
Learning Trajectory Patterns by Clustering:

Experimental Studies and Comparative Evaluation

Brendan Morris and Mohan Trivedi

Computer Vision and Robotics Research Laboratory

University of California, San Diego

La Jolla, California 92093-0434

{b1morris, mtrivedi}@ucsd.edu

Abstract

Recently a large amount of research has been devoted to

automatic activity analysis. Typically, activities have been

defined by their motion characteristics and represented by

trajectories. These trajectories are collected and clustered

to determine typical behaviors. This paper evaluates dif-

ferent similarity measures and clustering methodologies to

catalog their strengths and weaknesses when utilized for the

trajectory learning problem. The clustering performance is

measured by evaluating the correct clustering rate on dif-

ferent datasets with varying characteristics.

1. Introduction

A major research area in computer vision is the study

of activities and behavior. Recently there has been high

interest in automatic activity and behavior understanding.

Using unsupervised methods, researchers try to observe a

scene, learn prototypical activities, and use the prototypes

for analysis. This paradigm has been of particular interest

for surveillance [1, 2] and traffic monitoring [3–5] where

methods to categorize observed behavior, detect abnormal

actions for quick response, and even predict future occur-

rences is desired. Because of the large number of cameras

in use for these applications there is a constant stream of

large amounts of data making it difficult to manually an-

alyze each individually which necessitates the use of un-

supervised methods. In these cases, activity is character-

ized by motion and can be succinctly represented with a

trajectory. It is possible to collect trajectories over suffi-

cient time and learn typical behaviors through clustering.

Unfortunately, even with much work in the area it is un-

clear what are the best methods for clustering. There are a

wide number of similarity functions for trajectories and re-

searchers continue their design as well as little agreement

of how clustering should be performed. A recent survey by

Table 1. Trajectory Distance Measures

Technique Publication

HU Hu 2007 [7]

PCA Bashir 2007 [8]

DTW Keogh 2000 [9]

LCSS Buzan 2004 [10]

PF Piciarelli 2006 [3]

MODH Atev 2006 [4]

Table 2. Clustering Techniques

Technique Publication

Direct Morris 2008 [11]

Divisive (rb,rbr) Billotti 2005 [12]

Agglomerative Buzan 2004 [10]

Hybrid (cham) Karypris 1999 [13]

Graph Li 2006 [14]

Spectral Hu 2007 [7]

Morris and Trivedi [6] presented the wide variety of pro-

cedures for trajectory learning and modeling. This paper

examines a number of popular trajectory clustering proce-

dures to find their strengths and weakness with the intention

of determining which might be the best for trajectory learn-

ing. The evaluation has three separate components which

include comparison of trajectory distance measures (Table

1), comparison of different clustering methods (Table 2),

and analysis on a variety of dataset with varying character-

istics (Table 3).

2. Distance Measures

Previous work by Zhang et al. [15] compared the use of

a few popular distance measures at the time, the Hausdorff

distance, a HMM-based distance, Euclidean distance, Eu-

clidean distance in a PCA subspace, dynamic time warping

(DTW), and longest common subsequence (LCSS). We ex-

pand the comparison by including new similarity measures

1

312978-1-4244-3991-1/09/$25.00 ©2009 IEEE

LCSS(Fi, Fj) =

0 Ti = 0 | Tj = 0

1 + LCSS(FTi−1
i , F

Tj−1
j) dE(fi,Ti

, fj,Tj
) < ǫ & |Ti − Tj | < δ

max (LCSS(FTi−1
i , F

Tj

j), LCSS(FT
i , F

Tj−1
j)) otherwise

(1)

that have been designed specifically for trajectories while

ignoring both Hausdorff and HMM which were shown to

have poor performance. Table 1 lists the distance mea-

sures adopted in recent literature which are assessed in this

work. The examination includes fixed length measures,

Hu Euclidean and PCA, as well as time-normalized dis-

tances, DTW, LCSS, Piciarelli and Foresti (PF), and modi-

fied Hausdorff (MODH).

2.1. Notation

A trajectory

F = {f1, . . . , ft, . . . , fT } (2)

is a collection of flow vectors ft representing the spatio-

temporal characteristics of moving objects at each time t of

the total track life T . A flow vector generally indicates lo-

cation and dynamics, ft = [x, y, ẋ, ẏ, ẍ, ÿ], but in this work

we restrict ourselves to just spatial location, f = [x, y]. This

is a common practice as it results in a natural interpretation

of spatial proximity given the Euclidean the distance be-

tween flow points

dE(ft, fτ) =
√

(xt − xτ)2 + (yt − yτ)2. (3)

Some of the following distance measures must use fixed

length data and can not be used on raw trajectory data be-

cause they typically have varying length. Instead, a resam-

pled version of a track is used and the trajectory notation is

overloaded

F = {f1, . . . , fk, . . . , fL}. (4)

A resampled trajectory is referenced by an index k rather

than time t and has a fixed length L. The resampling im-

plementation used in this paper interpolates points to have

equal distance between flow vectors [16].

2.2. HU

The HU distance is computed as the average Euclidean

distance between points on two trajectories [7].

DHU (Fi, Fj) =
1

L

L
∑

k=1

dE(fi,k, fj,k), (5)

This distance function relies on similar trajectories having

the same point distribution with consecutive points in cor-

responding tracks in spatial proximity.

2.3. PCA

Instead of working in the trajectory coordinate space,

PCA is used to transform the trajectories into a lower di-

mensionality subspace. The x and y coordinates of a tra-

jectory are concatenated into a one dimensional vector and

projected onto the subspace by PCA decomposition The

PCA distance is computed as the Euclidean distance be-

tween PCA coefficients, al,

DPCA(Fi, Fj) =
1

Nλ

Nλ
∑

l=1

dE(ai,l, aj,l). (6)

Only Nλ << 2L coefficients are retained to limit the size

of the space. Nλ is chosen by examining eigenvalues λk to

retain 95% of the dataset variation [8]. The PCA distance

is similar to Hu but works in a lower dimensional space for

reduced computation and robustness through the PCA shape

decomposition. Note trajectories must be of equal length for

PCA decomposition.

2.4. DTW

The above distance measures require fixed length trajec-

tories which do not normally occur because observation du-

ration is variable. DTW is used to compare unequal length

signals by finding a time warping that minimizes the total

distance between matching points [17].

DDTW (Fi, Fj) =
(dDTW (Fi, Fj) + dDTW (Fi, Fj))

2

dDTW (Fi, Fj) =
1

Ti

Ti
∑

t=1

dE(φi,t, φj,t) mt/Mφ (7)

where φi and φj are the time warping functions that min-

imize the distance between aligned points, mt is a path

weighting coefficient, and Mφ is a path normalization fac-

tor. The warping path φ is efficiently found using dynamic

programming.

2.5. LCSS

LCSS is another alignment tool for unequal length data

but is more robust to noise and outliers than DTW because

not all points need to be matched. Instead of a one-to-one

mapping between points, a point with no good match can

be ignored to prevent unfair biasing. The LCSS distance

suggested by [18] is defined as

DLCSS(Fi, Fj) = 1 −
LCSS(Fi, Fj)

min(Ti, Tj)
, (8)

313

where the LCSS(Fi, Fj) value (1) specifies the num-

ber of matching points between two trajectories. F t =
{f1, . . . , ft} denotes all the flow vectors in trajectory F up

to time t. The LCSS, like DTW, can also be efficiently com-

puted using dynamic programming.

2.6. PF

In a similar spirit to DTW and LCSS, Piciarelli and

Foresti [3] defined another distance measure to deal with

time drift. They observed that matching tracks would gen-

erally agree early (consistent starting points) but over time

matched points had a tendency to drift further away because

of speed differences. Accordingly, their trajectory distance

measure finds matching points within a time window that

grows larger at each time

DPF (Fi, Fj) =
1

Ti

Ti
∑

t=1

dPF (fi,t, Fj) (9)

where

dPF (fi,t, Fj) = min
τ

(

dE(fi,t, fj,τ)

Zτ

)

, (10)

τ ∈ {⌊(1 − δ)t⌋ . . . ⌈(1 + δ)t⌉}.

Zτ is a normalization constant that measures the variance

of point τ . The definition is noteworthy because it al-

lows comparison with incomplete trajectories (developing

tracks) making it well suited for online clustering unlike

DTW or LCSS.

In this work, Zτ = 1 in order to compare two trajectories

rather than a trajectory and a cluster as originally designed.

The temporal window is also slightly modified to grow log-

arithmically with trajectory length τ ∈ {⌊t−δ log t⌋ . . . ⌈t+
δ log t⌉} to prevent very large windows for long trajectories.

2.7. Modified Hausdorff

The Hausdorff distance has been commonly used to

compare two unequal size sets but is not well suited for

trajectories because it does not account for ordering [15].

The modified Hausdorff distance DMODH(Fi, Fj) [4] was

designed to respect the time-ordering of points and reduce

sensitivity to outliers by allowing slack when matching.

DMODH(Fi, Fj) =
α

ord
fi,t∈Fi

h(fi,t, Fj)

h(fi,k, Fj) = min
fj,τ∈N (C(fi,t))

dE(fi,k, fj,τ) (11)

where N () is a neighborhood window, C(fi,t) is the

point in Fj that correspond to point fi,t in Fi, and

ord α
fi,t∈Fi

h(fi,t, Fj) denotes the value of h(fi,t, Fj) that

is larger than α percent of all other h values over Fi. The

distance between trajectories is thus a prototypical distance

chosen from among the best matching points. The trajec-

tory alignment is controlled by the correspondence func-

tion C(.) which assumes that corresponding points occur

at the same fraction of total track length. This convention

accounts for speed variation within similar spatial patterns.

3. Clustering Algorithms

Besides examining the effects of different trajectory dis-

tance measure, the quality of clusters returned by different

types of clustering methods is explored to determine if cer-

tain techniques are better suited for trajectories. The classes

of clustering algorithms we consider are direct methods,

hierarchical agglomerative and divisive procedures, hybrid

divisive-agglomerative techniques, graph cuts, as well as

spectral methods. A summary of recent research utilizing

these different clustering techniques is shown in Table 2.

For ease of clustering, a similarity matrix S = {sij},

which represents a fully connected graph, is constructed

from the trajectory distances using a Gaussian kernel func-

tion

sij = e−D2(Fi,Fj)/2σ2

∈ [0, 1]. (12)

where D represents one of the distance measure defined

previously and the parameter σ describes the trajectory

neighborhood. Large values of σ cause further apart trajec-

tories to have a higher similarity score while small values

lead to a more sparse similarity matrix (more entries will

be very small). The S matrix along with the desired num-

ber of clusters are used as input into the differing clustering

algorithms which are discussed below.

3.1. Direct

The direct clustering methods find the K clusters simul-

taneously. A initial guess of clusters is iteratively optimized

by adjusting each cluster component in unison to find a

globally satisfying solution

Popular direct optimization solvers in the Euclidean

space are k-means and the soft assignment version fuzzy

c means (FCM). These are used as the baseline clustering

techniques for comparison.

3.2. Agglomerative

Agglomerative clustering is a bottom-up strategy that

initially treats each trajectory as an individual cluster and

merges similar clusters hierarchically in a tree-like struc-

ture, stopping when only K clusters remain. At each merge

step, a hard decision on cluster membership is made limit-

ing the algorithms ability to adjust at a higher tree level.

3.3. Divisive

Divisive clustering is the top-down dual to agglomerative

clustering where the entire trajectory training set is consid-

314

0 10 20 30 40 50 60 70
10

20

30

40

50

60

70

80

90

100

110

cluster 1

cluster 2

cluster 3

cluster 4

cluster 5

cluster 6

cluster 7

cluster 8

(a)

cluster 1

cluster 2

cluster 3

cluster 4

cluster 5

cluster 6

cluster 7

cluster 8

(b)

cluster 1

cluster 2

cluster 3

cluster 4

cluster 5

cluster 6

cluster 7

cluster 8

cluster 9

cluster 10

cluster 11

cluster 12

cluster 13

cluster 14

cluster 15

cluster 16

cluster 17

cluster 18

cluster 19

(c)

cluster 1

cluster 2

cluster 3

cluster 4

cluster 5

cluster 6

cluster 7

cluster 8

cluster 9

cluster 10

cluster 11

cluster 12

cluster 13

cluster 14

cluster 15

(d)

Figure 1. Different Datasets (a) I5SIM (b) I5 (c) CROSS (d) LABOMNI

Table 3. Experimental Dataset Characterization

N K σV σT ξ ∆c/∆ ∆c/∆m

i5sim 800 8 0.19 1.29 0.99 0.07 0.27

i5sim2 1600 8 0.81 18.78 0.95 0.08 0.31

i5sim3 1600 16 0.81 18.78 0.95 0.08 1.39

i5 806 8 2.38 4.10 1.00 0.16 1.30

cross 1900 19 5.07 4.27 0.85 0.07 0.97

labomni 209 15 0.31 142.26 0.71 0.22 1.44

ered a single cluster. The K clusters are obtained by per-

forming K − 1 repeated bisections where each bisecting

cluster split results an optimal 2-way division of the simi-

larity matrix. In addition to ensuring local optimality at the

bisections, a global optimization step can be used to opti-

mize the solution across all bisections.

3.4. Hybrid

Hybrid clustering solutions combine both divisive and

agglomerative techniques. By using different criterion func-

tions during the partitioning and agglomeration phases,

more complex (non-globular) clusters can be discovered.

The dataset is first clustered into M > K clusters using

one of the partition methods and the final K clusters are

obtained by merging some of the M clusters.

3.5. Graph

Similar to the divisive clustering method, graph methods

seek to divide the full dataset into individual clusters [19].

Instead of operating directly on the similarity matrix, a near-

est neighbor graph is constructed where a trajectory is a ver-

tex. Each vertex is connected by a weighted edge to its

most similar trajectories. The K clusters are found using a

min-cut partitioning algorithm which finds a division of the

graph with minimal loss of edge weights.

3.6. Spectral

Spectral clustering has become popular recently be-

cause it can be efficiently computed and improved perfor-

mance over more traditional clustering algorithms such as

k-means. Spectral methods do not make any assumptions

on the distribution of data points and instead relies on eigen

decomposition of the similarity matrix which approximates

an optimal graph partition [20]. We compare compare 4

flavors of spectral algorithms by selecting to decompose ei-

ther the Laplacian of Shi and Malik [19] or Ng et al. [20]

followed by a final clustering of eigenvectors with either k-

means or FCM.

4. Datasets

Experiments are conducted using six datasets with vary-

ing properties. They include several simulated scenes as

well as surveillance scenes where trajectories are extracted

using a background based object tracker. Figure 1 illus-

trates each scene with true clusters and Table 3 summarizes

the datasets. Each set is characterized by the number of tra-

jectories N , the number of cluster labels K, speed deviation

σV , length deviation σT , shape complexity ξ [15],

ξ =
dE(fT , f1)

∑

i dE(fi+1, fi)
(13)

and separability ∆c/∆ and ∆c/∆m. The average separa-

bility is

∆ =
1

NK

N
∑

n=1

K
∑

c=1

dnc (14)

and the cluster tightness ∆c and minimum cluster separa-

bility ∆m are defined as

∆c =
1

N

N
∑

n=1
gn=c

dnc (15)

∆m = min
n

[

min
c

dnc

]

, c 6= gn (16)

315

Table 4. Best CCR Performance (Average over 5 runs)

kmeans fcm hu pca dtw lcss pf modh

i5sim 0.8162 0.8900 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
i5sim2 0.7250 0.8154 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
i5sim3 0.4901 0.4984 0.5735 0.5574 0.9994 1.0000 0.9944 0.7725

i5 0.6397 0.8000 0.9107 0.7655 0.9722 0.9975 0.9613 0.9975
cross 0.6937 0.7163 0.9963 0.9947 0.9958 0.9869 0.9947 0.9916

labomni 0.7952 0.7923 0.8900 0.9091 0.8383 0.9091 0.8325 0.8325

where gn is the ground truth label for track n and

dnc =
1

Nc

∑

gj=gc

dE(Fn, Fj) (17)

with Nc the number of trajectories with label gc.

4.1. I5SIM

The I5SIM datasets simulate trajectories obtained on a 4

lane highway with traffic in both directions (8 total lanes).

The trajectory points are in real world coordinates. The first

set contains only free flow traffic with a Gaussian speed dis-

tribution of 70 mph with a 5 mph standard deviation. The

second and third sets contain the free flow traffic as well

as trajectories during congestion (25 mph). These were

designed to compare performance of different clustering

goals. The trajectories in the I5SIM2 dataset are labeled

by lane number (just spatial coordinates). Those in I5SIM3

were labeled by lane and flow type, differentiating trajecto-

ries in the same lane but traveling at different speeds, result-

ing in 16 labels (8 lanes at free flow and 8 during conges-

tion).

4.2. I5

The I5 dataset contains trajectories obtained by visual

tracking of vehicles from a highway mounted camera over-

looking a busy interstate. The track labels correspond to one

of 8 lane numbers as in the I5SIM sets. The raw tracker out-

put was automatically filtered to remove clearly erroneous

trajectories which occur because of occlusions.

4.3. CROSS

The CROSS dataset depicts a four way traffic intersec-

tion. These provide more complex trajectory shapes than in

the highway datasets. The 19 acceptable intersection ma-

neuvers include turns and even a u-turn.

4.4. LABOMNI

The final dataset examines humans rather than vehicles.

An omni-directional camera was placed in the middle of a

lab to observe trajectories from a less constrained environ-

ment than encountered by vehicle traffic. The participants

were not aware of the data collection to ensure naturally oc-

curring motion patterns. The trajectories have a long time

duration and tend to have a large degree of overlap in the

image plane.

5. Experimental Evaluation

The experimental results are presented in the following

section. The best classification results are displayed in Ta-

ble 4. These results are the average performance over 5 runs

for each dataset and similarity type using 48 different clus-

tering method variations. The average results versus cluster

method, distance measure, and dataset are presented in Fig.

3.

5.1. Evaluation Criteria

Since the labels returned by a clustering run was arbi-

trary, the accuracy of a clustering was evaluated by find-

ing the one-to-one mapping between the ground truth and

clustering labels which maximized the number of matches.

The assignment problem can be solved using the Hungarian

algorithm [21] when recast to minimize the number of mis-

matched labels. Given the label mapping, the cluster quality

is measured by the correct clustering rate (CCR) [15]

CCR =
1

N

K
∑

c=1

pc (18)

where N is the total number of trajectories and pc denotes

the total number of trajectories matched to the c-th cluster.

5.2. Procedure

The CLUTO [22] software package is used for agglom-

erative, divisive, hybrid (CHAMELEON [13]), and graph

based clustering. The software provides a number of op-

tions and optimization criteria for each cluster method

which results in a total of 44 different cluster variants. An

additional 4 spectral cluster variants were implemented in

Matlab for a total of 48 cluster variants applied for each

similarity measure to each dataset. Every clustering combi-

nation was run 5 times with random initialization to better

represent expected performance.

316

0.1 0.2 0.5 1 2 5 10 20 50
0

0.2

0.4

0.6

0.8

1

σ value

(a)

0.1 0.2 0.5 1 2 5 10 20 50 100 200 500
0

0.2

0.4

0.6

0.8

1

σ value

(b)

Figure 2. Clustering quality for different σ values for (a) HU and (b) DTW averaged across all datasets. As σ increases the performance

improves resulting in higher CCR and lower variance.

The experimental evaluation consisted of three main

parts. The effect of the neighborhood parameter σ was in-

vestigated, a sweep was done through all distance measure

parameters to ensure near optimal values, and finally the

clustering evaluation was performed by varying the distance

measure, cluster method, and dataset.

5.3. Gaussian Kernel Evaluation

The effect of trajectory neighborhood on clustering was

examined by varying the parameter σ in (12). Fig. 2 shows

improved performance as σ increases. The average CCR

not only increases but the variance decreases. Although the

quality appears to saturate at a particular σ choice, larger

values than this cause little performance degradation. An

average similarity 1
N2

∑

i

∑

j sij = 0.1 was used to pro-

duce good results.

5.4. Clustering Method Evaluation

The plot in Fig. 3(a) shows that on average the choice

of clustering method has little effect on the quality of the

results. It is noteworthy to mention that the soft member-

ship of FCM improves performance 6% over k-means mak-

ing it a clear winner between the baseline approaches. All

cluster methods perform significantly better than the base-

line except for the direct method which is the same cate-

gory both k-mean and FCM fall into. Although the graph

results were only 5% lower, graph based clustering was sig-

nificantly more difficult as results were very sensitive to the

graph neighborhood definition.

5.5. Distance Measure Evaluation

The average CCR results as a function of distance mea-

sure is shown in Fig. 3(b). This shows the effort in de-

signing measures that allow the use of raw variable length

trajectories is not wasted since the sampled measures, HU

and PCA, perform almost 10% worse. Unfortunately, the

newer trajectory specific distances, PF and MODH, have

comparable performance with DTW and LCSS.

Further insight can be found by examining the columns

of Table 4. The performance of HU, PCA, and MODH all

degrade for the I5SIM3 dataset where there are different

speeds in the same lane. The speed information is thrown

out during resampling when using HU and PCA and it is

also ignored by the modified Hausdorff distance because the

corresponding points are mapped based on total trajectory

length. While LCSS performs uniformly well, it is surpris-

ing that both DTW and PF which do not have outlier ro-

bustness exhibit corresponding performance. The need for

outlier suppression is lessened for trajectory data because of

the smoothing inherent in the tracker (e.g. Kalman or par-

ticle filter). Unless the tracker makes a gross mistake it is

unlikely for a trajectory to contain outlier points that would

greatly influence warping match distance.

5.6. Dataset Evaluation

The preceding sections implied little difference in effec-

tiveness when using different clustering methods or differ-

ent time aligned distances but inspection of Fig. 3(c) clearly

differentiates performance between datasets. The CCR re-

sults are quite high for the more simple I5SIM, I5SIM2, and

CROSS datasets. With ∆c/∆m < 1, these sets have tight

clusters well separated from one another.

The bar graph in Fig 4 indicates a performance distri-

bution across distance functions for each dataset which is

lost in the averaged plot. Fig. 5 shows a detailed view of

I5SIM2 and I5SIM3. These sets had 8 highway lanes with

trajectories collected from 2 different speed profiles, free

flow and congestion, but only I5SIM3 required differenti-

ation based on speed as well as lane number. All distance

methods performed very well in the I5SIM2 set, Fig. 5(a),

except LCSS which actually did worse than FCM. There

317

rb rbr direct graph agglo cham spec
0

0.2

0.4

0.6

0.8

1

kmeans

fcm

(a)

hu pca dtw lcss pf modh
0

0.2

0.4

0.6

0.8

1

kmeans

fcm

(b)

i5sim i5sim2 i5sim3 i5 cross labomni
0

0.2

0.4

0.6

0.8

1

kmeans

fcm

(c)

Figure 3. Average CCR performance plotted against experimen-

tal variables. (a) Clustering algorithm (b) Distance measure (c)

Dataset

was a large variation in performance given the clustering

method and though perfect clustering was possible (see Ta-

ble 4) the direct and divisive solutions lowered the aver-

age performance. Fig. 5(b) shows the dramatic improve-

ments possible with the right distance choice. The DTW,

LCSS, and PF distances were able to resolve both position

and speed differences with a high degree of accuracy.

Viewing Table 4 we see the LABOMNI dataset perfor-

i5sim i5sim2 i5sim3 i5 cross labomni
0

0.2

0.4

0.6

0.8

1

hu pca dtw lcss pf modh

Figure 4. Average performance for the different similarity mea-

sures for each dataset.

hu pca dtw lcss pf modh
0

0.2

0.4

0.6

0.8

1

kmeans

fcm

(a)

hu pca dtw lcss pf modh
0

0.2

0.4

0.6

0.8

1

kmeans

fcm

(b)

Figure 5. (a) Average CCR for I5SIM2. The direct and divisive

methods perform poorly for LCSS. (b) Average CCR for I5SIM3.

The time alignment measures {DTW, LCSS, PF} perform signifi-

cantly better.

mance was similar across all the distance types, even the

baseline k-means and FCM. HU and PCA which reduce di-

mensionality and focus on shape performed better than all

the time alignment techniques, except LCSS, because the

long length of trajectories which allow ample opportunity

for misalignment..

318

Another interesting result from Table 4 is the significant

CCR loss for PCA in the I5 dataset. ξ = 1 and high ∆c/∆m

score indicates straight overlapping lanes due to camera per-

spective which causes the northbound lanes furthest from

the camera to appear very close in the image plane. Unlike

the LABOMNI set which has a lower ξ value, trajectories

cannot be distinguished well by intermediate points and the

PCA decomposition filters out the fine differences.

6. Concluding Remarks

This work evaluated the performance of a number of

clustering procedures for the trajectory clustering task. The

evaluation consisted of a comparison of 6 trajectory dis-

tance measures, 7 clustering methods, and 6 varied datasets.

Without prior knowledge, the choice of clustering method

and distance measure was not important as long as it op-

erated on full unsampled tracks, though LCSS was consis-

tently a top performer. Performance was actually dictated

by the trajectory properties encountered in a dataset. When

trajectories were very long the data reduction techniques

worked well by focusing on coarse shape and position and

when dynamics were considered an important separating

factor the time-normalized distances dominated.

Acknowledgments

We acknowledge the sponsorship of UC Digital Me-

dia Program for the experimental infrastructure and thank

Mr. Minh Van Pham Ly of UC Berkeley who assisted as a

UCLEADS program intern.

References

[1] C. Stauffer and W. E. L. Grimson, “Learning patterns of ac-

tivity using real-time tracking,” IEEE Trans. Pattern Anal.

Mach. Intell., vol. 22, no. 8, pp. 747–757, Aug. 2000.

[2] D. Makris and T. Ellis, “Learning semantic scene models

from observing activity in visual surveillance,” IEEE Trans.

Syst., Man, Cybern. B, vol. 35, no. 3, pp. 397–408, Jun. 2005.

[3] C. Piciarelli and G. L. Foresti, “On-line trajectory clustering

for anomalous events detection,” Pattern Recognition Let-

ters, vol. 27, no. 15, pp. 1835–1842, Nov. 2006.

[4] S. Atev, O. Masoud, and N. Papanikolopoulos, “Learning

traffic patterns at intersections by spectral clustering of mo-

tion trajectories,” in IEEE Conf. Intell. Robots and Systems,

Bejing, China, Oct. 2006, pp. 4851–4856.

[5] B. T. Morris and M. M. Trivedi, “Learning, modeling, and

classification of vehicle track patterns from live video,” IEEE

Trans. Intell. Transp. Syst., vol. 9, no. 3, pp. 425–437, Sep.

2008.

[6] ——, “A survey of vision-based trajectory learning and anal-

ysis for surveillance,” IEEE Trans. Circuits Syst. Video Tech-

nol., vol. 18, no. 8, pp. 1114–1127, Aug. 2008.

[7] W. Hu, D. Xie, Z. Fu, W. Zeng, and S. Maybank, “Semantic-

based surveillance video retrieval,” IEEE Trans. Image Pro-

cess., vol. 16, no. 4, pp. 1168–1181, Apr. 2007.

[8] F. I. Bashir, A. A. Khokhar, and D. Schonfeld, “Object

trajectory-based activity classification and recognition us-

ing hidden markov models,” IEEE Trans. Image Process.,

vol. 16, no. 7, pp. 1912–1919, Jul. 2007.

[9] E. Keogh and M. Pazzani, “Scaling up dynamic time warp-

ing for datamining applications,” in Intl. Conf. on Knowledge

Discovery and Data Mining, sep 2000, pp. 285–289.

[10] D. Buzan, S. Sclaroff, and G. Kollios, “Extraction and clus-

tering of motion trajectories in video,” in Proc. IEEE Inter.

Conf. on Pattern Recog., Aug. 2004, pp. 521–524.

[11] B. Morris and M. Trivedi, “An adaptive scene description for

activity analysis in surveillance video,” in Proc. IEEE Inter.

Conf. on Pattern Recog., Tampa, Florida, Dec. 2008.

[12] D. Biliotti, G. Anotonini, and J. P. Thiran, “Multi-layer hi-

erarchical clustering of pedestrian trajectories for automatic

counting of people in video sequences,” in IEEE Workshop

on Application of Computer Vision., Brekenridge, CO,, Jan.

2005, pp. 50–57.

[13] G. Karypis, E.-H. Han, and V. Kumar, “Chameleon: A hi-

erarchical clustering algorithm using dynamic modeling,”

IEEE Computer, vol. 22, no. 8, pp. 68–75, Aug. 1999.

[14] X. Li, W. Hu, and W. Hu, “A coarse-to-fine strategy for vehi-

cle motion trajectory clustering,” in Proc. IEEE Inter. Conf.

on Pattern Recog., 2006, pp. 591–594.

[15] Z. Zhang, K. Huang, and T. Tan, “Comparison of similar-

ity measures for trajectory clustering in outdoor surveillance

scenes,” in Proc. IEEE Inter. Conf. on Pattern Recog., 2006,

pp. 1135–1138.

[16] B. Morris and M. Trivedi, “Learning and classification of

trajectories in dynamic scenes: A general framework for live

video analysis,” in Proc. IEEE International Conference on

Advanced Video and Signal based Surveillance, Santa Fe,

New Mexico, Sep. 2008.

[17] L. Rabiner and B. Juang, Fundamentals of Speech Recogni-

tion. Englewood Cliffs, New Jersey: Prentice-Hall, 1993.

[18] M. Vlachos, G. Kollios, and D. Gunopulos, “Discovering

similar multidimensional trajectories,” in Proc. IEEE Conf.

on Data Engineering, Feb. 2002, pp. 673–684.

[19] J. Shi and J. Malik, “Normalized cuts and image segmenta-

tion,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8,

pp. 888–905, Aug. 2000.

[20] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering:

Analysis and an algorithm,” in Advances in Neural Informa-

tion Processing Systems, vol. 14, sep 2002, pp. 849–856.

[21] H. W. Kuhn, “The Hungarian method for the assignment

problem,” Naval Research Logistic Quarterly, vol. 2, pp. 83–

97, 1955.

[22] (2008) CLUTO 2.1.1 - software for cluster-

ing high-dimensional datasets. [Online]. Available:

http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview

319

