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Abstract

Graph matching is an important problem in computer
vision. It is used in 2D and 3D object matching and recog-
nition. Despite its importance, there is little literature on
learning the parameters that control the graph matching
problem, even though learning is important for improving
the matching rate, as shown by this and other work. In this
paper we show for the first time how to perform param-
eter learning in an unsupervised fashion, that is when no
correct correspondences between graphs are given during
training. We show empirically that unsupervised learning
is comparable in efficiency and quality with the supervised
one, while avoiding the tedious manual labeling of ground
truth correspondences. We also verify experimentally that
this learning method can improve the performance of sev-
eral state-of-the art graph matching algorithms.

1. Introduction
Graph matching is an important problem in computer vi-

sion. It is becoming widely used especially in 2D shape and
object matching and recognition [3], [10], [14], [17], match-
ing articulated 3D objects [7], and unsupervised modeling
of object categories [13], [9]. While there are many papers
on solving it efficiently [3], [10], [6], [8], [15], [16], [18]
there are only two papers published previously, to the best
of our knowledge, that propose a solution for learning the
optimal set of parameters for graph matching, in the con-
text of computer vision applications [4], [11]. However, as
shown by [4], [11] and also by us in this paper, learning the
parameters is important for improving the matching perfor-
mance.

We show for the first time how to efficiently perform
unsupervised learning for graph matching in the context
of object matching/recognition. Unsupervised learning for
matching is important in practice, since manual labeling of
correspondences can be quite time consuming. The same
basic algorithm can be used in the supervised case with min-
imal modification, if the ground truth matches are available.
We also show empirically that our learning algorithm is ro-

bust to the presence of outliers. This method is inspired
from the properties of spectral matching [10], but it can im-
prove the performance of other state-of-the-art matching al-
gorithms as shown in our experiments.

Learning for Graph Matching The graph matching
problem consists of finding the indicator vector x∗ that
maximizes a quadratic score function:

x∗ = argmax(xTMx). (1)

Here x is an indicator vector such that xia = 1 if feature
i from one image (or object model) is matched to feature a
from the other image (or object model) and zero otherwise.
Usually, one-to-one constraints are imposed on x such that
one feature from one image can be matched to at most one
other feature from the other image. In spectral matching
M is a matrix with positive elements containing the pair-
wise score functions, such that Mia;jb measures how well
the pair of features (i, j) from one image agrees in terms of
geometry and appearance (e.g. difference in local appear-
ance descriptors, pairwise distances, angles, etc) with a pair
of candidate matches (a, b) from the other. The local ap-
pearance terms of candidate correspondences can be stored
on the diagonal of M; in practice we noticed that including
them in the pairwise scores Mia;jb, and leaving zeros on the
diagonal gives better results; Mia;jb is basically a function
that is defined by a certain parameter vector w. Then, learn-
ing for graph matching consists of finding w that maximizes
the performance (w.r.t to the ground truth correspondences)
of matching (as defined by Equation 1) over pairs of training
images.

Our matching algorithm [10] interprets each element of
the principal eigenvector v of M as the confidence that the
corresponding assignment is correct. It starts by choosing
the element of maximum confidence as correct, then it re-
moves (zeroes out in v) all the assignments in conflict (w.r.t
the one-to-one mapping constraints) with the assignment
chosen as correct, then it repeats this procedure until all as-
signments are labeled either correct or incorrect.
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Figure 1. Pairwise scores (elements of the matching matrix M)
between correct assignments have a higher expected value p1 than
elements with at least one wrong assignment, with expected value
p0. This will be reflected in the eigenvector v that will have higher
expected value v1 for correct assignments than v0 for wrong ones.

2. Theoretical Analysis
Our proposed algorithm is motivated by the statistical

properties of the matrix M and of its leading eigenvector v
that is used to find a binary solution to the matching prob-
lem. In order to analyze the properties of M theoretically,
we need a few assumptions and approximations, which we
validate experimentally. Each instance of the matching
problem is unique so nothing can be said with absolute cer-
tainty about M and its eigenvector v, nor the quality of the
solution returned. Therefore, we must be concerned with
the average (or expected) properties of M rather than the
infinitely many particular cases. We propose a model for
M (Figure 1) that we validate through experiments.

Let p1 > 0 be the expected value (average value over
infinitely many matching experiments of the same type)
of the second-order scores between correct assignments
E(Mia;jb) for any pair (ia, jb) of correct assignments.
Similarly, let p0 = E(Mia;jb) ≥ 0 if at least one of the
assignments ia and jb is wrong. The assumption here is
that the expected values of the second order scores do not
depend on the particular assignments ia or jb, but only on
whether these assignments are correct or not. p1 should
be higher than p0, since the pairs of correct assignments
are expected to agree both in appearance and geometry and
have strong second-order scores, while the wrong assign-
ments have such high pairwise scores only accidentally. We
expect that the higher p1 and the lower p0, the higher the
matching rate. We also expect that this performance de-
pends on their ratio pr = p0/p1 and not on their abso-
lute values, since multiplying M by a constant does not
change the leading eigenvector. Since the model assumes
the same expected value p1 for all pairwise scores between
correct assignments (and p0 for all pairwise scores includ-
ing a wrong assignment), and since the norm of the eigen-
vector does not matter, we can also assume that all correct
assignments ia will have the same mean eigenvector con-
fidence value v1 = E(via), and all wrong assignments jb
will have the same v0 = E(vjb). The spectral matching

algorithm assumes that the correct assignments will corre-
spond to large elements of the eigenvector v and the wrong
assignments to low values in v, so the higher v1 and the
lower v0 the better the matching rate. As in the case of
pr, if we could minimize during learning the average ratio
vr = v0/v1 (since the norm of the eigenvector is irrelevant)
over all image pairs in a training sequence then we would
expect to optimize the overall training matching rate. This
model assumes fully connected graphs, but it can be veri-
fied that the results we obtain next are also valid for weakly
connected graphs, as also shown in our experiments.

It is useful to investigate the relationship between vr
and pr for a given image pair. We know that λvia =∑
jbMia;jbvjb. Next we assume that for each of the

n features in the left image there are k candidate cor-
respondences in the right image. We also approximate
E(

∑
jbMia;jbvjb) ≈

∑
jbE(Mia;jb)E(vjb), by consid-

ering that any vjb is almost independent of any particular
Mia;jb, since M is large. The approximation is actually a
≥ inequality, since the correlation is expected to be positive
(but very small). It follows that for a correct correspondence
ia, λE(via) = λv1 ≈ np1v1 + n(k − 1)p0v0. Similarly,
if ia is a wrong correspondence then λE(via) = λv0 ≈
np0v1 + n(k − 1)p0v0. Dividing both equations by p1v1
and taking the ratio of the two we obtain:

vr ≈
pr + (k − 1)prvr
1 + (k − 1)prvr

. (2)

Solving for vr we get:

vr ≈
(k − 1)pr − 1 +

√
1− (k − 1)pr + 4(k − 1)p2

r

2(k − 1)pr
.

(3)
It can be verified that by this equation vr is a monotoni-

cally increasing function of pr. This is in fact not surprising
since we expect that the smaller pr = p0/p1, the smaller
vr = v0/v1 and the more binary the eigenvector v would be
(and closer to the binary ground truth t), with the elements
of the wrong assignments approaching 0. This approxima-
tion turns out to be very accurate in practice, as shown by
our experiments in Figures 6, 7 and 8. Also, the smaller vr,
the higher the expected matching rate. One way to minimize
vr is to maximize the correlation between v and the ground
truth indicator vector t. However, in this paper we want
to minimize vr in an unsupervised fashion, that is without
knowing t during training. Our proposed solution is to max-
imize instead the correlation between v and its binary ver-
sion (that is, the binary solution returned by the matching
algorithm). How do we know that this procedure will ul-
timately give a binary version of v that is close to the real
ground truth ? We will investigate this question next.

Let b(v) be the binary solution obtained from v, re-
specting the one-to-one mapping constraints, as returned by

865



spectral matching for a given pair of images. Let us as-
sume for now that we know how to maximize the correlation
vTb(v). We expect that this will lead to minimizing the ra-
tio v∗r = E(via|bia(v) = 0)/E(via|bia(v) = 1). If we let
nm be the number of misclassified assignments, n the num-
ber of true correct assignments (same as the number of fea-
tures, equal in both images) and k the number of candidate
assignments for each feature, we can obtain the next two
equations: E(via|bia(v) = 0) = nmv1+(n(k−1)−nm)v0

n(k−1)

and E(via|bia(v) = 1) = nmv0+(n−nm)v1
n . Dividing both

by v1 and taking the ratio of the two we finally obtain:

v∗r =
m/(k − 1) + (1−m/(k − 1))vr

1−m+mvr
, (4)

where m is the matching error rate m = nm/n. If we
reasonably assume that vr < 1 (eigenvector values slightly
higher on average for correct assignments than for wrong
ones) andm < (k−1)/k (error rate slightly lower than ran-
dom) this function of m and vr has both partial derivatives
strictly positive. Since m also increases with vr, by maxi-
mizing vTb(v), we minimize v∗r , which minimizes both vr
and the true error rate m, so the unsupervised algorithm is
expected to do the right thing. In all our experiments we
obtained values for all pr, vr, v∗r and m very close to zero,
which is sufficient in practice even if we did not necessarily
find the global minimum using our gradient based method
(Section 3).

One can also show that by maximizing b(v)Tv the solu-
tion we obtain gets closer to the solution that would be ob-
tained if an optimal algorithm were used. Any normalized
vector b gives a quadratic score that obeys the following
optimality bound as a function of the correlation bTv:

bTM(w)b
xopt(w)TM(w)xopt(w)

≥ 2(bTv(w))2 − 1, (5)

where xopt(w) is the optimal solution of Equation 1 for
a given w. Therefore, by maximizing b(v)Tv, we maxi-
mize this lower bound and expect b(v) to approach the op-
timal solution xopt(w) . This is true for solutions returned
by any approximate graph matching algorithm if we max-
imize instead the correlation between the eigenvector and
the solution returned by that specific algorithm, which sug-
gests that the same unsupervised learning scheme may be
applied to other algorithms as well.

3. Algorithms
3.1. Supervised Learning

We want to find the geometric and appearance parame-
ters w that maximize (in the supervised case) the expected
correlation between the principal eigenvector of M and the
ground truth t, which empirically is proportional to the fol-
lowing sum over all training image pairs:

Figure 2. Experiments on the House sequence. The plots show
the normalized correlation between the eigenvector and the ground
truth solution for different numbers of recursive iterations n used
to compute the approximative derivative of the eigenvector (aver-
ages over 70 experiments). Even for n as small as 5 the learning
method converges in the same way, returning the same result.

J(w) =
N∑
i=1

v(i)(w)T t(i), (6)

where t(i) is the ground truth indicator vector for the i-
th training image pair. We maximize J(w) by coordinate
gradient ascent:

wk+1
j = wk

j + η

N∑
i=1

tiT
∂vi

(k)(w)
∂wj

. (7)

To simplify notations throughout the rest of the paper
we use F ′ for the vector or matrix of partial derivatives of
any vector or matrix F . One possible way of taking partial
derivatives of an eigenvector of a symmetric matrix (when
λ has order 1) is given in [5], in the context of spectral clus-
tering:

v′ = (λI−M)†(λ′I−M′)v, (8)

where

λ′ =
vTM′v
vTv

. (9)

These equations are obtained by using the fact that M
is symmetric and the equalities vTv′ = 0 and Mv = λv.
However, this method is general and therefore does not take
full advantage of the fact that in this case v is the princi-
pal eigenvector of a matrix with large eigengap. M− λI
is large and also rank deficient so computing its pseudo-
inverse is not efficient in practice. Instead, we use the power
method to compute the partial derivatives to the approxi-
mate principal eigenvector: v = Mn1√

(Mn1)T (Mn1)
. This

seems to be related to [1], but in [1] the method is used
for segmentation and as also pointed out by [5] it could be
very unstable in that case, because in segmentation and typ-
ical clustering problems the eigengap between the first two
eigenvalues is not large.
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Figure 3. Supervised vs. unsupervised learning: Average match
rate and correlation between the eigenvector and the ground truth
over all training image pairs, over 70 different experiments (10
randomly chosen training images from the House (Hotel, respec-
tively) sequence). The standard deviations are not significant

Here Mn1 is computed recursively by Mk+11 =
M(Mk1). Since the power method is the preferred choice
for computing the leading eigenvector, it is justified to use
the same approximation for learning. Thus the estimated
derivatives are not an approximation, but actually the exact
ones, given that v is itself an approximation based on the
power method. Thus, the resulting partial derivatives of v
are computed as follows:

v′ =
(Mn1)′(‖Mn1‖)−Mn1/‖Mn1‖((Mn1)T (Mn1)′)

‖Mn1‖2
.

(10)
In order to obtain the derivative of v, we first need to

compute the derivative of Mn1, which can be obtained re-
cursively:

(Mn1)′ = M′(Mn−11) + M(Mn−11)′. (11)

Since M has a large eigengap, as shown in [10], this
method is stable and efficient. Figure 2 proves this point
empirically. The method is linear in the number of itera-
tions n, but qualitatively insensitive to n, as it works equally
well with n as low as 5. These results are averaged over 70
experiments (described later) on 900 by 900 matrices.

To get a better feeling of the efficiency of our method as
compared to Equation 8, computing Equation 4 takes 1500
times longer in Matlab (using the function pinv) than our
method for n = 10 on 900 by 900 matrices used in our
experiments on the House and Hotel datasets.

3.2. Unsupervised Learning
The idea for unsupervised learning (introduced in Sec-

tion 2), is to maximize instead the function:

J(w) =
N∑
i=1

v(i)(w)Tb(v(i)(w)). (12)

The difficulty here is that b(v(i)(w)) is not a continuous
function and also it may be impossible to express in terms

Figure 4. During unsupervised learning, the normalized eigengap
( eigengap divided by the mean value in M) starts increasing after
a few iterations, indicating that the leading eigenvector becomes
more and more stable. Results are on the House and Hotel datasets
averaged over 70 random experiments.

of w, since b(v(i)(w)) is the result of the iterative greedy
procedure of the spectral matching algorithm. However, it
is important that b(v(i)(w)) is piecewise constant and has
zero derivatives everywhere except for a finite set of discon-
tinuity points. We can therefore expect that we will evaluate
the gradient only at points where b is constant, and has zero
derivatives. Also, at those points, the gradient steps will
lower vr (Equation 4) because changes in b (when the gra-
dient updates pass through discontinuity points in b), do not
affect vr. Lowering vr will increase vTt and also decrease
m, so the desired goal will be achieved without having to
worry about the discontinuity points of b. This has been
verified every time in our experiments. Then, the learning
step function becomes:

wk+1
j = wk

j + η

N∑
i=1

b(v(k)
i (w))

T ∂vi
(k)(w)
∂wj

. (13)

4. Experimental Analysis
We focus on two objectives. The first one is to validate

the theoretical results from Section 2, especially Equation
3, which establishes a relationship between pr and vr, and
Equation 4, which connects v∗r to vr and the error rate m.
Each pr is empirically estimated from each individual ma-
trix M over the training sequence, and similarly each v∗r
and vr from each individual eigenvector. Equation 3 is im-
portant because it shows that the more likely the pairwise
agreements between correct assignments as compared to
pairwise agreements between incorrect ones (as reflected by
pr), the closer the eigenvector v is to the binary ground truth
t (as reflected by vr), and, as a direct consequence, the bet-
ter the matching performance. This equation also validates
our model for the matching matrix M, which is defined by
two expected values, p0 and p1, respectively. Equation 4
is important because it explains why by maximizing the
correlation vTb(v) (and implicitly minimizing v∗r ) we in
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Figure 5. After learning the pairwise scores for matching, all the
features in the first image are correctly matched to the features
from the last image (House sequence).

fact minimize vr and the matching error m. Equation 4 ba-
sically shows why the unsupervised algorithm will indeed
maximize the performance with respect to the ground truth.
The results that validate our theoretical claims are shown
in Figures 6, 7 and 8 on the House, Hotel, Faces, Cars and
Motorbikes experiments. The details of these experiments
will be explained shortly. There are a few relevant results to
consider. On all 4 different experiments the correlation be-
tween v and the ground truth t increases with every gradient
step even though the ground truth is unknown to the learn-
ing algorithm. The matching rate improves at the same time
and at a similar rate with the correlation, showing that max-
imizing this correlation will also maximize the final perfor-
mance. In Figure 7 we display a representative example of
the eigenvector for one pair of faces, as it becomes more and
more binary during training. If after the first iteration the
eigenvector is almost flat, at the last iteration is very close
to the binary ground truth, with all correct assignments hav-
ing larger confidences than any of the wrong ones. Also, on
all individual experiments both approximations from Equa-
tions 3 and 4 are becoming more and more accurate with
each gradient step, from less than 10% accuracy at the first
iteration to less than 0.5% at the last. In all our learning ex-
periments we started from a set of parameters w that does
not favor any assignment (w = 0, which means that before
the very first iteration all non-zeros scores in M are equal to
1). These results motivate both the model proposed for M
(Equation 3), but also the results (Equation 4) that support
the unsupervised learning scheme.

The second objective of our experiments is to evaluate
the matching performance, before and after learning, on
new test image pairs. The goal is to show that at testing
time, the matching performance after learning is signifi-
cantly better than if no learning was done.

4.1. Unlabeled correspondences

Matching Rigid Objects under Perspective Transforma-
tions We first perform experiments on two tasks that are
the same as the ones in [4] and [11]. We used exactly the
same image sequences (House: 110 images and Hotel: 100

Figure 6. Learning stage: the plots show how the left hand side of
Equations 3 and 4, that is vr and v∗r , estimated empirically from
the eigenvectors obtained for each image pair, agree with their pre-
dicted values (right hand side of Equations 3 and 4). Results are
averages over 70 different experiments, with insignificant standard
deviations.

images) both for training and testing and the same features,
which were manually selected by the authors of [4]. As in
[11] and [4], we used 5 training images for both the House
and Hotel sequences, and considered all pairs between them
for training. For testing we used all the pairs between the
remaining images. The pairwise scores Mia;jb are similar
to [11], using shape context [2] for local appearance and
pairwise distances and angles for the second-order relation-
ships. They measure how well features (i, j) from one im-
age agree in terms of geometry and appearance with their
candidate correspondences (a, b).

More explicitly, the pairwise scores are of the type:

Mia;jb = e
−(w1|si−sa|+w2|sj−sb|+w3

|dij−dab|
|dij+dab|

+w4|αij−αab|)
.

(14)
Learning consists of finding the vector of parameters

w that maximizes the matching performance on the train-
ing sequence. sa is the shape context of features a, dij is
the distance between features (i, j) and αij the angle be-
tween the horizontal axis and the vector ~ij. As in both
[4] and [11] we first obtain a Delaunay triangulation and
allow non-zero pairwise scores Mia;jb if and only if both
(i, j) and (a, b) are connected in their corresponding trian-
gulation. The method of [11] is supervised and based on a
global optimization scheme that is more likely to find the
true global optimum than our unsupervised gradient based
method. Therefore it is important to see that our unsuper-
vised learning method matches the results from [11], while
significantly outperforming [4] (Table 1).
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Table 1. Matching performance on the hotel and house datasets at
testing time. The same 5 training images from the House dataset
and same testing images from the House and Hotel datasets were
used for all three methods.

Dataset Ours, unsup(5) [11], sup(5) [4], sup(5)
House 99.8% 99.8% < 84%
Hotel 94.8% 94.8% < 87%

Table 2. Comparison of average matching performance at testing
time on the house and hotel datasets for 70 different experiments
(10 training images, the rest used for testing). We compare the
case of unsupervised learning vs. no learning. First column: un-
supervised learning; Second: no learning, equal default weights
w.

Datasests Unsup. Learning No Learning
House+Hotel 99.14% 93.24%

Next we investigate the performance at learning and test-
ing stages of the unsupervised learning method vs. its su-
pervised version (when the ground truth assignments are
known). We perform 70 different experiments using both
datasets, by randomly choosing 10 training images (and us-
ing all image pairs from the training set) and leaving the
rest of image pairs for testing. As expected we found that
the unsupervised method learns a bit slower on average than
the supervised one but the parameters learned are almost
identical. In Figure 3 we plot the average correlation (be-
tween the eigenvectors and ground truth) and matching rate
at each gradient step for all training pairs and all experi-
ments vs. each gradient step, for both the supervised and
unsupervised cases. It is interesting that while the unsu-
pervised version tends to converge slower, after several it-
erations their performances (and also parameters) converge
to the same values. During testing the two methods per-
formed identically in terms of matching performance (aver-
age percentage of correctly matched features over all 70 ex-
periments). As compared to the same matching algorithm
without learned parameters the two algorithms performed
clearly better (Table 2). Without learning the default pa-
rameters (elements of w) were chosen to be all equal.

Matching Deformable 2D Shapes with Outliers The
third dataset used for evaluation consists of 30 random im-
age pairs selected from Caltech-4 Faces dataset. The exper-
iments on this dataset are different from the previous ones
for two reasons: the images contain not only faces but also a
significant amount of background clutter, and, the faces be-
long to different people, both women and men, with differ-
ent facial expressions, so there are significant non-rigid de-
formations between the faces that have to be matched. The
features we used are oriented points sampled along contours

Figure 7. Results on faces: correlation between eigenvectors and
ground truth, and matching rate during training (top left), match-
ing rate at testing time, for different outliers/inliers ratios at both
learning and test time (top-right), verifying Equation 3 (middle-
left), example eigenvector for different learning steps. Results in
the first three plots are averages over 30 different experiments.

extracted in the image in a similar fashion as in [12].The ori-
entation of each point is the normal vector at that point to
the contour where the point was sampled. The points on
the faces that have to be matched (the inliers) were selected
manually, while the outliers (features in the background)
were selected randomly, while making sure that each outlier
is not too close (15 pixels) to any other point. For each pair
of faces we manually selected the ground truth (the correct
matches) for the inliers only. The pairwise scores contain
only geometric information about pairwise distances and
angles:

Mia;jb = e−wT gia;jb , (15)

where w is a vector of 7 parameters (that have to be
learned) and gia;jb = [|dij − dab|/dij , |θi − θa|, |θj −
θb|, |σij − σab|, |σji − σba|, |αij − αab|, |βij − βab|]. Here
dij is the distance between the features (i, j), θi is the angle
between the normal of feature i and the horizontal axis, σij
is the angle between the normal at point i and the vector ~ij,
αij is the angle between ~ij and the horizontal axis and βij
is the angle between the normals of i and j.

We performed 30 random experiments (see results in
Figure 7) by randomly picking 10 pairs for training and
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Figure 8. Correlation and matching rate w.r.t the ground truth dur-
ing unsupervised learning for Cars and Motorbikes from Pascal
2007 challenge. Real and predicted vr decrease as predicted by
the model. Results are averaged over 30 different experiments

Table 3. Comparison of matching rates for 3 graph matching al-
gorithms before and after unsupervised learning on Cars and Mo-
torbikes from Pascal07 database, with all outliers from the right
image allowed and no outliers in the left image. When no outliers
were allowed all algorithms had a matching rate of over 75%, with
learning moderately improving the performance.

Dataset SM PM GA
Cars: No Learning 26.3% 20.9% 31.9%
Cars: With Learning 62.2% 34.2% 47.5%
Motorbikes: No Learning 29.5% 26.1% 34.2%
Motorbikes: With Learning 52.7% 41.3% 45.9%

leaving the rest 20 for testing. The results shown in Fig-
ure 7 are averages over the 30 experiments. The top-left plot
shows how, as in the previous experiments, both the correla-
tion vTt and the matching performance during training im-
proves with every learning step. At both training and testing
times we used different percentages of outliers to evaluate
the robustness of the method (top-right plot). The learn-
ing method is robust to outliers, since the matching perfor-
mance during testing does not depend on the percentage of
outliers introduced during training (the percentage of out-
liers is always the same in the left and the right images), but
only on the percentage of outliers present at testing time.
Without learning (the dotted black plot), when the default
parameters chosen are all equal, the performance is much
worse and degrades faster as the percentage of outliers at
testing time increases. This suggests that learning not only
increases the matching rate, but it also makes it more robust
to the presence of outliers.

4.2. Unlabeled object classes and correspondences

In our previous experiments every pair of training images
contained the same object/category, so a set of inliers exists
for each such pair. Next, we evaluated the algorithm on a

more difficult task: the training set is corrupted such that
half of the image pairs contain different object categories.
In this experiment we used cars and motorbikes from Pas-
cal 2007, a much more difficult dataset. For each class we
selected 30 pairs of images and for each pair between 30 to
60 ground truth correspondences. The features and the pair-
wise scores were of the same type as in the experiments on
faces: points and their normals selected from pieces of con-
tours. In Figure 9 we show some representative results after
learning, with matching rates over 80%; contours are over-
laid in white. During each training experiment we randomly
picked 5 pairs containing cars, 5 containing motorbikes and
10 discordant pairs: one containing a car and the other one a
motorbike (a total of 20 pairs for each learning experiment).
For testing we used the remaining pairs of images, such that
each pair contains the same object class. The learning algo-
rithm had no knowledge of which pairs are discordant, what
classes they contain and which are the ground truth corre-
spondences. As can be seen in Figure 8 at each gradient step
both the matching rate and the correlation of the eigenvec-
tor w.r.t the ground truth increases (monitored only for pairs
containing the same category). The model proposed is again
verified as shown by the plots of the real and ideal vr that are
almost identical. Not only that the learning algorithm was
not significantly influenced by the presence of discordant
pairs but it was also able to find a single set of parameters
that matched well both cars and motorbikes. Learning and
testing results are averaged over 30 experiments.

Using the testing image pairs of cars and motorbikes,
we investigated whether this learning method can improve
the performance of other graph matching algorithms. We
compared spectral matching (SM) using the row/column
procedure from [18] during post-processing of the eigen-
vector, with probabilistic matching (PM) using pair-wise
constraints [18], and the well-known graduated assignment
algorithm [8] (GA). The same parameters and pair-wise
scores were used by all algorithms. When no outliers were
allowed all algorithms had similar matching rates (above
75%) with learning moderately improving the performance.
When outliers were introduced in the right image (in the
same fashion as in the experiments on Faces) the perfor-
mance improvement after learning was much more signif-
icant for all algorithms, with spectral matching benefiting
the most (Table 3). Spectral matching with learning outper-
formed the other algorithms with or without learning. This
indicates that the algorithm we propose is useful for other
graph matching algorithms, but it might be better suited for
spectral matching.

5. Conclusion

We presented an efficient way of performing both super-
vised and unsupervised learning for graph matching, in the
context of computer vision applications. We showed that
the performance of our unsupervised learning algorithm is
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Figure 9. Matching results on image pairs from Pascal 2007 challenge. Best viewed in color

comparable with the one in the supervised case. The algo-
rithm significantly improves the matching performance of
several state-of-the are graph matching algorithms, which
makes it widely applicable.
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