
Interval HSV: Extracting Ink Annotations

John C. Femiani Anshuman Razdan

Arizona State University

Polytechnic Campus, 7001 E. Williams Field Rd.

Bldg. 140, Mesa, AZ 85212, USA

john.femiani@asu.edu

Abstract

The HSV color space is an intuitive way to reason
about color, but the nonlinear relationship to RGB co-
ordinates complicates histogram analysis of colors in
HSV. We present novel Interval-HSV formulas to iden-
tify a range in HSV for each RGB interval. We show
the usefulness by introducing a parameter-free and com-
pletely automatic technique to extract both colored and
black ink annotations from faded backgrounds such as
digitized aerial photographs, maps, or printed-text doc-
uments. We discuss the characteristics of ink mixing
in the HSV color space and discover a single feature,
the upper limit of the saturation-interval, to extract ink
even when it is achromatic. We form robust Interval-
HV histograms in order to identify the number and col-
ors of inks in the image.

1. Introduction

Paper documents may be photocopied, faxed, re-
viewed, folded, or marked with hand drawn annota-
tions. For example reviewers may mark corrections
onto a physical copy of a journal paper, or planners
may circle important regions of an aerial photograph.
Unfortunately, annotations make it very di�cult to run
image processing routines on the images when they are
later digitized. We believe that existing document pro-
cessing methods have the potential to improve their
accuracy at recognizing text in images if annotations
drawn in ink are �rst extracted to a separate image so
that they can be analyzed individually.

This paper is motivated by issues we faced while
using color histograms in hue, saturation, and value
(HSV ) to identify common types of ink used for an-
notation. We considered alternative color spaces such
as CIELAB or YUV, but chose to analyze colors using

HSV because we interpret our input colors as RGB
re�ectances and HSV has special invariance proper-
ties with respect to our ink mixing model (section 3).
Furthermore, the input RGB indices �ll a color-cube
which the HSV hexcone was designed to �t perfectly.
The fundamental problem is that uniform RGB digi-
tization errors are not uniform after mapping to HSV
coordinates. This can cause gaps in histograms as il-
listrated in Fig. 1. To address this we present a new
interval approach to using HSV that not only leads to
a simple, intuitive, robust, and fast density estimation
approach using simple histograms, but it also reveals a
powerful new attribute, the saturation upper limit, that
can discriminate both chromatic and achromatic inks
from background colors in many images. The utility
of interval HSV is demonstrated with a simple his-
togram based image segmentation that is more appro-
priate than state of the art techniques for color image
segmentation such as mean shift [1] and other similar
methods when applied to the problem of ink annota-
tion segmentation. This low level color based approach
provides a language agnostic and a fast method to sep-
arate handwriting, stamps, decorations, and other arti-
facts from faded document images, so optical character
recognition (OCR) techniques can be applied to a sin-
gle ink-layer (presumably, of machine-print).

Intervals in HSV are used to overcome numerical
issues which have complicated histogram analysis [2,
3, 4, 5]. We make the following contributions:

1. We discover a new feature, the saturation-interval
upper limit, that illustrates the merit in treating
discrete colors as intervals by reducing the com-
plexity of extracting both chromatic and achro-
matic inks.

2. We present a robust way to compute joint HSV
or just HV histograms. This allows individual
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(a) (b) (c) (d) (e)
Figure 1. Histograms of an image with �ve pens, including one black, are shown. In each the vertical axis is hue and the
horizontal is value. (a) was computed with interval arithmetic, (b) was computed without. Both were low-pass �ltered and
thresholded to form (d) and (e). (c) is a zoomed view of the portion of (b) within the red rectangle. Observe that (e) has
split the black pen into several disconnected regions.

inks to be identi�ed using connected decision re-
gions of the histogram.

3. We employ decisions which are based predomi-
nantly on color at each pixel rather than structure
[6, 7] and we do not require complex or iterative
feature space clustering techniques [8, 9, 10].

1.1. Problem

Given a digitized mixed image M such that
each pixel is a subtractive mixture of an underlying
background image U and a partly transmissive ink
P1, P2, ..., PN , or no ink P0, our aim is to deduce the
number of inks (N) and decide which if any of the N
pens in�uence each pixel. Output is a set of labels L
so that according to the mixing model discussed in sec-
tion 3.3 the mixed color is Mi = P`iU . Fig. 2 provides
examples of valid input images along with pseudo-color
output images.

1.2. Scope and Assumptions

We use an ink mixture model in section 3.3 that
assumes a uniform-thickness for the layer of ink and
does not allow inks to scatter or re�ect light. Inks
which have signi�cant re�ectance, such as grease-pens
or chalk, are outside the scope of this paper and may or
may not be identi�ed correctly. Furthermore, we pre-
sume an achromatic background layer, but we extend
this to other backgrounds with simple preprocessing.
In practice RGB values are sometimes quantized to
R̂ĜB̂ indices and stored so that they are device depen-
dent, but since accurate color pro�les for the scanner
are generally not available, we treat the RGB values
as estimates of re�ectance. Backgrounds with linear
structures and high saturation are outside the scope of
this paper, and will cause the proposed algorithm to
under-segment certain inks.

2. Prior Art

Color segmentation approaches include clustering or
thresholding colors directly in RGB or Y UV [7, 11],
treating colors in unstable regions of HSV di�erently
[3, 12], or using error propagation techniques with vari-
able kernel estimation [13, 2]. The last approach is
most similar to our approach, but interval arithmetic
has advantages because we can identify ranges in HSV
even though the transform is not di�erentiable.

Various authors have used clustering, quantization,
and thresholding or partitioning techniques. The seri-
alized k-means algorithm [9] uses a sliding window of
pixels and applies k-means algorithm to feature-vectors
in a combined R,G,B,H, S, L color-space. Each time
the window is advanced, the k-means algorithm is used
to search for new clusters; starting with the centers of
the previous clusters as seeds.

Comaniciu et. al. cluster colors using the mean shift
algorithm [1]. Mean shift is a hill-climbing approach to
locate the center of the nearest region of maximum den-
sity, or mode. This approach uses a combined feature
space of L*, u*, v* and spatial x, y coordinates so that
spatial proximity is taken into account while cluster-
ing. Unlike the proposed interval HSV approach, the
mean shift algorithm requires an iterative gradient de-
scent operation at each point, and it requires a costly
nearest-neighbor query at each iteration. Commaniciu
does several things to avoid this, including an addi-
tional vector quantization step. Unlike mean shift the
proposed approach does not require nearest-neighbor
queries or multiple iterations per pixel, so it scales well
and is simple to implement.

Gevers and Stokman [13] use error propagation to
recognize objects based on robust histograms of color
invariants. For each measure RGB a normal distribu-
tion is identi�ed in the desired color space. Burns and
Berns [5] provide detail on this kind of error propaga-
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(a) (b) (c) (d)
Figure 2. Examples of the input (a,c) and pseudocolored output (b,d) that one can expect from the proposed method. The
colors in (b,d) are the mean colors of the pens in (a,b) with contrast adjusted to increase visibility. Image (a) is an annotated
aerial photo of Phoenix, Arizona (printed onto transparency, obtained from www.usgs.gov), and (b) is an annotated revision
of this paper.

tion analysis; but it requires di�erentiable transform
functions, and the mapping to HSV is de�ned piece-
wise with the derivatives that are not continuous. The
proposed approach overcomes this limitation using in-
terval arithmetic, which allows us to precisely track the
range in terms of hard limits so we can threshold on
Shi (section 3.3).

3. Method

Our approach has the following major steps:

1. Preprocess the image in order to reduce the sat-
uration of large, homogeneous areas of color that
are not likely to contain annotations while keeping
the inked areas saturated.

2. Form a histogram of saturation interval upper-
limits.

3. Form a 2D value × hue (HV ) histogram of anno-
tated pixels using interval arithmetic to cope with
singularities, and threshold the histogram at 1% of
the highest peak. Each connected region in HV is
treated as a distinct ink.

4. Label regions of the image based on pixel HSV
representations. Morphological operations recover
pixels otherwise missed in the HV histogram.

The proposed method is simple because it can be im-
plemented using arrays for histograms, and does not
need complex spatial indexing techniques or nearest-
neighbor algorithms in order to estimate a probability

density function or �nd its modes. The approach is
almost parameter free; the only parameters controlling
the results are the 1% threshold used in step 3, and
possibly the �lter-size used for preprocessing in step 1
(section 3.1).

3.1. Preprocessing

Documents are subject to various processes which
may desaturate and brighten, the images. The pro-
posed segmentation technique works best when ink
marks are darker or more saturated than the back-
ground image, but this is not always the case. To allow
our method to work on these images, we start by ad-
justing the brightness before processing by looking for
the darkest pixel in the image and subtracting its value
from all other pixels.

Sometimes the fading e�ect is not isotropic in the
RGB coordinates, causing the image to have a tinted
e�ect. Some images, while faded, still have low fre-
quency variation in chroma. In our implementation
we pre-process these images by rescaling RGB coordi-
nates so that below a certain frequency the image is
unsaturated. Let F be a low-pass �lter applied to the
original imageM. Then the preprocessed imageM′ is
the result of

M′ =M× Value(M∗ F )
M∗ F

where the multiplication operator (×) is done ele-
ment by element, and the Value(·) function returns the
arithmetic mean of R, G, and B. In our experiments we
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use a box �lter with a square window of 4×σ+1, where
σ is a rough estimate of the expected pen thickness at
the image's resolution.

3.2. Computing HSV from RGB

In this section we provide the formulas to transform
discretized R̂ĜB̂ indices into an interval of HSV in-
dices. The well known transformation from RGB to
HSV [14]works for real values, but in practice our
colors are not real numbers. Instead they are quan-
tized to indices that are positive scaled integers with
a scale of L, where rounding truncates so that R̂ =
min (L− 1, bRLc) and L is 256 for images with 8 bit
channels. This mapping transforms half-open intervals
to quantization indices. The error added by quantiza-
tion causes signi�cant problems when mapping these
colors to HSV because division by small numbers is
involved. The problem is particularly evident with un-
saturated colors and dark colors such as those produced
by a black or brown pen.

In order to base our decisions on histograms using
HSV coordinates in sections 3.3 and 3.4 we must solve
this issue with discretization. Fig. 1 shows the kind of
problem we can expect if errors are not addressed.

The quantization operation RGB 7→ R̂ĜB̂ is not in-
vertible, but its preimage1 is a set of half-open intervals

[R], [G], [B] of the form [R] = [Rlo, Rhi) =
[
R̂
L ,

R̂+1
L

)
.

We �nd intervals [H], [S], [V ] using interval arithmetic
to adapt the standard formulas [14], and we deal explic-
itly with regions where the mapping RGB 7→ HSV is
unde�ned by setting them to the entire range of [0, 1] .
Intervals [Max] and [Min] are set to one of [R], [G], [B]
depending on which of R̂, Ĝ, B̂ is the maximum or min-
imum.

In interval HSV, the value interval is

[V ] = [Max] =

[
M̂ax

L
,
M̂ax+ 1

L

)
(1)

We divide by [Max] to �nd [S], but division by an
interval which crosses 0 is unde�ned so we replace [S]
by [0, 1] whenever [Max] includes 0.

[S] =

{
[0, 1] M̂ax = 0(
M̂ax−M̂in−1

M̂ax+1
, M̂ax−M̂in+1

M̂ax

)
else.

(2)

1In this context we are talking about the preimage or image

of a function, not a digital image or picture.

The hue interval [H] involves another interval called
[D] where

[D] =
1
L

(
M̂ax− M̂in− 1, M̂ax− M̂in+ 1

)
When we divide by [D], if [D] crosses 0 the result is
forced to [0, 1]

[H] =



[0, 1] if Dlo ≤ 0(
Ĝ−B̂−1
6LDhi

, Ĝ−B̂+1
6LDlo

)
else if M̂ax = R̂(

B̂−R̂−1
6LDhi

, B̂−R̂+1
6LDlo

)
+ 1

3 else if M̂ax = Ĝ(
R̂−Ĝ−1
6LDhi

, R̂−Ĝ+1
6LDlo

)
+ 2

3 else.

3.3. Thresholding the Saturation

According to the Kubelka Munk theory of re-
�ectance an ink with no re�ectance and uniform thick-
ness alters a background color according to the familiar
formula for subtractive color mixing M = PU where
M is the re�ectance in the mixed image before quan-
tization, P is re�ectance of a pen's ink on a white
background, and U is the re�ectance of the underlying
material. In this section we introduce a theorem that
justi�es the use of Shi to separate ink from a grayscale
background.

Lemma 3.1. The value of a color mixed with a sub-
tractive ink is always less than or equal to the value of
the achromatic background (Value(M) ≤ Value(U)).

Proof. Since P is a re�ectance it is constrained to the
interval [0, 1] and Max(PU) ≤Max(U).

Lemma 3.2. If an achromatic background U > 0 then
the saturation of a mixed color is equal to the satura-
tion of the pen used to mark it, S(M) = S(P ), and is
invariant with respect to the intensity of the achromatic
background material.

Proof. Since U is a nonzero re�ectance it is constrained
to the interval (0, 1], and U has equal R,G, and B
because it is achromatic. Therefore

S(M) =
Max(M)−Min(M)

Max(M)

=
Max(P )U −Min(P )U

Max(P )U
= S(P )
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Lemma 3.3. If an achromatic background U > 0 then
the hue of a mixed color is equal to the hue of the pen
used to mark it, H(M) = H(P ), and is invariant with
respect to the intensity of the achromatic background
material.

Proof. Although H is piecewise de�ned, for each case
the hue H is always a constant plus a fraction with
a linear combination of R,G,B in the numerator and
denominator. The ratios are invariant to U because it
is a common factor and the constant part of equation
for hue depends only on which of R,G,B is maximal
and is therefore invariant to multiplication by a positive
constant U .

De�nition 3.4. A pair of inks Pi and Pj are separa-

ble based on color space coordinate X by a threshold τ
if the domain of X can be partitioned into two disjoint
intervals [Xi] and [Xj ] with a common bound at τ and
M = PiU if and only if X(M) ∈ [Xi] and M = PjU if
and only if X(M) ∈ [Xj ].

We o�er the following theorem for achromatic inks.

Theorem 3.5. If achromatic inks Pi and Pj are sep-
arable based on Vlo, then they are separable based on
Shi.

Proof. Any achromatic ink satis�es Max = Min by
de�nition, so Shi = 1

Vlo
according to equations (2) and

(1) . Therefore for any τ , if Vlo <
1
τ then it follows

that Shi > τ .

The most important pen to identify is the 100%
transparent background-pen P0 because it occupies the
majority of the pixels. Theorem 3.5 suggests that
we identify a threshold τ so we can decide that pen
P0 in�uences all colors where Shi < τ is true. We
choose Otsu's threshold selection technique to identify
a threshold τ̂ using a histogram of discretized Ŝhi. Fig.
3(b) shows results on images with chromatic and achro-
matic inks. Note that it is often successful even for the
black pen. We improve further on this result by region
growing in section 4.

3.4. Grouping by Hue and Value

Section 3.3 identi�ed colors that were unmixed (i.e.
mixed with P0). In this section we use interval HSV

to form a 2D joint value and hue histogram and distin-
guish between the remaining pens. If inks are designed
so that a human can distinguish between them, then it
is very unlikely that two di�erent pens will have similar
hue and value. Eliminating the colors that are rare in
any pen (e.g. less than 1% of the most frequent color)

leaves remaining colors in connected regions of the ĤV̂
plane that can be attributed to a single pen.

Consider two joint HV -histograms g and h. Let gi,j
be the measured number of colors that are not in the
background, with i = Ĥ and j = V̂ . Let hi,j count the
expected number if we assume colors are uniformly dis-
tributed in the discrete interval [Ĥ] = bHloc ... dHhie,
which includes i. In the h formulation each color M̂
contributes equally to each histogram bin in the inter-
vals [Ĥ] and [V̂ ]. The di�erence between these two
histograms is evident in Fig.1. Notice that h should
have only a few well de�ned peaks corresponding to
the colors of the inks used in the image. Without in-
terval arithmetic these peaks are divided into many
disconnected pieces. This is undesirable because con-
nected component labeling can not be applied to the
histogram in order to count the number of pens.

We expect it to be rare but not impossible that pens
can produce the same colors, so we threshold h by
0.01×max(hi,j)and then label connected components
to identify N decision regions R1,R2, . . . ,RN for N
pens so that we decide M = PkU if the projection of
M̂ onto the HV plane intersects Rk. When we �nd
connected components we take care to recognize that
the H axis is cyclic. Fig. 1(c) shows the identi�ed com-
ponents colored according to the average color (with
the average computed in RGB).

4. Generating Output

Output is a corresponding raster of labels L such
that each Mx,y = P`x,y

U . In this section we describe
how a simple iterative region growing technique is used
to set the labels. Our region growing process starts
with a seed labeling L0 and iteratively changes labels to
produce a sequence L1,L2, . . .L∞ = L . Notationally
we use Lk for the label set after k iterations.

We start by de�ning the seed labels L0 so that `0x,y =
i if theHV projection of M̂x,y is inRi . For each pen Pi,
we de�ne the expected mixed color as the average color
of the mixed pixels in region Ri. In each subsequent
iteration Lk+1, unmarked pixels are given the same
label as their most similar adjacent pixel in the image
according to Lk, with similarity measured using the
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(a) (b) (c) (d)
Figure 3. Before and after examples of the proposed ink-extraction technique. Each row shows (a) the original image, (b)
the saturation upper limits, (c) the value/hue histogram, and (d) the �nal segmented image.

Euclidean norm in RGB space for simplicity2. The
process converges when Lk = Lk+1.

5. Evaluation

We used two sets of images for testing, the �rst
was generated from images from the on-line Teraserver
managed by the United States Geological Survey
(USGS), and the second is a dataset provided by the
National Geospatial Agency. The USGS dataset is a
synthetic dataset generated using color background im-
ages acquired from the USGS terraserver, with hand-
writing annotations from the Unipen [15] dataset digi-
tally composited using the Kubelka Munk mixing equa-
tions and various pigment settings to simulate blue and
black soft-tipped markers.

The results on the USGS data set were evaluated
manually by counting the number of symbols in incre-
ments of 1

2 , to allow for partially segmented symbols,

2We used the RGB space to measure distances rather than

attempting to use a perceptual distance measure in order to make

the algorithm simpler, and also because inks most directly change

the re�ectance of the image rather than its perceived color.

that were correctly extracted from the image. We show
some problem images with explanations in Fig. 4. The
results of the proposed algorithm on the USGS data-set
are summarized in Table 1.

Table 1. IHSV on the USGS dataset.
Black Blue All Pens

91
103

80
81

171
184 = 93%

The NGA data set is a group of 44 aerial pho-
tographs with hand drawn annotations made by an an-
alyst. The images are RGB scans of originally grayscale
�lms with colored and black ink annotations. In addi-
tion to four basic colors of red, green, blue, and black
ink, these images also include a tiny amount of pur-
ple ink, yellow ink, and an additive mark that appears
to have been made by a pink grease pen. The images
are much larger than the USGS dataset, and because
these images are authentic rather than digitally com-
posited they exhibit a number of more varied artifacts.
The results of our algorithm on the NGA dataset are
summarized in Table 2.
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Table 2. IHSV on NGA Dataset.
Red Green Blue Black Other All
407.5
436

239
240

234
247

133
166

11
16

1024.5
1105

= 93%

From these experiments we conclude that the pro-
posed approach has a recall of about 93% for extracting
ink from aerial photographs, and that the recall is close
to 80-88% when ink is black, although in practice it will
probably be closer to 80% than 88%. If black ink is ex-
cluded, the recall is 95-99%. Fig. 3 shows typical input
and output images from both datasets. The numbers
in Tables 1 and 2 are based on the ability to identify
the inked portions of the image and group similar col-
ored inks properly. When black ink was misclassi�ed
as blue or red, as in Fig. 4(a,b,c), we did not include
it in the table even though we were able to extract the
marks.

The proposed approach is di�cult to compare with
popular color segmentation algorithms such as mean
shift or serialized k-means because those algorithms fo-
cus on clustering the colors e�ectively. Our proposed
interval IHSV representation of colors tackles an or-
thogonal issue, i.e. which features to base the decision
on. Since the mean shift algorithm [1] tends to treat the
L∗u∗v∗ color space without special attention to chroma
we �nd that it can fail to distinguish background vari-
ation from foreground variation as we show in Fig. 5.

6. Conclusions

We have presented a solution to the handwritten
annotation extraction problem over monochromatic or
achromatic backgrounds. With preprocessing, we have
extended this algorithm to work on background that
are color aerial photographs. Our solution produces
accurate results when subtractive pigments are used,
and when achromatic inks are separable from the back-
ground by some threshold. Our main contributions are
1) interval arithmetic to make analysis of HSV distri-
butions tenable, and 2) a single feature, Shi, to sep-
arate both achromatic and chromatic pigments from
the background. We are also the �rst that we know of
to 3) address the segmentation of transmissive colored
handwriting over photographic images.
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(a) (b) (c)

(d) (e) (f) (g)
Figure 4. Examples of poor performance. (a) from the NGA dataset (75% recall) with fairly well de�ned inks, (b) Components
from the value/hue histogram, black and purple inks merged, (c) the resulting ink-colors image, with 0% recall for black ink
only. (d) The worst case image (0% recall). This is a dark and noisy image with little text. (e) the components identi�ed
from the histogram, the ink cluster merges with the background blobs (f) the pen-labels rendered in random colors, and (g)
the saturation upper limit for each pixel. The background noise is scattered but frequent enough to skew the histogram.

(a) (b) (c)
Figure 5. A comparison of our approach with accelerated the version of mean shift from [1], (a) is the original image, (b)
is the result of mean shift with spatial bandwidth = 7, color bandwidth = 6.5, and minimum region = 20, and (c) is the
result of our method.
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