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Abstract

This paper exploits the context of natural dynamic scenes
for human action recognition in video. Human actions
are frequently constrained by the purpose and the physi-
cal properties of scenes and demonstrate high correlation
with particular scene classes. For example, eating often
happens in a kitchen while running is more common out-
doors. The contribution of this paper is three-fold: (a) we
automatically discover relevant scene classes and their cor-
relation with human actions, (b) we show how to learn se-
lected scene classes from video without manual supervision
and (c) we develop a joint framework for action and scene
recognition and demonstrate improved recognition of both
in natural video. We use movie scripts as a means of auto-
matic supervision for training. For selected action classes
we identify correlated scene classes in text and then re-
trieve video samples of actions and scenes for training using
script-to-video alignment. Our visual models for scenes and
actions are formulated within the bag-of-features frame-
work and are combined in a joint scene-action SVM-based
classifier. We report experimental results and validate the
method on a new large dataset with twelve action classes
and ten scene classes acquired from 69 movies.

1. Introduction
Video becomes an easily created and widely spread me-

dia serving entertainment, education, communication and
other purposes. The associated demand for mining large
collections of realistic video data motivates further research
in automatic video understanding.

Video understanding involves interpretation of objects,
scenes and actions. Whereas previous work mostly dealt
with these concepts separately, a unified approach is ex-
pected to provide yet unexplored opportunities to benefit
from mutual contextual constraints among actions, scenes
and objects. For example, while some actions and scenes
typically co-occur, the chance of co-occurrence of random
classes of scenes and actions can be low.

In this work, we build upon the above intuition and ex-
ploit co-occurrence relations between actions and scenes in
video. Starting from a given set of action classes, we aim to

(a) eating, kitchen (b) eating, cafe

(c) running, road (d) running, street

Figure 1. Video samples from our dataset with high co-occurrences
of actions and scenes and automatically assigned annotations.

automatically discover correlated scene classes and to use
this correlation to improve action recognition. Since some
actions are relatively scene-independent (e.g. “smile”), we
do not expect context to be equally important for all ac-
tions. Scene context, however, is correlated with many ac-
tion classes. Moreover, it often defines actions such as “lock
the door” or “start the car”. It is therefore essential for ac-
tion recognition in general.

We aim to explore scenes and actions in generic and re-
alistic video settings. We avoid specific scenarios such as
surveillance or sports, and consider a large and diverse set
of video samples from movies, as illustrated in Fig. 1. We
use movie scripts for automatic video annotation and apply
text mining to discover scene classes which co-occur with
given actions. We use script-to-video alignment and text
search to automatically retrieve video samples and corre-
sponding labels for scenes and actions in movies. Note, that
we only use scripts for training and do not assume scripts to
be available during testing.

Given the automatically retrieved video samples with
possibly noisy labels, we use the bag-of-features represen-
tation and SVM to learn separate visual models for action
and scene classification. As the main contribution of this
paper we demonstrate that automatically estimated contex-
tual relations improve both (i) recognition of actions in the
context of scenes as well as (ii) recognition of scenes in the
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context of actions. We, in particular, emphasize the fully au-
tomatic nature of our approach and its scalability to a large
number of action and scene classes.

The rest of the paper is organized as follows. The re-
maining part of this section reviews related work. Section 2
presents script mining for discovering contextual relations
and automatic video annotation. Section 3 describes in-
dependent visual classification of actions and scenes. Sec-
tion 4 introduces the joint action and scene recognition and
evaluates the contextual relationships mined from text and
learned from visual data. Section 5 concludes the paper.

1.1. Related work

Visual context has a long history of research with early
studies in cognitive science [1]. In computer vision context
has been used for interpretation of static scenes [10, 20, 21,
26]. For example, scene context is used to impose spatial
priors on the location of objects in the image [21, 26]. In a
similar spirit, [20] exploits spatial relations between objects
and scene parts for segmentation and recognition of static
images. Co-occurrence of people in images is explored for
face recognition in [16].

A few papers explore the context of human actions. Sim-
ilar to our work, [14] exploits scene context for event recog-
nition, but only applies it to static images. In [8, 18, 22, 27]
object context is used for action recognition and demon-
strates improved recognition of objects and actions in video.
However, in most of the previous work only constrained ex-
perimental settings are considered. In contrast, we focus on
action recognition in realistic video data from movies. Fur-
thermore, we automatically discover contextual relations
between scenes and actions.

Scripts have been explored as a means of automatic
video annotation in [2, 5, 12]. We follow this work and
add the use of scripts to estimate relations between scenes
and actions in video. A related approach deriving object
relations from textual annotations in still images has been
recently presented in [9]. For action and scene recognition
we follow bag-of-features models explored in many recent
works on object, scene and action recognition in still images
and video [3, 4, 12, 13, 19, 24, 25].

2. Script mining for visual learning
Learning visual representations of realistic human ac-

tions and scenes requires a large amount of annotated video
data for training. While manual video annotation and data
collection is time-consuming and often unsatisfying, recent
work adopts video-aligned scripts for automatic annotation
of videos such as movies and sitcoms [2, 5, 12]. In the
following we briefly describe script-to-video alignment in
subsection 2.1 and script-based retrieval of action samples
in subsection 2.2. Subsection 2.3 presents automatic script

Subtitles
Script

00:24:22 –> 00:24:25
– Yes, Monsieur Laszlo.
Right this way.

-
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00:24:51 –> 00:24:53
Two Cointreaux, please. -

�
 �	����
���

�:

int. Rick’s cafe, main room, night
Scene caption

Monsieur Laszlo. Right this way.
Speech

As the headwaiter takes them to a
table they pass by the piano, and
the woman looks at Sam. Sam,
with a conscious effort, keeps his
eyes on the keyboard as they go
past. The headwaiter seats Ilsa...

Scene description

Two cointreaux, please.
Speech

Figure 2. Script synchronization using timestamps from subtitles.

mining of action-correlated scene classes and discusses the
retrieval of the corresponding video samples.

2.1. Script-to-video alignment

Scripts are text documents publicly available for the ma-
jority of popular movies. They contain scene captions, di-
alogs and scene descriptions, but usually do not provide
time synchronization with the video. Following [2, 5, 12],
we address this problem by synchronizing script dialogs
with the corresponding subtitles. Subtitles are easy to ob-
tain from the web or DVDs and are already synchronized
with the video through timestamps. Hence, we match script
text with subtitles using dynamic programming and then es-
timate temporal localization of scene captions and scene de-
scriptions by transferring time information from subtitles to
scripts. Using this procedure, illustrated in Fig. 2, we obtain
a set of short video clips (segmented by subtitle timestamps)
with corresponding script parts, i.e., textual descriptions.

2.2. Action retrieval

To automatically collect video samples for human ac-
tions, we follow the approach in [12]. We choose twelve
frequent action classes and manually assign corresponding
action labels to scene descriptions in a few movie scripts.
Note that these scripts are distinct from the 69 scripts used
in the following for automatic annotation. We then train an
off-the-shelf bag-of-words text classifier and automatically
retrieve scene descriptions with action labels from a set of
69 movie scripts1 synchronized with the video as described

1We obtain movie scripts from www.dailyscript.com, www.movie-
page.com and www.weeklyscript.com. The 69 movies used in this paper
are divided into 33 training movies and 36 test movies as follows.

Training movies: American Beauty, As Good as It Gets, Being John
Malkovich, The Big Lebowski, Bruce Almighty The Butterfly Effect,
Capote, Casablanca, Charade, Chasing Amy, The Cider House Rules,
Clerks, Crash, Double Indemnity, Forrest Gump, The Godfather, The
Graduate, The Hudsucker Proxy, Jackie Brown, Jay and Silent Bob Strike
Back, Kids, Legally Blonde, Light Sleeper, Little Miss Sunshine, Liv-
ing in Oblivion, Lone Star, Men in Black, The Naked City, Pirates of the
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AnswerPhone 59 64
DriveCar 90 102
Eat 44 33
FightPerson 33 70
GetOutCar 40 57
HandShake 38 45
HugPerson 27 66
Kiss 125 103
Run 187 141
SitDown 87 108
SitUp 26 37
StandUp 133 146
All Samples 810 884
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EXT-House 81 140
EXT-Road 81 114
INT-Bedroom 67 69
INT-Car 44 68
INT-Hotel 59 37
INT-Kitchen 38 24
INT-LivingRoom 30 51
INT-Office 114 110
INT-Restaurant 44 36
INT-Shop 47 28
All Samples 570 582

(a) Actions (b) Scenes

Table 1. Distribution of video samples in two automatically gen-
erated training sets and two manually verified test sets for action
and scene classes respectively. The total length of action samples
is about 600k frames or 7 hours of video. For scene samples it is
about 990k frames or 11 hours. Our dataset is publicly available
at http://www.irisa.fr/vista/actions/hollywood2

in Section 2.1. With this procedure we automatically obtain
video samples for a chosen set of action labels.

We split all retrieved samples into the test and training
subsets, such that the two subsets do not share samples from
the same movie. For training samples we keep the (noisy)
labels obtained with the automatic procedure. We manu-
ally validate and correct labels for the test samples in order
to properly evaluate the performance of our approach. Ta-
ble 1 (left) summarizes the action classes and the numbers
of samples we use for training and testing action classifiers.

2.3. Scene retrieval

The main objective of this work is to exploit re-occurring
relations between actions and their scene context to improve
classification. For a given set of action classes, this requires
both (i) identification of relevant scene types and (ii) esti-
mation of the co-occurrence relation with actions. We aim
to solve both tasks automatically in a scalable framework.
While visual data could be used for our purpose, we find

Caribbean: Dead Man’s Chest, Psycho, Quills, Rear Window, Fight Club.

Test movies: Big Fish, Bringing Out The Dead, The Crying Game, Dead
Poets Society, Erin Brockovich, Fantastic Four, Fargo, Fear and Loathing
in Las Vegas, Five Easy Pieces, Gandhi, Gang Related, Get Shorty, The
Grapes of Wrath, The Hustler, I Am Sam, Independence Day, Indiana
Jones and The Last Crusade, It Happened One Night, It’s a Wonderful Life,
LA Confidential, The Lord of the Rings: The Fellowship of the Ring, Lost
Highway, The Lost Weekend, Midnight Run, Misery, Mission to Mars,
Moonstruck, Mumford, The Night of the Hunter, Ninotchka, O Brother
Where Art Thou, The Pianist, The Princess Bride, Pulp Fiction, Raising
Arizona, Reservoir Dogs.
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HandShake

HugPerson

Kiss

Run

SitDown

SitUp

StandUp

Text/Training−set

Video/Test−set

Figure 3. Conditional probabilities p(Scene|Action) estimated
from scripts (green) and ground truth visual annotation (yellow).
Note the consistency of high probability values (large circles) with
intuitively expected correlations between actions and scenes. Ob-
serve also the consistency of probability values automatically esti-
mated from text and manually estimated from visual video data.

it easier to discover relevant scene types in text. As in the
previous section, we resort to movie scripts. We use scene
captions, short descriptions of the scene setup, which are
consistently annotated in most of the movie scripts and usu-
ally provide information on location and day time:

INT. TRENDY RESTAURANT - NIGHT
INT. M. WALLACE’S DINING ROOM - MORNING
EXT. STREETS BY DORA’S HOUSE - DAY.

To discover relevant scene concepts, we collect unique
words and consecutive word pairs from the captions. We
use WordNet [7] to select expressions corresponding to in-
stances of “physical entity”. We also use the WordNet hi-
erarchy to generalize concepts to their hyponyms, such as
taxi→car, cafe→restaurant, but preserve concepts which
share hyponyms, such as kitchen, living room and bedroom
(they share the room hyponym). We also explicitly recog-
nize INT (interior) and EXT (exterior) tags.

From the resulting 2000 contextual concepts we select
30 that maximize co-occurrence with action classes in the
training scripts. To select both frequent and informative
concepts, we sort them by the entropy computed for the
distributions of action labels. This results in an ordered list
from which we take the top ten scene concepts.

Figure 3 illustrates co-occurrences between automati-
cally selected scene classes and actions. The size of the
circles corresponds to the estimated probabilities of scenes
for given action classes and coincides well with intuitive ex-
pectations. For example, running mostly occurs in outdoor
scenes while eating in kitchen and restaurant scenes.
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Since the selection of scene classes and their relations
to actions were automatically derived from the training
movie scripts, we validate (i) how well script-estimated co-
occurrences transfer to the video domain and (ii) how well
they generalize to the test set. We manually annotate scenes
in test videos and perform evaluation. Co-occurrences es-
timated automatically from training scripts and manually
evaluated on test movies are illustrated with different colors
in Fig. 3. An equal division of the circles by colors validates
the consistency between relations mined from text and those
actually occurring in videos.

Having found correlated scene concepts, we automati-
cally retrieve the corresponding video samples as in Sec-
tion 2.2. Note, however, that there is no need for a text
classifier in this case. The procedure for finding correlated
scene concepts is therefore fully automatic and unsuper-
vised. As for the actions dataset, we keep the automatically
obtained scene labels for the training set and verify the la-
bels to be correct for the test set. The automatically selected
scene classes and the number of corresponding samples in
both subsets are illustrated in Table 1 (right). Note that for
training we do not use any manual annotation of video sam-
ples neither for action nor scene classes.

3. Visual learning of actions and scenes

Our actions and scene classifiers are based on a bag-of-
features image representation [3, 4, 25] and classification
with Support Vector Machines [23]. Our video represen-
tation uses simultaneously static and dynamic features as
described in subsection 3.1. In subsection 3.2 we briefly
introduce the approach for classification and subsection 3.3
evaluates features for action and scene classification.

3.1. Bag-of-features video representation

Inspired by the recent progress of recognition in uncon-
strained videos [12], we build on the bag-of-features video
representation for action recognition [19, 24]. The bag-
of-features representation views videos as spatio-temporal
volumes. Given a video sample, salient local regions are
extracted using an interest point detector. Next, the video
content in each of the detected regions is described with lo-
cal descriptors. Finally, orderless distributions of features
are computed for the entire video sample.

To construct our baseline we follow the work of
Laptev [11] and extract motion-based space-time features.
This representation focuses on human actions viewed as
motion patterns. The detected salient regions correspond
to motion extrema and features are based on gradient dy-
namics and optical flow. This baseline approach has shown
success for action recognition, but is alone not sufficient for
scene classification. To reliably model scenes, we need to
include static appearance in addition to motion patterns. We

(a) 3D Harris (b) 2D Harris

Figure 4. Interest point detections for a movie frame. Note that
3D Harris points (left) focus on motion, whereas 2D Harris points
(right) are distributed over the scene.

therefore view the video as a collection of frames as well.
This allows us to employ the bag-of-features components
developed for static scene and object recognition [28] and
have a hybrid representation in a unified framework. In the
following we describe each component in detail.
3D-Harris detector. Salient motion is detected using a
multi-scale 3D generalization of the Harris operator [11].
Since the operator responds to 3D corners, applying it to
video volumes allows to detect (in space and time) charac-
teristic points of moving salient parts. The left image of
figure 4 shows an example where the detector responds to
actors dancing in the center of the scene.
2D-Harris detector. To describe static content we use
the 2D scale-invariant Harris operator [17]. It responds
to corner-like structures in images and allows us to detect
salient areas in individual frames extracted from the video.
See the right part of Fig. 4 for an example, where the detec-
tor responds to salient areas all around the scene. We detect
static features in a video stream every second.
HoF and HoG descriptors. We compute HoG and HoF
descriptors [12] for the regions obtained with the 3D-Harris
detector. HoF is based on local histograms of optical flow.
It describes the motion in a local region. HoG is a 3D his-
togram of 2D (spatial) gradient orientations. It describes the
static appearance over space and time.
SIFT descriptor. We compute the SIFT descriptor [15]
for the regions obtained with the 2D-Harris detector. SIFT
is a weighted histogram of gradient orientations. Unlike the
HoG descriptor, it is a 2D (spatial) histogram and does not
take into account the temporal domain.

These three different types of descriptors capture motion
patterns (HoF), dynamic appearance (HoG) and static ap-
pearance (SIFT). For each descriptor type we create a visual
vocabulary [25]. These vocabularies are used to represent a
video sample as an orderless distribution of visual words,
typically called bag-of-features [3]. We compare feature
distributions using χ2 distance and fuse different feature
types in the classifier as described in the following.

3.2. χ2 Support Vector Classifier

We use Support Vector Machines [23] (SVM) to learn
actions and scene context. The decision function of a binary
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C-SVM classifier takes the following form:

g(x) =
∑

i

αiyiK(xi,x)− b (1)

where K(xi,x) is the value of a kernel function for the
training sample xi and the test sample x, yi ∈ {+1,−1}
is the class label (positive/negative) of xi, αi is a learned
weight of the training sample xi, and b is a learned thresh-
old. We use the values of the decision function as a confi-
dence score and plot recall-precision curves for evaluation.
We then compute the average precision (AP), which approx-
imates the area under a recall-precision curve [6].

The simplest kernel possible is a linear kernel. The de-
cision function can then be rewritten as a weighted sum of
sample components, i.e.,

K(xi,xj) = xi · xj , g(x) = w · x− b . (2)

To classify feature distributions compared with the χ2

distance, we use the multi-channel Gaussian kernel:

K(xi,xj) = exp
(
−
∑

c

1
Ωc

Dc(xi,xj)
)

(3)

where Dc(xi,xj) is the χ2 distance for channel c, and Ωc

is the average channel distance [28].
To build a multi-class classifier one might combine bi-

nary classifiers using one-against-rest or one-against-one
strategies. Note, however, that in our setup all problems are
binary, i.e., we recognize each concept independently and
concurrent presence of multiple concepts (mainly multiple
actions) is possible. To compare the overall system per-
formance, we compute an average AP (AAP) over a set of
binary classification problems.

3.3. Evaluation of the action and scene classifiers

Figure 5 compares HoG, HoF and SIFT features for ac-
tion and scene recognition on the datasets described in Sec-
tion 2. On the left of Fig. 5 we show classes where SIFT
features give better results than the other feature types. The
majority of these classes are scenes types, both interior and
exterior. It is interesting to observe that there are also the ac-
tions sitting up and getting out of car. This can be explained
by the context information provided by the bedroom setting
and the presence of a car respectively. On the right side of
Fig. 5 we display classes where HoG and HoF features are
more appropriate. They include actions like fighting, sitting
down and standing up. Interestingly, we also observe ac-
tion and scene classes related to driving a car. This could be
due to the characteristic background motion seen through
the vehicle windows while driving.

Overall, the results confirm that both static and dynamic
features are important for recognition of scenes and actions.
Furthermore, the performance of a feature type might be
difficult to predict due to the influence of the context.

To exploit the properties of different feature types, we
combine them. Table 2 compares static SIFT features, the
combination of dynamic HoGs and HoFs, and the combi-
nation of all three feature types. Note that the combination
of HoGs and HoFs corresponds to the state-of-the-art action
recognition method of Laptev et al. [12].

The two leftmost columns of Table 2 quantify and allow
further analysis of previously discussed results (cf. Fig. 5).
The comparison confirms that some action classes are better
recognized with static features, whereas some scene classes
can be well characterized with dynamic features. Yet, static
features are generally better for scene recognition (7/10
classes, in bold) and dynamic features for action recogni-
tion (8/12 classes, in bold). This result also confirms our
hypothesis that the baseline video representation using only
dynamic features is not suitable for scene recognition.

The rightmost column of Table 2 shows the recognition
performance when all three feature types are combined. For
action classes (upper part), combining static SIFT features
with dynamic HoG and HoF features improves accuracy in
8/12 cases (in bold). Yet, the average action classification

SIFT
HoG HoG

SIFT HoF HoF
AnswerPhone 0.105 0.088 0.107
DriveCar 0.313 0.749 0.750
Eat 0.082 0.263 0.286
FightPerson 0.081 0.675 0.571
GetOutCar 0.191 0.090 0.116
HandShake 0.123 0.116 0.141
HugPerson 0.129 0.135 0.138
Kiss 0.348 0.496 0.556
Run 0.458 0.537 0.565
SitDown 0.161 0.316 0.278
SitUp 0.142 0.072 0.078
StandUp 0.262 0.350 0.325
Action average 0.200 0.324 0.326
EXT.House 0.503 0.363 0.491
EXT.Road 0.498 0.372 0.389
INT.Bedroom 0.445 0.362 0.462
INT.Car 0.444 0.759 0.773
INT.Hotel 0.141 0.220 0.250
INT.Kitchen 0.081 0.050 0.070
INT.LivingRoom 0.109 0.128 0.152
INT.Office 0.602 0.453 0.574
INT.Restaurant 0.112 0.103 0.108
INT.Shop 0.257 0.149 0.244
Scene average 0.319 0.296 0.351
Total average 0.259 0.310 0.339

Table 2. Comparison of feature combinations in our bag-of-
features approach. Average precision is given for action and scene
classification in movies. Both actions and scenes benefit from
combining static and dynamic features.
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Figure 5. Comparison of single feature types in our bag-of-features approach. Average precision is given for action and scene classification
in movies. The static SIFT features perform well for most scene types while HoG and HoF features are important for action recognition.

score remains basically the same as for the HoG and HoF
baseline. This is due to the loss in classes like fighting, sit-
ting down and standing up which are strongly motion-based
and where static features might only introduce unnecessary
background noise. For scene classes (lower part), a com-
bination of all feature types improves over SIFT for only
4/10 cases (in bold). Yet, the improvement for scene clas-
sification is significant on average. Combining static and
dynamic features sometimes degrades performance. How-
ever, for classes like car interior, where motion plays a crit-
ical role, it results in a significant gain.

Summary. The results show that a combination of static
and dynamic features is a good choice for a generic video
recognition framework. It allows to recognize actions and
scenes in a uniform setup. Our approach also models im-
plicit context, i.e., events which are not directly related to
the action, such as background motion in car interior.

4. Classification with context
The goal in this section is to improve action classifica-

tion based on scene context obtained with the scene clas-
sifiers. We integrate context by updating the classification
score ga(x), cf. (1), for an action a ∈ A. To the origi-
nal classification score we add a linear combination of the
scores gs(x) for contextual concepts (scenes) s ∈ S:

g′a(x) = ga(x) + τ
∑
s∈S

wasgs(x) (4)

where τ is a global context weight andwas are weights link-
ing concepts a and s.

Given a set A of actions and a set S of contextual cate-
gories for which we have ga and gs decision functions re-
spectively, the parameters of our context model are τ and
was. In this paper we propose two methods for obtaining
the weights was. The first one is based on text mining2 and

2Note that the weights are determined in the training stage and then

the second one learns the weights from visual data. The
τ parameter allows to control the influence of the context.
We have observed that the results are not very sensitive to
this parameter and set it to a value of 3 for all our experi-
ments. Classification is always based on the combination of
all three feature types.

4.1. Mining contextual links from text

The most straightforward way to obtain the weights was

is based on the information contained in the scripts, i.e.,
p(Scene|Action) estimated from scripts of the training set
as described in Section 2.3. As shown in Figure 3, these
weights correspond well to our intuition and the visual in-
formation in videos.

Let us rewrite the context model given by (4) as

g′
a(x) = ga(x) + τ Wgs(x) (5)

where g′
a(x) is the vector of new scores and ga(x) is a

vector with the original scores for all basic (action) classes,
gs(x) is a vector with scores for all context (scene) classes,
and W is a weight matrix.

We determineW from scripts of the training set by defin-
ing it to be a conditional probability matrix encoding the
probability of a scene given an action P (S ∈ S|A ∈ A).

4.2. Learning contextual links from visual data

An alternative approach to determine contextual rela-
tionships between scenes and actions is to learn them from
the visual data. We keep the same model as given by (4),
but rewrite it as

g′a(x) = ga(x) + τ wa · gs(x) (6)

where wa is a vector of weights and gs(x) is a vector
formed with the scores for contextual concepts. We then

kept for the recognition phase, so even with a text-mining approach no
textual data is necessary for the recognition itself, only for training.
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Figure 7. Exploiting scene context in action recognition. AP gain
for SVM-learned and text-mined context is compared. Note the
consistent improvement for most action classes.

replace the linear combination with a linear C-SVM classi-
fier, cf. (2), denoted as za:

g′a(x) = ga(x) + τza(gs(x)) . (7)

This allows us to learn the weights in a supervised man-
ner, i.e., the weights of our context model are determined
by a second-layer SVM classifier. This linear classifier is
trained after the first-layer ga and gs classifiers are trained.
It uses the same training data, but combines action and con-
text classes in one learning task. Thus, from a perspective of
a single action classifier, the information available for learn-
ing is richer. During recognition, the second-layer classifier
takes a vector of scene scores as an input and produces a
contextual prediction for the action class.

4.3. Experimental results

Action recognition. Figure 7 evaluates the gain for action
recognition when using scene context. We show the average
precision gains for context weights learned from text (red)
and with a linear SVM (yellow). We obtain a gain of up to
10%, which is a remarkable improvement in difficult real-
istic setting. The largest gain is observed for action classes
like sitting up or driving a car, which have a strong local-
ized context of bedroom and car respectively, cf. Fig. 3. The
more uniform scene context of fighting is easily exploited
with text mining, but confuses the SVM classifier.

Context AAP
text context 0.355
vision context 0.336
no context 0.325
context only 0.238
chance 0.125

Context AAP
text context 0.373
vision context 0.371
no context 0.351
context only 0.277
chance 0.162

(a) Actions (b) Scenes

Table 3. Average AP obtained using various context sources and
not using context. We also compare to a model where context only
is used and to chance level.

Figure 7 also shows that our method does not help much
for action classes like standing up, which have low depen-
dence on the scene type. Furthermore, the context mined
from text leads to some confusion when trying to recognize
getting out of a car. This might be due to special shoot-
ing conditions for this action class, which are typical for
movies. Still, for most (75%) classes we observe a consis-
tent and significant improvement of at least 2.5%, obtained
with the context mined from scripts. This shows the diffi-
culty of learning contextual relations using a limited amount
of visual data, but at the same time highlights the ability of
our method to overcome this problem by mining text.

Table 3 (left) compares average AP achieved with differ-
ent context sources when classifying actions using scenes
as context. It confirms that context weights improve the
overall performance. The gain is at 3% for weights mined
from text and at 2% for learned weights. Interestingly, us-
ing context only, i.e., classifying actions with only contex-
tual scene classifiers, is still significantly better than chance.
This shows the potential of context in natural videos.

Overall, the experiments confirm that our context model
can exploit contextual relationships between scenes and ac-
tions. It integrates well with bag-of-features and SVM
based classifiers and helps action recognition. See Fig. 6 for
sample classification results where the scene context helped
action recognition the most.

Scene recognition. We have observed that action classifi-
cation can be improved by using contextual scene informa-
tion. We will now investigate if the inverse also holds, i.e.,
whether we can improve scene classification by recogniz-
ing actions. Figure 8 evaluates the gain for scene recogni-

(a) DriveCar (b) FightPerson (c) HandShake (d) SitUp

Figure 6. Sample frames for action video clips where the context significantly helps recognition. Please note the car interior for driving,
the outdoor setting for fighting, the house exterior for handshaking, and finally the bedroom for sitting up.
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Figure 8. Exploiting action context in scene recognition. AP gain
for SVM-learned and text-mined context is compared. Note the
significant improvement for the leftmost categories.

tion when using action context. We show the average pre-
cision gains for context mined from textual data (red) and
learned with a linear SVM (yellow). As for action recogni-
tion, cf. Fig. 7, an AP gain of up to 11% is observed. Again,
an improvement of at least 2.5% is obtained for most of the
classes. Concurrent analysis with Fig. 3 explains the diffi-
culties of learning the context for shop interior. This scene
type does not occur too often for any of the action classes.
Table 3 (right) confirms these results, and for both types of
context sources shows an improvement of 2% on average.

5. Conclusions
This paper shows that we can use automatically extracted

context information based on video scripts and improve ac-
tion recognition. Given completely automatic action and
scene training sets we can learn individual classifiers which
integrate static and dynamic information. Experimental re-
sults show that both types of information are important for
actions and scenes and that in some cases the context in-
formation dominates. For example car interior is better de-
scribed by motion features. The use of context information
can be made explicit by modeling the relations between ac-
tions and scenes based on textual co-occurrence and by then
combining the individual classifiers. This improves the re-
sults for action as well as scene classification. In this paper
we have also created a new dataset which includes actions,
scenes as well as their co-occurrence in real-world videos.
Furthermore, we have demonstrated the usefulness of tex-
tual information contained in scripts for visual learning.
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