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Abstract

We address the problem of tracking points in dense vec-
tor fields. Such vector fields may come from computational
fluid dynamics simulations, environmental monitoring sen-
sors, or dense point tracking of video data. To track points
in vector fields, we capture the distribution of higher-order
properties (e.g., properties derived from the gradient of the
velocity vector field) in a novel local descriptor called a
vector spin-image. Our distribution-based approach has a
number of advantages over methods that use topology anal-
ysis to track points in vector fields. The local distributions
are robust to noise, adaptable to changes in the feature, and
can be used to extrapolate the location of features after they
have disappeared. We describe the vector spin-image data
structure, the higher-order properties we record to track
vector field points, and show results of tracking points in
the simulated flow through a diesel engine cylinder.

1. Introduction

Vector field analysis has become increasingly crucial as
computational methods for simulating fluid dynamics, sen-
sor technology for environmental monitoring, and video
surveillance increase in accuracy and ubiquity. The dy-
namic information captured by these technologies are often
in the form of dense vector fields (e.g., optical flow of video
data or wind and water velocity from environmental moni-
tors). A fundamental task in flow analysis is the ability to
extract features and track their movements in the flow. Ex-
ample scenarios include an aircraft engineer who studies the
formation and evolution of vortices to achieve more effec-
tive control, an engine designer who examines the mixing
of fuel and air to obtain better fuel efficiency, and an envi-
ronmental scientist who evaluates the environmental hazard
due to pollutant leak near the shoreline. While the defini-
tion of features is highly application-dependent, it is com-
mon to track a single point through the flow field. Examples
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Figure 1. Left: selected points (X) in the 1st slice of a 3D vector
field. Right: advection and tracking of these points in later slices.

of flow field feature points include singularities (i.e., fixed
points with zero-valued vectors), vortex cores, and distinc-
tive regular points (e.g., points on a ridge).
We address the specific problem of tracking points

within 2D planar vector fields. Given a time-varying vector
field V (x, t) (x and t represent the position and time respec-
tively), two time instances t1 < t2 and a point x1, we find a
point x2 such that V (x1, t1) and V (x2, t2) have matching
properties. The examples in this paper are steady-state 3D
flows that do not vary in time. In this case, t becomes the
third spatial dimension rather than time. We treat the 3D
flow as a sequence of 2D slices and track points from one
slice to the next.
Note that the problem of tracking points is different from

the pathline computation (i.e., advecting a particle along the
flow). Particle systems for visualizing flow fields use advec-
tion. Particles are placed at seed points in the vector field
and moved forward. The movement of the particles trace
out pathlines, enabling the vector field to be visualized. In
contrast, tracking points for analyzing the evolution of tur-
bulent flow is achieved by finding the corresponding point
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in the next time or spatial slice. For example, if a point
near a center is selected, advecting the point forward in the
direction given by the vector field moves it towards the cen-
ter. Tracking the point tells us how it moves relative to the
movement of the center and can indicate how the larger fea-
ture (vortex) in which it is embedded evolves. Figure 1 il-
lustrates the difference between advection and tracking for
three selected points. When a selected point in a center (1) is
advected (top row), it moves away from the vortex core. To
adhere to the core, it must be tracked (bottom row). Figure 1
also shows that we can use tracking to extrapolate the posi-
tion of a fixed point (in this case, a center) immediately after
it disappears. Tracking backwards from a fixed point may
reveal where turbulence begins and help engineers modify
their design to reduce it.
Standard techniques for tracking points in vector fields

use topology analysis to locate singular points and track
them as they undergo bifurcation (topology change) [5, 12,
13, 17, 18]. Unfortunately, topology analysis is sensitive to
noise in the vector field, is not easily scalable, and cannot be
used to track regular points or non-singular features (such
as ridges). Topological features such as separatrix surfaces,
periodic surfaces and their connectivity which are needed in
tracking the evolution of fixed points are difficult to assess
in 3D. A solution often used in practice is to study the pro-
jection of a 3D flow onto a 2D submanifold – for example,
treating the 3D flow as a sequence of 2D slices.
In this paper, we also consider the 3D flow as a sequence

of 2D slices. However, our approach is completely scalable
to 3D time-varying flows because it does not require topol-
ogy analysis. Instead, we capture the geometric statistics of
the vector field around each point in a distribution, and track
a selected point through the volume by looking for the same
statistical signature when going from one slice to the next.
Because our approach is statistical in nature, it is robust to
noise and can adapt as the selected feature changes.
Our contributions are as follows: (1) our algorithm is the

first to track points through dense vector fields using geo-
metric distributions instead of topology information; (2) be-
cause we do not require topology information, we are able
to track regular points and non-singular feature points such
as points on ridges; (3) we are able to extrapolate the posi-
tion of fixed points after they have disappeared; and (4) we
record in a local descriptor higher-order information such as
those derived from the gradient of the velocity vector field
to find corresponding points in tracking.
We now review related work in vector field topology

analysis and tracking and geometric distributions for shape
matching. In Section 3, we describe a local descriptor for
vector field points, discuss zeroth and first-order properties
of vector fields in Section 4 and how to apply them to track-
ing in Section 5. We show results of tracking points in the
simulated flow through a diesel engine cylinder in Section 6.

2. Related Work
Vector field analysis identifies fixed points (with a zero

vector value), separatrices (trajectories emanating from a
saddle), and periodic orbits. Fixed points are further clas-
sified into sinks, sources, saddles, focus, and center points
using the Jacobian matrix. A significant amount of research
has been published in the area of vector field analysis and
fixed point classification, including [3, 6, 14, 16, 17, 21].
Tricoche et al. track topology changes in time-varying 2D
and 3D vector fields by locating bifurcations that transforms
sinks to sources (and visa versa) and annihilates sink-saddle
and source-saddle pairs [5, 17, 18]. The result is a topology
skeleton spanning space and time that allows for changes in
the number and type of fixed points. Reinders et al. track
fixed points by finding corresponding features in later time
slices based on the position, volume, and orientation of the
fixed points [12, 13]. They also track fixed points through
topology changes. An overview of different approaches to
flow visualization and topology-based feature tracking is
provided by Post et al. [11]. We focus on tracking points
without extracting topology information. Given a selected
point in a vector field, we track it to the next vector field
by finding the most similar point in the next field. As we
will describe in the next section, we identify similar points
based on a local descriptor.
Previous work in comparing vector field points has fo-

cused on defining a metric to compute the distance be-
tween fixed points using alternate phase plane coordinate
systems [9, 15]. However, many naturally occuring vector
fields do not contain fixed points, and non-singular points
can exhibit interesting features. Instead of relying on fixed
points, we compute a local descriptor that stores local statis-
tics on the vectors around each point in the form of discrete
distributions, or histograms.
Geometric, or shape, distributions provide a way of com-

paring shapes based on statistical properties [1, 10]. These
approaches record the distribution of a selected feature in
a histogram for efficient storage, indexing, and compari-
son. A single global histogram may be generated for the
entire shape, or one local histogram for each surface point.
Local histograms store information about the neighborhood
surrounding a central point and are used to find point cor-
respondences. Points are compared by computing a dif-
ference, or norm, between their local histograms. Stan-
dard norms include the Minkowski LN norms, the χ2, Bat-
tacharyya, and Earth Mover’s distance, and the correlation
coefficient. Geometric distributions are invariant to rota-
tions and translations of the underlying domain (e.g., sur-
face) and robust to noise due to their statistical nature. In
shape and contour matching, successful approaches to gen-
erating local distributions include spin-images [7] and shape
contexts [2, 4]. We now describe how we record the geo-
metric properties of vector fields in a spin-image data struc-
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Figure 2. Left: Spin-image for surface points in [7]. Right: Our
new vector spin-image for planar domains bins neighboring points
based on distance α from the central point and dot-product β be-
tween the neighbor’s vector and the central point’s vector. All
points on the yellow circle have a common α but β may differ.

ture for use as a local descriptor for tracking points.

3. A Local Descriptor for Vector Fields
In [19], we introduced a local descriptor for vector fields

based on the spin-image data structure. We call it a vector
spin-image. In Figure 2, we compare the spin-image for sur-
face data (left) to the vector spin-image (right). Spin-images
for an oriented surface point are computed by spinning the
plane containing the normal vector about the normal axis
while binning all surface points as they intersect the plane
(making it invariant to rotations) [7]. The spin-image is in-
dexed by the distance α from the central point and the depth
β from the central point’s tangent plane.
For planar vector fields, the indices for the vector spin-

image are the distance α from the central point and the dot-
product β between the 2D vector at the central point and
that of the neighbor. We then bin (tally) the number of
neighbors (within a given radius around the central point)
based on their α and β values, resulting in a 2D histogram.
Because areas far from the central point are deemed less im-
portant in a local descriptor, we use a log scale for radius α
to achieve lower resolution in these areas as prescribed in
shape contexts [4]:

ri = exp
{

ln (rmin) +
i

I
ln

(
rmax

rmin

)}
(1)

In the above equation, ri is the max radius of bin i; rmin

is the max radius of the bin containing the central point;
rmax is the maximum support of the spin-image; and i goes
from 0 to I where I + 1 is the total number of radial bins.
Bin i covers the radial range from ri−1 to ri. Bins far from
the center will have high counts, but because each bin con-
tributes equally to the difference (Equation 4), a point in one
such bin actually has less effect on the difference.

4. Vector Field Properties for Tracking Points
As described in the previous section, our initial vector

spin-image is two-dimensional and records for each neigh-
boring point the distance from the center point and rela-

tive orientation with respect to the vector at the center point
via the dot-product. Unfortunately, vector orientation alone
often cannot capture essential differences between vector
fields such as the strength of the flow feature of a vortex
or fixed point. Given two sinks of different strengths, our
initial vector spin-image would not be able to distinguish
between them. By storing vector magnitude in addition
to orientation, we can discriminate between points in the
two fields. But because both vector orientation and magni-
tude are zeroth-order properties, they fail for tracking fixed
points (see Figure 3). This is due to the fact that the vector
field vanishes at fixed points, and the dot-product between
a zero-valued vector and any other vector will be the same
regardless of the type of fixed point (i.e., sink, source, sad-
dle, etc.). We now describe first-order properties based on
the velocity gradient tensor that enable us to overcome this
limitation and distinguish between different fixed points.

4.1. First-Order Information

The gradient of a velocity vector field is an asymmetric
tensor field. In [20], Zhang et al. describe the structures in
the eigenvalue and eigenvector fields of the gradient tensor
(extending the theoretical results of Zheng and Pang [22]).
They then relate tensor analysis to physical quantities such
as rotation, angular deformation, and dilation. To more pre-
cisely track points through a vector field, we record these
first-order properties in the vector spin-image. We now re-
view the properties derived by Zhang et al.
The gradient of a 2D planar vector field, V (x, y) =

(F (x, y), G(x, y)), is an asymmetric tensor field T :

T =
(

T11 T12

T21 T22

)
=

⎛
⎝

∂F
∂x

∂F
∂y

∂G
∂x

∂G
∂y

⎞
⎠ (2)

T can be decomposed into its symmetric and anti-
symmetric components, which measure the scaling and ro-
tation caused by the tensor, respectively. The symmetric
component can be further decomposed into isotropic and
anisotropic constituents. In [20], the components are com-
bined in the following unified parameterization of the space
of 2 × 2 tensors:

T = γd

(
1 0
0 1

)
+ γr

(
0 −1
1 0

)
+ γs

(
cos θ sin θ
sin θ − cos θ

)

γd = T11+T22
2 γr = T21−T12

2

γs =
√

(T11−T22)2+(T21+T12)2

2
(3)

γd, γr, and γs are the strengths of isotropic scaling (dila-
tion), rotation, and anisotropic stretching, respectively. The

2665



combined
properties

vector
orientation

vector
magnitude

tensor
magnitude

dilation
strength

rotation
strength

stretch
strength

stretch
orientation

selected
points

similar

different
ce

nt
er

 p
t

re
gu

la
r p

t
ce

nt
er

 p
t

re
gu

la
r p

t

Figure 3. χ2 difference of a fixed point (1st row) and a regular point (2nd row) to all other points in the same vector field (self-similarity).
Top-left: vector field with selected points (white X). Top-2nd from left: χ2

total difference based on combining χ2 differences of all
properties. Remaining columns: χ2 difference based on individual properties. No single property distinguishes the selected point from all
other points, but the combination of properties does as evident by the single small blue cluster in the combined χ2

total difference plot.

orientation of stretch is given by
(

T11 − T22

T21 + T12

)
. In addi-

tion to these four first-order properties of the vector field,
we also compute the tensor magnitude: γ2

d + γ2
r + γ2

s . In
total, we capture seven properties (two zeroth-order and five
first-order properties) in vector spin-images and use them to
compare points from one 2D slice of the vector field to the
next to track a selected point through a 3D vector field.

5. Vector Spin-Image Parameters
To incorporate the seven properties described in the pre-

vious section into an algorithm for tracking points through
dense vector fields, we must address the following issues:
(1) selecting the appropriate range and resolution for vector

spin-images to sufficiently capture the properties, (2) com-
bining the different properties into a unified approach, and
(3) updating and adapting vector spin-images as we track
changing points through the vector field. We address each
issue below.

5.1. Range and Resolution
The selection of the vector spin-image range and reso-

lution for each property depends on the range of values for
each property. For example, vector and stretch orientations
take on values only between [-1,1], whereas other property
values can vary widely in going from the top to the bottom
of the diesel engine cylinder as shown in Table 1. In par-
ticular, dilation, rotation, and stretch strengths and tensor
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Figure 4. Diesel engine cylinder. 2D planar vector fields are ex-
tracted by slicing through the cylinder along its length (e.g., at
10%, 20%, etc.).

magnitude change dramatically from the top to the bottom.
Each bin in the vector spin-image tallies the number of

points falling into the bin’s range of values for each prop-
erty. As a result, the overall range of property values in a
dataset and the resolution of the spin-image determines the
total number of bins and the range covered by each bin. The
higher the resolution, the more precise the local descriptor,
but also the more expensive to compute and compare. With
larger ranges, more bins are required to achieve the same
resolution.
To maintain a reasonable number of bins while achieving

descriptive distributions, we apply the following strategies:
(1) each spin-image in a 2D slice covers only the range of
values within the slice rather than defining a global range
that covers the entire range of values throughout the dataset;
(2) we normalize the range of values to be between 0 and 1
for all positive-valued properties (e.g., magnitude) and be-
tween -1 and 1 for all others; and (3) we use the log scale
given by Equation 1 to bin vector field properties. In gen-
eral, we have found a bin resolution of 10 for distance and
20 for all other properties to be sufficient (total of 200 bins).
We are able to compare the vector spin-images of one slice
to those of the subsequent slice despite (1) and (2) above
because of coherence in the vector field. In going from one
slice to the next, the range of property values have not sig-
nificantly changed. Hence comparing their spin-images re-
mains valid. We apply a log scale to bin vector field proper-
ties because distribution plots of the properties show a Nor-
mal distribution centered around zero. In other words, most
points in the dataset have values clustered around zero (with
different standard deviations for different properties), and
few points with extreme values (at the far ends of the range).
As with radius, a log scale ensures that higher resolution is
achieved where there is more data and lower resolution in
areas with less data.

5.2. Combining Zeroth and First-Order Properties

The seven properties described in Section 4 can be com-
bined into a single vector spin-image of seven dimensions

discretized into 20 bins per property (10 for distance). With
7 properties, such a distribution would contain 207 ∗ 10
bins for a total of 12.8 billion bins. Computing, storing,
and comparing these high-dimensional vector spin-images
would be considerably expensive and wasteful in that there
will be many bins with zero or near zero values. Instead,
we leverage the additive nature of the difference function as
described below.
Because the vector spin-image is a distribution, standard

statistical techniques can be used to quantitatively compare
them. We use the χ2 distance (or difference), computed as
follows between N-bin normalized histograms, f and g:

χ2 : D(f, g) =
1
2

N∑
i=1

(f [i] − g[i])2

f [i] + g[i]
(4)

In the above equation, each bin contributes equally to
the difference. This additive effect enables us to treat each
property separately by computing a 2D distribution for each
(indexed by distance and one of the seven properties). When
comparing points in the vector field, we compute the χ2

differences between the distributions for each property and
combine them into one total difference value:

χ2
total =

∑k
j=1 wjχ

2
j

∑k
j=1 wj = 1.0

(5)

For seven properties, k = 7. By treating the vector field
properties separately, we can weigh some properties more
than others via wj in the equation above. Through empiri-
cal analysis, we have found that vector orientation as cap-
tured by the dot-product is critical to locating fixed points.
This is intuitive since the vector at a fixed point is zero-
valued unlike all other points. On the other hand, simply
capturing vector orientation is not discriminating enough
because all fixed points will have the same local distribu-
tion as described in Section 4 and shown in Figure 3 where
we also show that vector orientation alone is not sufficient
to distinguish between regular points. We have found that
weighing vector orientation by 0.7 and the remaining prop-
erties equally by 0.05 effectively tracks both fixed and reg-
ular points. We have used this weighting in all the examples
of this paper and the accompanying video.

5.3. Adaptive Distributions
A key advantage of distribution-based tracking is the

ability to adapt as the feature changes. For example, if a
selected fixed point disappears, we can extrapolate its po-
sition afterwards. To ensure that the vector spin-image for
a selected point adapts as the vector field evolves from one
slice to the next, we update the range of vector field prop-
erties and average the vector spin-images that have a dif-
ference of 1% or less with respect to the query spin-image.
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Position of slice vector vector dilation rotation stretch stretch tensor
along engine cyl. orientation magnitude strength strength strength orientation magnitude

10% [-1,1] [0, 5.9] [-31.8, 60.2] [-39.6, 47.2] [0, 62.6] [-1,1] [0, 87.3]
20% [-1,1] [0, 3.6] [-20.1, 38.5] [-26.0, 26.9] [0, 42.5] [-1,1] [0, 59.3]
30% [-1,1] [0, 2.8] [-12.9, 35.7] [-25.1, 24.6] [0, 37.3] [-1,1] [0, 51.7]
40% [-1,1] [0, 2.1] [-15.2, 28.8] [-22.5, 22.7] [0, 31.2] [-1,1] [0, 43.0]
50% [-1,1] [0, 1.6] [-13.9, 22.3] [-18.0, 18.0] [0, 24.3] [-1,1] [0, 33.4]
60% [-1,1] [0, 1.2] [-10.7, 16.5] [-13.5, 13.5] [0, 18.1] [-1,1] [0, 25.0]
70% [-1,1] [0, 0.9] [ -6.1, 12.3] [ -9.9, 9.9] [0, 13.4] [-1,1] [0, 18.5]
80% [-1,1] [0, 0.7] [ -3.9, 8.8] [ -7.0, 7.0] [0, 9.7] [-1,1] [0, 13.3]
90% [-1,1] [0, 0.5] [ -1.9, 6.1] [- 4.7, 4.9] [0, 6.7] [-1,1] [0, 9.2]
100% [-1,1] [0, 0.4] [ -1.3, 4.1] [- 3.0, 3.3] [0, 4.5] [-1,1] [0, 6.1]

Table 1. Range of Zeroth and First-Order Property Values

As described in Section 5.1, the values of vector field prop-
erties are coherent in space and time, enabling us to up-
date the range of values incrementally as we track. At each
slice, we do not compare the vector spin-images of the slice
points to the vector spin-image of the selected point in the
first slice. Instead, we compare them to a spin-image that
is the average of the most similar points from the previous
slice. By averaging vector spin-images, we are adapting the
query spin-image as we track and accounting for the fact
that there may not be a single corresponding point. In Fig-
ure 5, the white clusters are points with a difference of less
than 1% within the slice (χ2 ≤ 0.01 ∗ (χ2

max − χ2
min)),

where χ2
max and χ2

min are the maximum and minimum dif-
ferences within the slice. The average position of this clus-
ter is marked in tracking.

6. Tracking Results and Discussion
We tested our distribution-based approach to tracking

points on the simulated steady-state flow within the com-
bustion chamber of a diesel engine. Although the data is
simulated, it is what engineers use to analyze engine design
since there is no way to physically capture flow fields in-
side an engine cylinder. Engineers typically slice through
the cylinder along its length (Figure 4) to analyze the simu-
lation, resulting in the circular flow patterns of Figures 1, 3,
and 5. The ideal flow pattern is a helix extending the length
of the cylinder. This motion optimally mixes air and fuel
leading to a more efficient combustion process [8].
In Figure 5, we select two fixed points (a center and a

saddle point) and a regular point in a slice near the intake
valves. In the top row, we show the vector field color-coded
using eigenvalue visualization based on all properties as
described in [20] and track the selected point (white X’s)
through several slices (frames) down the length of the en-
gine cylinder. We have omitted several slices in between
due to space limitations. The 2nd, 3rd, and 4th rows in
the figure show the χ2

total difference for each tracked point
at each frame using the average vector spin-image as we
move from slice to slice. The white region within each plot

are points with a difference of less than 1%. These points
contribute to the average vector spin-image used as the
query spin-image in the next slice. Overall, fixed points are
tracked consistently with slight deviations in some frames.
The center point (#1) is tracked as it moves upwards and

then eventually disappears by the 8th frame shown. By ex-
amining the eigenvalue color-coding, we see that the cen-
ter point starts out in the center of a green region. As the
region moves and transforms in shape, the tracked point
moves along with it while remaining in its center. The χ2

difference plots for the center point (2nd row) show that it
becomes increasingly similar to other points in the vector
field as it disappears.
A similar result is seen in the χ2 difference plots for

the saddle point (3rd row). The saddle point (#2) begins
in a small green region that disappears, subsumed by its
neighboring red and orange regions. The tracked point then
remains on this boundary between the red and orange re-
gion and eventually merges with a nearby ridge. The reg-
ular point (#3) is similar to many points in the first slice
as seen by the large blue regions in the χ2 difference plots
(4th row). Intuitively, this makes sense since there are many
more regular points in the data. By accounting for all seven
vector field properties, however, we distinguish the selected
point from other regular points as evident in the small white
cluster of the χ2 difference plots. The regular point begins
at the intersection of blue, red, and orange regions in the
eigenvalue color-coding. The blue region eventually disap-
pears, but the tracked point consistently moves with these
regions and remains at the boundary between the red and
orange regions even after the blue region disappears.
Our results are in contrast to what happens when advec-

tion is used to move particles forward from one slice to the
next (Figure 1). There, the selected points do not stay fixed
relative to the eigenvalue color-coded regions, and instead,
move along pathlines.
We have tested many other fixed and regular points

within the vector field with similar results. In the accom-
panying video, we show tracking of the center and regular
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points and include additional frames beyond those shown
in the figure. The movement of the tracked points is more
evident in the video. The video also includes tracking of a
point on a ridge which eventually disappears (example not
shown in Figure 5).
In terms of complexity, computing and comparing vec-

tor spin-images is linearly dependent on the number of bins
(determined by the range and resolution of each property).
We have found a bin resolution of 10 for distance and 20
for all other properties to be sufficient. For each slice, the
20 bins span the full range of values of each property us-
ing a log scale as described in Section 5.1. The vector
spin-image radius ranges from 0 to 60 pixels for the engine
cylinder dataset (approximately 15% of the cylinder width).
The average time to compute the vector spin-images of all
seven properties for a single point is 1.6 microseconds on
an Intel T2050 1.6 GHz processor (total of about 15 sec-
onds for each slice containing 9,659 points). The average
time to compare the vector spin-images of a single point to
all other vector spin-images in a slice (9,659 pairs of points
compared) is 0.5 secs.

7. Future Work

We plan to explore ways to reduce the memory footprint
of vector spin-images to make it possible to combine all
seven properties into a single high-dimensional distribution
rather than combine the χ2 differences of each property as
we now do. This may be possible by examining the distri-
bution of each property across the entire dataset and elimi-
nating bins that contain few points.
This work was funded in part by NSF CreativeITAward#

IIS-0742440 and by the Honda Initiation Grant.
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Figure 5. Tracking center (1), saddle (2), and regular (3) points through the engine cylinder flow field. Top rows: vector field slices are
ordered from left to right, top to bottom and color-coded based on eigenvalue visualization [20]. Other rows: χ2

total difference between
points on each slice and the average vector spin-images from the previous slice for center (2nd row), saddle (3rd row), and regular (4th
row) points.
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