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Abstract

We present a wearable audio-visual capturing system,
termed AWEAR 2.0, along with its underlying vision compo-
nents that allow robust self-localization, multi-body pedes-
trian tracking, and dense scene reconstruction. Designed as
a backpack, the system is aimed at supporting the cognitive
abilities of the wearer. In this paper, we focus on the design
issues for the hardware platform and on the performance of
the current state-of-the-art computer vision methods on the
acquired sequences. We describe the calibration procedure
of the two omni-directional cameras present in the system
as well as a Structure-from-Motion pipeline that allows for
stable multi-body tracking even from rather shaky video se-
quences thanks to ground plane stabilization. Furthermore,
we show how a dense scene reconstruction can be obtained
from the data acquired with the platform.

1. Introduction

We present a wearable audio-visual system aimed at
helping the impaired, e.g. elderly, with their cognitive func-
tions in everyday living. Care for the aging is becoming
rapidly one of the major issues for the health care locally
and globally. The escalating proportion of individuals over
65 with chronic diseases and with declining cognitive func-
tions confronts the caregivers with economical, medical,
and social challenges on a global scale, and the only eco-
nomically feasible solutions rely increasingly on sophisti-
cated technology including monitoring and cognitive assis-
tant devices.

Our system can be seen as a first prototype of an assistive
device that analyzes the environment and gives appropriate

(a) (b)

Figure 1. (a) The AWEAR 2.0 system is comprised of 3 comput-
ers, 2 cameras heading forwards, and a Firewire audio capturing
device with 4 microphones (2 heading forwards and 2 backwards).
Thanks to 4 lead-gel batteries, the autonomy is about 3 hours.
(b) AutoCAD model of the system.

feedback to the wearer. Sensor-wise, it is equipped with two
high resolution cameras with fish-eye lenses, as well as four
microphones. A total of three computers (two for video, one
for audio) process the incoming multi-modal data streams,
powered by a battery pack that can sustain the system for
up to 3 hours.

After introducing the actual hardware platform in Sec-
tion 2, we will focus on the video processing pipeline. Es-
pecially in the intended supportive application, an enlarged
field of view is of prime importance. We will therefore
first study the calibration of the cameras in Section 3 before
outlining an algorithm that can deliver robust and accurate
camera pose estimates together with needed pre-processing
steps in Section 4. When filming from a walking observer,
the ground plane usually does not remain constant, we
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therefore propose a suitable stabilization approach. Based
on this, we will show how to use the camera information
together with a pedestrian detector to obtain multi-body
tracking-by-detection and a dense 3D reconstruction of the
scene in Section 5. The output of our system could then
be used in further processing stages to give cognitive feed-
back to the wearer. In its current embodiment, the wear-
able device is mainly used as a recording platform. Our aim
is to use the current state-of-the-art computer vision meth-
ods to process this type of image data in order to explore
the potency and/or limits of egocentric vision, mainly in the
means of constructing an assistive device.

The main benefits of the presented system are in partic-
ular (i) high resolution stereo, (ii) large field of view, and
(iii) synchronization with multichannel high quality audio.
When searching for similar devices, one can find separate
solutions, but not the combination. Two experimental wear-
able devices closest to our platform are [13] and [14], both
of them using just low resolution cameras and no audio.
Existing commercial products offering broadcasting quality
are generally not wearable.

The need for large field of view is demonstrated in [14],
where two perspective cameras on each side of a walking
person had to be used in order to cover the whole 360◦ hor-
izontal field of view when solving a vision-based navigation
task. Full resolution of the PointGrey Firefly MV cameras
used was 752 × 480 pixels but as the system comprised of
four Firewire-400 connected cameras, the frame rate could
not go beyond 8fps due to bandwidth limitations.

2. AWEAR 2.0 Acquisition Platform

As AWEAR 2.0, shown in Figure 1, is constructed with
the processing of multi-modal data streams at high frame
rates in mind, the platform has to provide sufficient process-
ing power while keeping both price and weight at accept-
able levels. The constructed system comprises three com-
puters, two for capturing video and one for capturing audio,
the latter also acting as the controller of the entire system.
The system is powered by a battery pack that allows au-
tonomous operation for up to 3 hours. On the sensor side,
two cameras heading forwards and a Firewire audio cap-
turing device with four microphones (two heading forwards
and two backwards) are used, triggered by a separate con-
troller. All components, along with further supporting me-
chanic hardware, are mounted on a rigid frame. The weight
of the presented system is 20kg (10kg of that for batteries).

2.1. Overview of the Major Components

1. Video hardware

• 2 video recording computers, each with 2GB
RAM, 570GB diskspace, and a Turion64 X2 TL-
56 dual core processor

Figure 2. AWEAR 2.0 system consists of three computers, two
Firewire-800 cameras connected via PCIe cards, four condenser
microphones connected via a Firewire-400 audio capturing device,
and a power distribution logic with four batteries. A hardware
trigger is used to synchronize cameras and the audio. Data links
are denoted by solid lines, trigger links by dashed lines, and power
links by dotted lines.

• 2 AVT Stingray F-201C 2Mpixel 14fps color
IEEE-1394b video cameras producing 1624 ×
1234 RAW images

• 2 Fujinon FE185CO86HA1 fish-eye lenses hav-
ing approximately 150 × 114◦ (H×V) FoV

2. Audio hardware

• 1 audio recording computer with 1GB RAM,
250GB diskspace, and a Mobile Sempron 2100+
processor

• 1 Focusrite Saffire Pro 10 I/O 10-channel 96kHz
audio recording device with microphone pre-
amps and phantom power supplies

• 4 T. Bone EM700 condenser microphones with
freq. range 50–20,000Hz and sensitivity -42dB

3. Trigger logic sending a synchronization signal to both
cameras and the soundcard

4. Power dist. logic with 4 7.5Ah 12V lead-gel batteries
5. Ethernet connection and wireless adapter
6. Rigid frame backpack and other mechanic hardware

Since not all the parameters were clearly known at de-
sign time, a modular design had been chosen. The platform
can be extended to accommodate for four instead of two
cameras or have the cameras replaced with faster ones cap-
turing at double frame rate without having to modify the
computing platform itself. Furthermore, up to four addi-
tional microphones can be added by just plugging them in.
The computing platform has a margin in both bandwidth
and processing power (see Figure 2).
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Figure 3. (a) AVT Stingray F-201C 2Mpixel 14fps color IEEE-
1394b video camera producing 1624×1234 RAW images. Image
courtesy of [1]. (b) Fujinon FE185CO86HA1 fish-eye lens with
approximately 150 × 114◦ (H×V) field of view. Image courtesy
of [9].

2.2. Video Hardware

The video computers are two Siemens Mini-ITX indus-
trial board computers D2703-S [25] with 2GB of RAM and
2 SATA 2.5” harddisks of 250 and 320GB each. The pro-
cessor is an AMD mobile Turion 64 X2 Dual Core TL-56
which is equivalent to a dual core 1800MHz Intel processor.

The main design difficulty in the recording system is
the bandwidth from the cameras to the disk on this mobile
and hence relatively power-deprived system. As the band-
width needed is 14fps × 1Byte/pixel × 1624 × 1234 pix-
els = 28MB/s for each camera, this has to be reflected in
most design choices. We chose 2 harddisks in order to dou-
ble the bandwidth to them and to alleviate possible higher
recording rates (given appropriate cameras) or to include
more cameras. SATA was chosen to increase the interface
speed. Two 2.5” harddisks were preferred to one 3.5” hard-
disk (which typically has 1.5–2× higher bandwidth) for the
weight and mainly for power consumption reasons.

The cameras are Firewire-800 (IEEE-1394b), connected
via a PCIe card to the mainboard. Firewire-400 would
in principle suffice but would nearly entirely saturate both
Firewire buses, as only 80% of 400Mbps is reserved for
isochronous transport. Cameras used are AVT Stingray
F-201C [1] cameras (see Figure 3(a)). Triggering is per-
formed via hardware through a USB general purpose 32-bit
IO device. The trigger command is issued by the control
computer connected to this USB device.

The employed lenses are Fujinon FE185CO86HA1 [9]
high-resolution fish-eye lenses (see Figure 3(b)) which yield
a field of view of approximately 150 × 114◦ (H×V) on the
2/3” CCD sensors of the cameras. The use of these high-
resolution lenses results in relatively minor color aberration,
so image data is free of artifacts across the entire field of
view, and thus usable for processing.

2.3. Audio Hardware

The audio and control computer is about the same as
the video nodes except the, in comparison to video, lim-
ited processing requirements which enable the use of a less

(a) (b)

Figure 4. (a) Focusrite Saffire Pro 10 I/O 10-channel 96kHz audio
recording device with microphone pre-amps and phantom power
supplies. Image courtesy of [8]. (b) T. Bone EM700 condenser mi-
crophones with range 50–20,000Hz and sensitivity -42dB. Image
courtesy of [26].

powerful processor, an AMD mobile Sempron 2100+, us-
ing about 1/3 of the power of a video node under full load,
thus increasing autonomy considerably. The audio record-
ing device, a Focusrite Saffire Pro 10 I/O [8] 10-channel
96kHz interface with microphone pre-amps and phantom
power supplies (see Figure 4(a)), is connected to this com-
puter via the onboard Firewire-400 port.

Microphones used are T. Bone EM700 [26] condenser
microphones (see Figure 4(b)) with a frequency range of
50–20,000Hz and a sensitivity of -42dB.

2.4. Power Distribution Logic

The computers’ onboard 24V DC power supply is con-
nected to a power supply board which draws power from
either the battery packs of 2×12V, 7.5Ah lead-gel batter-
ies each, or an external power supply. Cameras are pow-
ered by the attached computer via the Firewire bus. The
audio device is powered directly from the power board
since the mainboard could not supply enough power over
Firewire. This is accomplished by connecting the Firewire
cable through the power board and using it as a power in-
serter.

Under full load, the video computers draw 2.1A @ 24V
each (with cameras operating), the audio computer 0.7A @
24V (with USB trigger attached), and the audio interface
0.25–1A @ 24V, totaling at about 5.5A. The batteries sup-
ply 15Ah @ 24+V, resulting in autonomy of slightly under 3
hours at full load. In normal operation, the actual consump-
tion of the computers is about 1.1A for video and 0.35–0.5A
for audio, resulting in a longer autonomy.

2.5. Software & Control

We use Ubuntu 8.10 as the operating system and several
applications for video and audio capture. Video is captured
in RAW (bayered) format into streams of 1000 files each,
audio is saved as a 5-channel file, with the fifth channel con-
taining the trigger pulses for video-audio synchronization.

The control computer is connected to the other comput-
ers via gigabit-Ethernet, and wireless access allows remote
control of the entire system.
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Figure 5. (a) Equi-angular projection model. (b) Calibration target
used for fish-eye lens calibration.

3. AWEAR 2.0 Calibration

In the following sections, we will focus on the vision as-
pect and hence the video system of the AWEAR 2.0 plat-
form. For a system aimed at cognitive support, fish-eye
lenses are very helpful due to their extended field of view.
As their handling requires some care, we will first describe
the process of their calibration.

Calibration of the lens reveals the transformation be-
tween the pixels in the omni-directional image and rays in
3D. As the intended lens model is equi-angular (see Fig-
ure 5(a)), we use a two-parameter model [19] which is an
extension of the equi-angular model that allows to compen-
sate for small defects of non-expensive lenses due to manu-
facturing:

θ =
ar

1 + br2
. (1)

Due to aberrations dependent on manufacturing and mount-
ing, it is necessary to calibrate both lenses independently.
For calibration, the entire field of view should be covered
by a calibration target, rendering standard planar calibration
targets unusable.

We thus chose a cube with a side length of 40cm as our
calibration target. It is covered by a checkerboard pattern,
with some cells labeled with letters and symbols (see Fig-
ure 5(b)). The top left corners of the labeled cells are se-
lected manually, yielding a total of up to 160 2D points
when the whole cube is visible. As the currently employed
lens has a slightly smaller field of view, a part of the cube
was not visible, but we could still measure more than 120
points. Based on the correspondence between 2D and 3D
points, we optimize for the two parameters of the lens model
along with the camera principal point and the unknown rel-
ative pose between the calibration object and the camera.

Next, in order to find the transformation between the
left and the right camera, we recorded a short sequence of
808 frames while walking in a room and then recovered the
epipolar geometry as follows.

In every 10th image pair a variety of features were de-
tected, including MSER intensity +/- [17] and Laplacian-

(a) (b)

Figure 6. (a) Sample RAW image from the camera. (b) Examples
of debayered image data on two cutouts from the RAW image.

Affine [20]. Tentative correspondences between the left and
the right image were found independently for each stereo
pair captured at the same time. Finally, tentative corre-
spondences from all pairs of images were concatenated and
epipolar geometry was found thanks to the previously ob-
tained lens calibration using RANSAC with the 5-point rel-
ative pose algorithm [22] as hypothesis generator.

To obtain a fully metric reconstruction, the real-world
distance between the camera pair, in our case 45cm, needs
to be applied to the found transformation.

4. Low-level Visual Data Processing

In our vision system, we differ between two levels of
visual data processing. The lower level recovers camera po-
sitions for each stereo pair and provides the higher level, i.e.
object detection and dense reconstruction, with appropriate
images. Depending on the high-level module, this can be
stabilization of the image w.r.t. a ground plane, or perspec-
tive cutouts.

4.1. Debayering

As the cameras use only a single CCD chip, the images
first have to be debayered. For optimal results, we use an
adaptive homogeneity-directed interpolation method sug-
gested by [12]. An additional gamma correction is used to
make the images more amenable for feature detection (see
Figure 6(b)).

4.2. Cutout Generation

Based on the lens calibration, we are able to gener-
ate perspective, cylindrical, or any other projection model
cutouts from the original omni-directional images. A given
omni-directional image can be mapped onto a surface of a
unit sphere as the lens calibration transforms image pixel
positions into unit vectors (directions). This surface can be
then projected to any other surface using the desired pro-
jection model. Technically, we do inverse filtering from the
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(a)

(b) (c)
Figure 7. (a) Original omni-directional image. (b) Non-central
cylindrical projection image. (c) 3× 3 perspective cutouts. Notice
the image overlap of the corner images with the other.

resulting image into the source image, the final pixel values
are obtained by bilinear interpolation.

Non-central cylindrical projection images. To generate
images more suitable for object recognition while keeping
the full field of view, we use non-central cylindrical pro-
jection [27], see Figure 7(b). Optionally, images can be
stabilized during the process using the estimated camera
poses. This is especially helpful for fixing the ground plane
from shaky images, thus constraining pedestrian detection
to meaningful locations. See Sections 4.3 and 4.4 for de-
tails.

Perspective cutouts. Alternatively, we can also generate
a group of nine 600 × 600 perspective images with field of
view 60 × 60◦ by projecting the surface of the sphere to
its tangent planes in nine different directions. First is the di-
rection of the optical axis (z-axis), other directions are com-
puted by rotating the optical axis around the x-axis (top and
bottom images), the y-axis (left and right images), or both
axes (corner images) by 60 degrees. Using these settings,
the resulting images cover the whole half sphere with image
overlaps present in corner images only. If corner images are
not used, there are no image overlaps present but some parts
of the original image are missing (see Figure 7(c)).

4.3. Structure-from-Motion

Structure-from-Motion (SfM) computation recovers the
unknown camera poses needed for image stabilization,
multi-body tracking, and dense 3D reconstruction. We will
demonstrate the pose computation based on the indoor se-
quence used above.

Sequence OLDENBURG is 808 frames long and the dis-
tance between consecutive frames is 0–0.2 meters as it was
captured at 10fps while standing still and walking inside a
room. For computing the camera poses by SfM robustly,

Figure 8. Features detected on images from sequence OLDEN-
BURG. MSER int+ (red), MSER int- (blue), MSER sat+ (ma-
genta), MSER sat- (cyan), and SURF (yellow). Notice the lack
of feature regions on the last image acquired in a difficult turn.

129 keyframes are selected using the algorithm described
in [27]. This algorithm computes the dominant, i.e. the most
frequent, apical angle, which is the angle under which the
camera centers are seen from the perspective of the recon-
structed scene points [28]. A new keyframe is selected if
the dominant apical angle between the current frame and
the previously selected keyframe is greater than one degree.
Otherwise, current frame is skipped and processed during
gluing as described below.

In brief, the computation proceeds in several steps:
First, different affine covariant feature regions including
MSER [17] and SURF [2] are detected in input images (see
Figure 8). The detected regions are assigned local affine
frames (LAF) [23] and described by discrete cosine de-
scriptors [24]. Secondly, tentative feature region matches
are constructed from mutually closest descriptors in the
feature space using FLANN [21] which performs fast ap-
proximate nearest neighbour search based on a hierarchi-
cal k-means tree. The 5-point minimal relative pose prob-
lem for calibrated cameras [22] is used for generating cam-
era pose hypotheses and PROSAC [4], an ordered variant
of RANSAC [7], together with voting similar to that used
in [16] is used to find the largest subset of the set of tentative
matches that is geometrically consistent. Finally, inliers of
the geometry test are triangulated into 3D points [11] and
the dominant apical angle is measured. Obtained relative
camera poses are chained through the sequence resulting in
the absolute poses of all keyframe cameras.

Using the recovered camera poses of the keyframe im-
ages, the camera poses of the remaining images are com-
puted by the technique of gluing described also in [27]. If
the scene is difficult and gluing fails for some cameras, their
poses are obtained by interpolation from neighbouring cam-
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Figure 9. Camera trajectory of sequence OLDENBURG. The
bird’s eye view of the resulting 3D model. Small dots represent
the reconstructed world 3D points. Red cones represent the camera
positions of the whole sequence including glued and interpolated
camera positions.

eras. Figure 9 shows the camera positions for the whole
sequence and the recovered 3D points.

4.4. Image Stabilization

The recovered camera poses and trajectory can be used
to rectify the original images to the stabilized ones. If there
exists no assumption on the camera motion in a sequence,
the simplest way of stabilization is to rectify images w.r.t.
the gravity vector in the coordinate system of the first cam-
era and all other images will then be aligned with the first
one. Successful stabilization can be achieved by taking the
first image with care.

For a gravity direction g and a motion direction t, we
compute the normal vector of the ground plane:

d =
t× (g × t)
|t× (g × t)| . (2)

We construct the stabilization and rectification transform Rs

for the image point represented as a 3D unit vector such that
Rs = [a,d,b ] where

a =
(0, 0, 1)� × d
|(0, 0, 1)� × d| (3)

and

b =
a × d
|a × d| . (4)

This formulation is sufficient because the pavements usually
go up and down to the view direction.

Figure 10 shows several frames of the original images in
sequence OLDENBURG (a), the corresponding panoramic
images without camera stabilization (b), and the panoramic
images stabilized w.r.t. the gravity vector in the coordinate
system of the first camera using the recovered camera poses
and trajectory (c).

(a) (b) (c)

Figure 10. Result of our image stabilization and transformation in
sequence OLDENBURG. (a) Original images. (b) Non-stabilized
non-central cylindrical projection images. (c) Stabilized images
w.r.t. the gravity vector in the first camera coordinates.

5. High-level Visual Data Processing

Given the data preprocessed by the lower levels of the
system, we can now apply high-level visual data process-
ing. In this paper, we will give two examples of high-level
visual data processing: multi-body tracking and dense 3D
reconstruction.

Both tasks are demonstrated on the sequence PED-
CROSS, which is taken while walking on a pavement and
observing several pedestrians. The sequence is 228 frames
long, captured at 12fps, resulting in a distance of 0.05–0.15
meters between consecutive frames.

10 keyframes were selected using the algorithm de-
scribed in Section 4.3 in order to have a sufficient dom-
inant apical angle. Using the recovered camera poses of
the keyframe images, the remaining camera poses are com-
puted by gluing. Figure 11 shows the camera positions for
the whole sequence and the world 3D points. Using the
algorithms described above, we generate non-central cylin-
drical projection images that are stabilized w.r.t. the gravity
vector in the coordinate system of the first camera.

5.1. Multi-body Tracking-by-Detection

The stabilized panoramic images form the basis for
a tracking-by-detection approach that follows an earlier
work [6]. In short, we detect pedestrian bounding boxes us-
ing a state-of-the-art detector [5] and place these detections
into a common world coordinate system using the known
ground plane and the camera positions.

The actual multi-body tracking system then follows a
multi-hypotheses approach. For this, we accumulate the de-

54



Figure 11. Camera trajectory of sequence PEDCROSS and bird’s
eye view of the resulting 3D model. Small dots represent the
reconstructed world 3D points. Red cones represent the camera
positions of the whole sequence including glued and interpolated
camera positions.

tections of the current and past frames in a space-time vol-
ume. This volume is analyzed by generating many trajec-
tory hypotheses using independent bi-directional Extended
Kalman filters (EKFs) with a constant-velocity model.

To deal with data association uncertainties, we gener-
ate an overcomplete set of trajectories by starting EKFs
from detections at different time steps. The obtained set
is then pruned to a minimal consistent explanation using
model selection. This step simultaneously resolves conflicts
from overlapping trajectory hypotheses by letting trajecto-
ries compete for detections in the space-time volume. For
the mathematical details, we refer to [15]. The most impor-
tant features of this method are automatic track initialization
(usually, after about 5 detections) and the ability to recover
from temporary track loss and occlusion.

Figure 12 shows several frames of the sequence PED-
CROSS before processing (a), the panoramic images with-
out camera stabilization (b), and the results of the multi-
body tracking [6] performed on the sequence of panoramic
images stabilized using the recovered camera poses and tra-
jectory (c).

Obtained pedestrians and their tracks can be used as in-
put to even higher processing levels, e.g. action recognition,
which classifies pedestrians by their movement and detects
pedestrians that behave unusually.

5.2. Dense 3D Reconstruction

Knowing the camera poses, one can reconstruct a dense
3D model of the captured scene. We have used a Scal-
able Multi-View Stereo (SMVS) pipeline which works with
an unordered set of perspective images and corresponding
camera poses [27], therefore we had to convert the input set
of omni-directional images into perspective cutouts using
the method described in Section 4.2.

The pipeline follows the reconstruction paradigm used in
work [18], which can deal with large video sequences work-
ing with a few neighbouring frames of each actual frame to
compute and fuse the depth maps. We build upon the work
of [10]. In particular, we modify the reconstruction pro-

(a) (b) (c)

Figure 12. Results of our image stabilization and transformation
in sequence PEDCROSS. (a) Original images. (b) Non-stabilized
non-central cylindrical projection images. (c) Stabilized images
w.r.t. the gravity vector in the first camera coordinates together
with pedestrian tracking.

cess to be scalable by accumulating reconstructed scene and
avoiding unnecessary computations and improve the filter-
ing step by using MRF filtering formulation [3]. Four dif-
ferent views of the resulting model are shown in Figure 13.

The obtained result can be used for depth map gener-
ation, which facilitates image segmentation and also al-
lows for better understanding of the scene geometry utilized
by other higher processing levels, e.g. obstacle detection,
warning the wearer from unwanted hits.

6. Conclusions

We have described a wearable audio-visual sensor plat-
form that is aimed at cognitive supportive applications for
the elderly. Both aspects of hardware and software were
considered. As we used fish-eye lenses for extending the
field of view, particular image data processing methods
were required. To this end, we proposed low-level methods
for calibration, projective mapping, SfM, and image stabi-
lization from such data. Based on the robust output of these
components, we demonstrated two high-level tasks: multi-
body pedestrian tracking and dense 3D reconstruction.

In its current embodiment, we use the hardware platform
as capturing device only, with video stream processing done
off-line. While the low-level processing steps are not far
from real-time performance: debayering takes 1s per im-
age, cutout generation 2s per image, and SfM with stabiliza-
tion 7s per image, high-level processing steps are slower:
pedestrian detection takes 40s per image and dense 3D re-
construction 60s per image.
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Figure 13. Four different views of the final dense 3D reconstruc-
tion of sequence PEDCROSS with given camera positions and ori-
entations (green).

Future work will encompass bringing the algorithms up
to speed in order to run on the platform. Then, additional
higher level components can provide actual cognitive feed-
back to the wearer.
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