaussian
Process dynamics p(z¢|z¢—1, S¢).

3. Re-weight the samples u; according to the GP likeli-
hood p(vi[u) = p(ve|ze, s¢).

4. Numerically integrate the samples u; and the weights
from step.3, as follows:

p(thvl,.--7Vt):/ p(Xeug)p(ue|ve, ..., v¢)  (15)

4. Experiment

To validate the performance of the proposed SGPDM,
we applied it to two different applications: human body mo-
tion tracking and classification, and facial feature tracking
and expression/pose recognition.

4.1. Human Body Tracking

We consider 3D motion capture data from the CMU
MoCap database (http://mocap.cs.cmu.edu). The pose x is
composed of 59 joint angles of human body. We study the
performance of Switching GPDM (Fig.1(f)) for two differ-
ent motion activities: salsa dance and exercises and quan-
titatively compare it against two state of art techniques,
GPLVM [6] and GPDM [12].

For salsa dance, we roughly segment the sequence into 3
primitive motions: turn clockwise, turn anticlockwise and
miscellaneous motion (e.g., move fwd/bwd, twist body).
We use two synchronized camera views at front and side,
and for each silhouette image, we take 10-dim PCA fea-
tures and 10-dim moment features [10]. The test prediction
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errors (MSE) and the selected frame results are shown in
Fig.4 for the three techniques.

Ground Truth

AL

GPLVM (MSE=2.4342)

1ty

GPDM (MSE=2.5817)

I 1

Switching GPDM (MSE=2.3887)

I

Figure 4. Salsa dance motion tracking results and tracking errors
for three techniques.
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The challenging exercise motion consists of 6 differ-
ent primitive motions: jumping jack, turn-torso, turn-arms,
hand-to-foot, knee-to-elbow, squat-up. We use the front-
view silhouette images for measurement, where we ex-
tracted the 10-dim PCA features and the 10-dim moment
features. The test prediction errors and some selected syn-
thesized images are shown below in Fig.5.

Ground Truth

EN T e e

GPLVM (MSE=1.4868)

RN S

GPDM (MSE=1.2187)

iR % D e E

Switching GPDM (MSE=0.3407)

LA AN R

Figure 5. Exercise motion tracking results and tracking errors for
three techniques.

Both Figures 4 and 5 show that the proposed Switch-
ing GPDM can switches automatically among different dy-
namics, and outperforms GPLVM and GPDM visually and
quantitatively. The performance improvement is especially
significant for the more complex exercise motion sequence.

4.2. Facial Feature Tracking and Expression/Pose
Recognition

We can easily apply the Switching GPDM to the simul-
taneous facial feature tracking and facial expression/pose
recognition problem. Here we track 28 facial feature points

(X) on the face (as shown in Fig.6), and the switching
variables (S) now have explicit meaning of facial expres-
sion (neutral, surprise, happy, disgust and fear, as shown in
Fig.7) and/or the out-of-plane facial poses.

Figure 6. 28 facial feature points around eye, eyebrow, nose and
mouth.

neutral surprise happy disgust fear

9% Slywg Sipeg Sl Sy eE

Figure 7. Five face expressions as the switching states.
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Different from the silhouette measurement in human
body motion tracking, we extract the Gabor features around
the facial feature points as our measurement. Hence, we use
the Switching GPDM in Fig.1(e) for facial feature track-
ing, and directly model the observation likelihood p(v;|x;)
based on an off-line trained Gabor template matching:

P(Ve|xe) = p(ve[x¢, I, T) m 5 (G0l D) (16)

where, G(x¢,I;) is Gabor feature extracted from the cur-
rent image [;, T is the off-line trained Gabor template.
Sa(e,e) € [—1,1] is the similarity functions which com-
pares two Gabor features. (More details about Gabor fea-
ture extraction and matching can be found in [14]).

Since the observation likelihood is directly defined, the
learning process of Switching GPDM becomes independent
of the image observations. Given the labeled facial feature
point positions and expressions: {x¢, s; }7._;, the model is
learned by the method given in section 3.3.1.

With this model, facial feature tracking and facial ex-
pression/pose recognition are performed simultaneously in
a unified framework. Such a framework represents a sig-
nificant change from most current practices, which tend to
treat the two problems of facial feature tracking and fa-
cial expressions separately and therefore ignore their inter-
plays and inter-dependencies. Moreover, inference (sam-
pling) in the low-dimensional latent space can improve the
tracking accuracy with significantly reduced computational
complexity.

In the experiments, we demonstrate the robustness of our
model in terms of both facial feature tracking and expres-
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sion/pose recognition performance on real videos under di-
verse scenarios including low frame rate and low quality
videos, and face with out-of-plane pose changes.

4.2.1 Facial feature tracking + Expression Recognition

In this experiment, the model is trained on image sequences
(each with length around 450) of one subject and then tests
on the other sequences. 28 facial points and 5 expression
expressions are manually labeled. We also down-sampled
the sequence (sample every 5" frame, the video frame rate
is reduced from 30fps to 6fps), so as to simulate the low-
frame rate videos.

The motivations for experimenting on low frame
rate(LFR) videos include: (1) LFR tracking is more chal-
lenging for previous trackers which assume that x; is quite
close to x;_1 (2) Because the dynamic model of the switch-
ing state is trained by all the (s, s;—1) pairs in the train-
ing data, reducing the lengths of equi-state segments might
yield a better dynamic model. The tracking results are
shown in Table 1:

Table 1. Tracking errors for different facial components for the
proposed Switching GPDM (SGPDM) and the tracker in [11]
based on Gabor feature and ASM under two different frame rates
(without pose change)

Video |\ el Tracking Errors (per pixel)
Type L-EBR | L-EYE | R-EBR | R-EYE | NOSE | MOUTH | ALL

High | ASM | 2.00 | 094 | 1.54 | 1.02 | 1.18| 1.84 | 1.42

Frame

Rate SGPD

288 | 138 | 251 | 1.36 |2.62| 371 | 250

Low | ASM | 1.64 | 1.25 | 2.01 | 1.42 | 1.50] 3.85 | 2.18

Frame

SGPD
M

Rate

2014 | 126 | 231 | 1.25 |2.63 | 394 | 243

Here, we compared with the state-of-the-art face tracker
[11] based on the active shape model (ASM). We can see
from the table, ASM-based tracker performs better than SG-
PDM on HFR (30fps) video. However, for LFR video, the
tracking performances of SGPDM and ASM based tracker
become comparable. Meanwhile, the SGPDM also yields
the expression recognition result. The recognition error is
42% for HFR video and 22% for LFR video. This verify the
assumption that LFR produces a better GP dynamic model.

4.2.2 Facial feature tracking+ Expression/Pose Recog-
nition

Now, we take into account out-of-plane head poses. We

roughly categorize pose into 3 groups: frontal, left, right,

and deal with two expressions: neutral and happy. We form
a switching state as a joint pose/expression, that is, we have
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6 states (e.g., neutral-front). The tracking results are sum-
marized in Table.2 and the expression/pose prediction errors
are 33% for HFR and 29% for LFR.

Table 2. Tracking errors for different facial components for SG-
PDM and the tracker in [11] based on Gabor feature and ASM
under two different frame rates (with pose change)

Video Model Tracking Errors (per pixel)
Mode
Type L-EBR | L-EYE | R-EBR | R-EYE | NOSE | MOUTH | ALL

High | ASM | 476 | 248 | 419 | 436 [ 231 | 208 | 3.10

Frame

SGPD
Rate M 3.00 1.46 2.88 1.46 222 3.28 241

Low ASM 4.84 3.95 3.61 4.28 3.81 3.51 3.92

Frame
Rate S(?ED 291 1.44 2.81 1.55 2.32 3.34 243

From Table.2, it is clear that the proposed method signifi-
cantly outperforms the state-of-the-art face tracker for every
facial component for both low and high frame rate videos,
especially for the low frame rate video.

To further investigate the performance of our method, we
did the experiment with low resolution images. We run the
low-resolution video experiments by imputing every (5x5)
site by the pixel value of their upper-left pixel. The results
are summarized in Table 3.

Table 3. Average tracking errors and expression/pose recognition
accuracies (in parenthesis) for different image conditions.

High Frame Rate Low Frame Rate
Expr + Pose - -
High Res. Low Res. High Res. Low Res.
ASM 3.10 4.46 3.92 4.47
SGPDM 2.41 3.19 2.43 3.47
i (67.48%) (42.09%) (71.11%) (38.89%)

Table 3 shows that for sequences with expression and
pose change, the proposed method outperforms the ASM
based tracker in every cases. In addition, we notice that
while the expression/pose recognition of SGPDM is af-
fected significantly by the low resolution image, the facial
feature tracking errors are not affected as much.

5. Conclusion

In this paper, we introduce a dynamic model that can
simultaneously address two problems in motion tracking,
namely tracking complexity and tracking composite mo-
tions. Based on combining Gaussian Process Dynamic
Models and switching variables, the proposed SGPDM
model can efficiently track composite motions with di-
verse dynamics. The switching variables allows systemati-
cally capture the interplays and dependencies between high



level motion patterns and the dynamics of each motion pat-
tern. And the Gaussian Process Dynamic Models reduce
modeling complexity by modeling the dynamics in a low-
dimensional latent space, improving both tracking accuracy
and efficiency. The proposed SGPDM is also more suitable
for the problem of simultaneous tracking and recognition.
Experiments with human body motion tracking reveal the
improved tracking performance of the proposed technique
over the state-of-the-art methods. Experiments with facial
feature tracking also indicate that SGPDM is suitable for
the problem of simultaneous tracking and recognition.
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