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Abstract

This paper investigates the “inside-out” recognition of
everyday manipulation tasks using a gaze-directed camera,
which is a camera that actively directs at the visual atten-
tion focus of the person wearing the camera. We present
EYEWATCHME, an integrated vision and state estimation
system that at the same time tracks the positions and the
poses of the acting hands, the pose that the manipulated
object, and the pose of the observing camera. Taken to-
gether, EYEWATCHME provides comprehensive data for
learning predictive models of vision-guided manipulation
that include the objects people are attending, the interaction
of attention and reaching/grasping, and the segmentation of
reaching and grasping using visual attention as evidence.

Key technical contributions of this paper include an ego
view hand tracking system that estimates 27 DOF hand
poses. The hand tracking system is capable of detecting
hands and estimating their poses despite substantial self-
occlusion caused by the hand and occlusions caused by the
manipulated object. EYEWATCHME can also cope with
blurred images that are caused by rapid eye movements.
The second key contribution is the of the integrated activity
recognition system that simultaneously tracks the attention
of the person, the hand poses, and the poses of the manip-
ulated objects in terms of a global scene coordinates. We
demonstrate the operation of EYEWATCHME in the con-
text of kitchen tasks including filling a cup with water.

1. Introduction

Inside-out activity recognition, in particular the visual
interpretation of everyday manipulation tasks using head-

mounted gaze directed cameras, is an essential tool for un-
derstanding vision-guided action. Thus, inside-out activ-
ity observation is a new challenge in the research field of
computer vision. On one hand, these recognition capabil-
ities will enable activity recognition systems to better seg-
ment actions into meaningful subevents because the gaze is
proactively directing the visual attention with respect to the
current and subsequent motion and action goal — in other
words: gaze leads action. On the other hand, understanding
the proactive task-directed visual attention of the gaze in-
forms us about how to design visual attention mechanisms
for autonomous robots performing everyday manipulation
tasks in human environments.

In this paper we investigate the problem of 3D hand and
object tracking for inside-out activity recognition. Thus, we
focus on the following computational problem: given a im-
age stream recorded by a gaze-directed camera, compute the
position and the pose of the hands (whenever they are suffi-
ciently visible), the object including its position and orien-
tation that the gaze is directed to, and other features related
to visual attention and hand manipulation such as the grasp
type and the pregrasp.

Observing manipulation activities is a challenging visual
task because saccadic eye movements are fast and frequent
and therefore tracking is the repeated interleaved execution
of two steps: (1) visual popout of the visually attended ob-
jects and the hands and (2) the incremental tracking of ob-
jects and hands as long as the gaze stays focused on the
same object. Because of the fast eye movements many cap-
tured images are highly blurred. Also, because of the spe-
cific view during object manipulation the hand tracking has
to be performed in the context of substantial self occlusions
and occlusions caused by the manipulated object.

In this paper we propose a markerless hybrid 2D-3D ap-
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Figure 1. The gaze directed camera developed by [1] and its out-
put. The camera itself is shown in the upper images. The lower
image shows a superimposed camera view generated by the gaze-
directed camera. The wide angle view of a camera mounted at the
head and pointed towards the context of the scene. The inner pic-
ture depicts the focus of attention of the gaze in higher resolution.

Figure 2. The Figure shows challenges in the interpretation of
gaze-directed image streams. The upper picture shows the self
occlusion of the hand and the occlusion caused by the held ob-
ject, which are typical for the head-mounted gaze-directed cam-
eras. The lower picture shows the blur generated through follow-
ing the rapid eye movements.

proach for hand tracking which is specialized to working for
images from ego view of a person wearing a gaze directed
camera. It is based on the 2D hand model for initialization
and 3D hand model for particle filtering. The 2D model has
9 degrees of freedom (DOF) which describes the 2D posi-
tion (include length and width) of palm and thumb. The 3D
model has 27 DOF which describe the global position of
hand and the angle of each joint. A basic form of particle
filter SIR (Sampling importance Resampling) is used for the
3D tracking of hand.

For each particle, we use edges and skin color to evalu-
ate the fitness between the particle and the image. Because
hands are often grasping some objects in gaze-directed
video, how to handle occlusion between hand and grasping
object is a crucial problem. We combine the result of object
tracking into the process of hand tracking. For each particle
of possible hand configuration, we check crucial points on
it to see whether it is occluded by objects. If it is occluded,
we just eliminate the occlusion region when we calculate

the measurement of particle.
The key contributions of this paper are the following

ones:

1. simultaneous object, hand and gaze tracking in abso-
lute coordinates for inside-out activity analysis

2. the integrated object occlusion calculation that allows
to improve the tracking results of the hand and is giv-
ing at the same time the interactions with those objects

3. the hybrid 2D-3D hand tracking method itself, espe-
cially the fast 2D model that allows an initial guess of
the 3D model

In the remainder of this paper we proceed as follows: We
will first shortly introduce related work. Then an overview
of our method and its three major parts are given in detail.
Finally, we will show results of the analysis of two simple
actions.

2. Related Work
Visual interpretation of hand gestures imposes several

problems that are discussed in a review by Pavlovic et al.
[9]. They give an introduction to several approaches deal-
ing with the problems like partial occlusions and the high
degrees of freedom of an articulated hand.

A common approach is tracking of a hands in 3D us-
ing cameras, for example proposed by Tomasi et al. in [13].
They create a large database of hand gestures appearances
and classify new hand appearances after a normalization us-
ing this database into a certain 3D hand position. A differ-
ent also 3 dimensional approach was presented recently by
Romero et al. in [10] that is based on two cameras and ex-
tract a contour based a stereo camera setup. Other work
like [12, 16] are also tracking hand in 3D. A second, dif-
ferent approach is a 2D tracking, like for example Kölsch
and Turk, who showed a method for tracking hands in 2D
from an ego perspective in [6]. This work was enhanced to
a 3D version by Guan et al. in [2]. Similar to our approach,
Tsubuku et al. included object tracking into the hand pose
estimation in [14]. Their work was more directed towards
detecting the object under occlusions induced by the hand,
while we are assuming to have a detection already working
under partial occlusions for the object and aiming for the
hands. Like all previously mentioned methods this method
only applies to a well defined and static work space with
defined camera position, while our approach applies to a
fixed observer-hand relation and an unconstrained observer-
workspace relation. Inside-out activity analysis was intro-
duced by Land et al. in [7]. For the task of preparing tea they
observed the gaze direction of the acting person and derived
that even in such a simple task, a high degree of attention
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to all manipulated objects before and during the manipula-
tion act is necessary. This fact is also used by Mayol and
Murray in [8] for activity recognition. For this, they detect
hands and variable objects in 2D.

3. An Overview of EYEWATCHME

Figure 3 depicts the function and the internal operation
of EYEWATCHME. EYEWATCHME receives as its input
the image stream generated by the gaze-directed camera and
computes the hand poses for the time intervals where the
hands are sufficiently visible in the camera image and the
poses of the (known) objects that the visual attention of the
acting person is directed to. Thus the output are 3D move-
ments of the hands and fingers, trajectories for the gaze rela-
tive to the global scene, and trajectories for the manipulated
objects. To perform these computations EYEWATCHME
employs a library of precomputed hand poses and models
of the objects of interest and the environment as resources.
Trajectories can be found in Results section. In Figure 9(a)
, Figure 9(b) and Figure 9(c), Trajectories for gaze, object
and hand are shown respectively.

Figure 3. Our algorithm from the image to the final inside out ac-
tion analysis.

EYEWATCHME organizes the computational process,
which is also depicted in Figure 3 along two dimensions:
a phase-oriented view, which deals with the detection of en-
tities to be tracked and the entity-type specific computations
that deal with the different entities — the hands, the objects,
and the scene. The processing consists of a preprocessing
and popout phase. As long as EYEWATCHME is not track-
ing the respective entity stays in the popout phase until it
has detected the hands, the object, and landmarks of the en-
vironment. It transitions from the popout into the incremen-
tal tracking phase as soon as the entity detection is stable.
The following three sections describe the entity-type spe-
cific computations of hand (Section 4), object (Section 5)

and scene tracking (Section 5).

4. Hand Tracking
Let us now consider the computational process of hand

tracking in more detail.

4.1. Hand Pop-out

The processing pipeline for hand tracking consists of the
preprocessing/popout phase, in which hypotheses for hands
are generated in a data-driven manner, using skin color as
the central feature. EYEWATCHME filters these hypotheses
using domain knowledge and constraints. Thus, it makes a
strong bias on which parts of the image could possibly exist
hands and arms. Upon having a hand hypothesis sufficiently
validated, the hypothesis is passed to the incremental track-
ing process step.

To strongly bias the search space for the hand pose in the
high-dimensional parameter space, EYEWATCHME applies
a two step process. First, a 2D hand model with only 9 de-
grees of freedom , including the position, angle and length
of the arm, palm and thumb is fitted to the arm-hand hypoth-
esis using morphological operations. This 2D fitting can be
performed both reliably and efficiently compared to the full
3D pose fitting. Then the 2D pose is used in the second step
to distribute the particles for the 3D hand pose tracking.

4.1.1 Skin Color Region Segmentation

EYEWATCHME segments skin colored regions in the image
using the method proposed by Hsu in [4], which detects skin
color tone in a transformed Y’Cb’Cr’ color space which can
reduce the effect of lighting condition to some extent.

Figure 4. 2D model parameter estimation based on skeleton.
The result of skin color tone detection is based on pixels,

and we extract the part of the image containing arms and
hands. First, we fill the holes and then perform opening on it
to remove some small part in order to reduce noisy regions.
Finally, we select the separate region whose area is larger
than the minimal hand region that could give a reasonable
result later on. If still more than two regions are selected,
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we can apply the previously mentioned bias and select the
two at the bottom.

4.1.2 Hand Parameter Estimation in 2D

Given a segmented arm hand region, we use simple heuris-
tics about the most probable appearances of hands in an im-
age. Figure 4 depicts the steps: First, the skeleton of the
segmented regions are extracted. Then we represent the
skeleton with straight line segments. This is achieved by
the standard least squares line fitting algorithm. The pa-
rameters of the line segments are used to fit the parameter
of 2D hand model. The bottom line is considered as arm
skeleton. Thumb and finger skeleton are selected from other
branches. Here we hold the assumption that these two skele-
ton should be long enough and the thumb is on the right side
for the right hand. These two assumptions are normally sat-
isfied in gaze-directed video.

4.2. 3D Hand Tracking

With an initial parameter set we can set up a initial hand
gesture for the 3D tracking. Given this initial guess, we can
start tracking of the 3D hand using a particle filter.

4.2.1 3D Hand Model

We are using the hierarchical 3D hand model proposed by
Stenger et al. [11]. The model consists of 39 truncated
quadrics as building blocks, approximating the anatomy of a
real human hand and its application is depicted in Figure 5.
The model provides 27 DOF: 6 for the global hand posi-
tion, 4 for the pose of each finger and 5 for the pose of the
thumb. The DOF for each joint correspond to the DOF of a
real hand. Joints between the bones are named according to
their location on the hand as metacarpophalangeal (MCP)
(joining fingers to the palm), interphalangeal (IP, PIP, DIP,
...) (joining finger segments) and carpometacarpal (CMC)
(connecting the metacarpal bones to the wrist). Addition-
ally, it also offers 19 parameter to adapt the shape of model
to the hand of a certain person. These parameters should be
calibrated for different people before the tracking process.

Because joint angles for real hands are highly correlated
with each other and bounded within a small region, some
constraints need to be adopted to avoid unrealistic poses.
Based on the studies in biomechanics, certain closed-form
constraints can be derived. An important constraint is the
relationship θDIP = 2

3θPIP between the PIP and DIP an-
gles that helps us decrease the DOF by 4. Other constraints
which limit the joint angles are also incorporated in the hand
model.

After hand modeling, the pose of the hand can be fully
determined by a vector xt that comprises 21 joint angle pa-
rameters and 6 parameters that specify the global position

Figure 5. The 3D hand model, [11], particles and matches.

and orientation of the palm with respect to the camera’s co-
ordinate frame. We have an efficient way to project such
a hand given a certain parameter set and camera parame-
ters. Even so, we speed up our approach by building up a
database of already projected hands, because loading from
a file even faster.

4.2.2 Particle Filter

Visual tracking can be regarded as the estimation of the
system state which changes over time given a sequence of
noisy observations. The essence of hand tracking is to de-
termine the best pose X based on the observation image
Z. The best pose is the minimization over a state vector X
evaluating an error function E(X,Z):

X∗ = arg min
X

E((X),Z) (1)

According to the Bayes rule, the hand pose of the current
frame xt depends from prior hand pose xt−1 by following
relation:

p(xt|zt) ∝ p(zt|xt)p(xt|xt−1) (2)

where p(zt|xt) is the probability given the handstate of the
image and it is proportional to our distance metric.

Generating Samples: One important part of parti-
cle filtering is to generate samples, which is also known
as condensation ([5]). A time stamped sample set
st(n), n = 1, ..., N , which is weighted by their observa-
tions in image π

(n)
t = p(zt|xt = st(n)), is used to rep-

resent a posteriori p(xt|zt). Here π
(n)
t is normalized as∑N

n=1 π
(n)
t = 1. So for every frame we can get a weighted

sample set{st(n), π
(n)
t }. The sample set propagates from

{st−1
(n), π

(n)
t−1} which represents p(xt−1|zt−1) for previ-

ous frame to {st(n), π
(n)
t } which represents p(xt|zt) for

current frame. The prediction is applied on {st−1
(n), π

(n)
t−1}

according to Equation 3 and 4. In 3a and 3b, the center posi-
tion of the hand along X and Y axis is predicted. Xt and Yt

is the position of a particle center for current frame. λX and
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λY is the predicting moving distance between current frame
and previous frame. We use the position of the 2D model to
compute λX = x2D

t −x2D
t−1 and λY = y2D

t −y2D
t−1. Here we

change the 2D distance into 3D based on the previous depth
Zt−1 and focal length f . Other state parameters are gener-
ated as in Equation 4 . Here we hold assumption that these
states do not change too much between frames, especially
when people have already grasped something.

X
(n)
t ∼ p(Xt|Xt−1) = N(λX

t + Xt−1|σX) (3a)

Y
(n)
t ∼ p(Yt|Yt−1) = N(λY

t + Yt−1|σY ) (3b)

st(n) ∼ p(st|st−1) = N(st−1|σ) (4)

4.2.3 Distance Measurement

Our method employs a combination of different distance
measurements including color and edges:

• Quantity of overlapping of the projected arm-hand re-
gion with the corresponding skin color region.

• Distance Integration over edges in the image and the
projected hand contour with corresponding directions

The overall error function E(Zt|Xt) consists of multiplica-
tion result of four values:

E(Zt|Xt) ∝ ecolorSI · ecolorMI · eedgeHM · eedgeEM (5)

where ecolorSI and ecolorMI are calculated using the
skin color region and eedgeHM and eedgeEM are based on
the edges.

For the first item, we calculate areas of the skin color
region AS , hand model region AM and their intersection
AI by counting the pixel number in the region. We use the
following three measurements to measure the fitness of a
particle according to the skin color information:

ecolorSI(zt|xt) ∝ exp− (AS − AI)2

2σ2
SI

(6a)

ecolorMI(zt|xt) ∝ exp− (AM − AI)2

2σ2
MI

(6b)

For the measurement of edge information, we need to count
the point number of hand model contour NH , edge pixel
NE and matched contour NM . First we apply canny edge
detection on the image. Then we check along normal di-
rection of every point of the projected model contour in a
ten-pixel width neighborhood. If an edge pixel with high
enough amplitude and similar enough direction is found in
the neighborhood, we increase the number of NM . So the

measurement of edges is calculated as follows:

eedgeHM (zt|xt) ∝ exp− (NH − NM )2

2σ2
edge

(7a)

eedgeEM (zt|xt) ∝ exp− (NE − NM )2

2σ2
edge

(7b)

4.2.4 Object-Specific Improvements of the Hand
Tracking

With a current guess of the hand and a current position esti-
mation of several manipulated objects, possible occlusions
of fingertips and parts of the palm are easily to detect. For
performance reasons we only check 5 points of fingertip per
hand candidate if they are in the area which lays inside the
projection of objects. Only if possible occlusions occur we
perform a z-buffering to check which parts of the hand are
in front or beside and which parts behind an object.

Figure 6. The index is occluded by the milk box.
Determining of Occlusions: Because the hand model

is composed of quadrics, the position (Xc, Yc, Zc) of the
3D center point of every fingertip quadric can be obtained
easily given a specific hand pose. It is projected onto cur-
rent image with a 2D coordinate (xc, yc). If (xc, yc) is
in the 2D region of an object. We need to further check
whether (Xc, Yc, Zc) is occluded by the object or not. A
ray going through camera can be determined by the point
(Xc, Yc, Zc). So every 3D point on this ray is represented
with a coordinate (Xc/s, Yc/s, Zc/s). Here s is a scalar
value which is larger than 0. This ray should have a in-
tersection point (Xc/s0, Yc/s0, Zc/s0) with the object and
s0 is computable if we know the 3D shape of the object.
If s0 < 1, the intersection point is closer to the camera,
which means the point (Xc, Yc, Zc) is occluded by the ob-
ject. Here we need to make a further assumption that we
consider the whole quadric to be occluded if the center point
it is occluded. Figure 6 shows an example for an image con-
taining such an occlusion and we are successful in detecting
the occlusion area on the tip of index.

Influences on the distance measure: The measurement
of a particle should be changed if some part of the hand
candidate is occluded by object. If AO denotes the area of
occlusion hand region, pcolorMI in Equation 6 is changed
as follows:

pcolorMI(zt|xt) ∝ exp− (AM − AI − AO)2

2σ2
MI

(8)
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NO denotes the point number of hand model contour which
is occluded by object. pedgeHM in Equation 7 is changed
like following.

pedgeHM (zt|xt) ∝ exp− (NH − NM − NO)2

2σ2
edge

(9)

5. Object Tracking
Since our current application of EYEWATCHME is the

inside-out recognition and interpretation of everyday ma-
nipulation tasks we can in many cases restrict ourself to
dealing only with known objects.1 Thus, in our setting we
have equipped EYEWATCHMEwith a library of 3D object
models that it is to detect, recognize, and localize in the
image sequences. In our experiments we use the objects
depicted in Figure 7.

Figure 7. Examples for detected object models, cups and a milk-
box.

Given a 3D model of an object EYEWATCHME can lo-
calize objects relatively fast and accurately. To this end,
EYEWATCHME applies a state-of-the-art matching method
proposed by Wiedemann et al. in [15] for finding this
model. This method applies to a calibrated camera image,
and uses a pyramid visual approach to match a projection
of an object in an edge image. It is an exhaustive search
in a previously defined search space of possible locations
relative to the camera. The search space can be determined
for a scenario given the position in the world that we get by
camera localization. The search space consists mainly of
the possible distances from the camera to the object and a
range of possible viewing angles.

6. Scene Tracking
Tracking the focus of attention, the position of the hands

and the objects in the global scene requires EYEWATCHME
to estimate the pose of the gaze directed camera with respect
to the global scene continually.

To this end, the system learns planar edge structures of
the working environment beforehand. Figure 8 shows the
planar edge structure learned for the top of the counter and
how it is used for tracking the pose of the camera. Using the
method proposed by Hofhauser et al. [3] EYEWATCHME
can detect and track these planar edge structures in real time

1This is, however, on our agenda for future research including recogni-
tion and localization of novel objects and even deformable objects.

Figure 8. The contour on the table is localized.

with a high accuracy. Given any reference point such as
the position on of these edge structures and having them
localized in the image, we can then directly infer the pose
of the gaze-directed camera. In our experiments we are use
a calibration tag fixed to a wall as a reference point to our
world model that allows us to easily pick planar structures.

7. Results

To validate and evaluate the proposed algorithms, we
perform experiments based on several real sequences in
normal kitchen environment captured by the gaze-directed
camera. We want to show two kind of results. First a qual-
ity analysis of a pouring task for the single components,
second, complete and integrated results for one sequence of
pouring milk into a cup. Several test persons performed the
first pouring task, which contained to fill water from one
cup into another.

7.1. Quality analysis

In order to test the effect of particle number on tracking
result, we perform hand tracking using a different number
of particles such as 50, 200, 800, 1000 and 2000 per frame.
The calculation of one particle takes about 10ms. The mea-
surement of the best particle is recorded frame by frame.
Then we calculate the mean value of the measurement. Ta-
ble 1 shows the results. According to the objective measure-
ment and direct visual evaluation, we found that 800 parti-
cles per frame are needed for relatively good hand tracking
for simple grasp movement. But if we are only interested in
the center position of hand, the number can be reduced to
200. There is no significant improvement while increasing
particle number from 1000 to 2000. The measurement for
video clip B is higher than it is for clip A, but this does not
mean that the tracking result is better for clip B. Because
the absolute value can be affected by many factors like the
total area of skin color region AS and total number of edge
pixel NE .

In Table 2, we list the measurement of first frame (ini-
tializing frame), end frame (failure frame) and mean and
deviation values for different persons. For every person we
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Video Clip 50 200 800 1000 2000
A 0.0012 0.0037 0.0115 0.0121 0.0124
B 0.0026 0.0055 0.0132 0.0146 0.0149

Table 1. Measurements under different particle number

Test Person First Frame End Frame Mean Value Deviation
P1 0.00425 0.00823 0.0115 0.0138
P2 0.0179 0.0209 0.0233 0.0114

Table 2. Mean measurements for different people performing the
same pouring task

Test Person Frames Model Update Failed Frames
P1 250 26 2
P2 200 35 3

Table 3. Times of model updating and the number of failure frames
for gaze detection

have two video clips which perform the same pouring task.
We can see that the measurement for the first frame is not
so high as for other frames. The reason is that on the first
frame we can only get the pose information from 2D model
and this is not enough to find a better pose. But we can re-
cover the pose a few frames later if the initialization is not
too bad. It is similar in the case of blurring frame.

7.2. Trajectory samples

For a short sequence of a pouring action we want to show
extracted trajectories of the gaze, the manipulated object
and the right hand. The requested action that is performed
in the sequence was to pour water from the right cup into
the left cup.

7.2.1 Gaze Focus during Pouring Action

The first trajectory we can extract is the movement of the
eyes and the gaze. Figure 9(a) shows results for one person
pouring water from one cup to another. The trajectory starts
on the right side, concentrates shortly on the left cup that
was lifted, observes then the pouring and follows the cup
set back on the table. This trajectory includes a compen-
sation of the person’s movement. The gaze-scene relation
is logged by the camera. We calculated the person’s move-
ment with the proposed method in an average time of 125
ms per frame taking 2 planar models into account, namely
a table and a wall. The test scenarios imply that one of the
models is always in the field of view of the scene camera.
Table 3 describes the results of our experiments in more de-
tail. The counter updates refer to recalculations of visible
models using the current image. This allows a smaller rela-
tive changes of the model and therefore a faster search. For
the core frames of two test persons performing the pouring
action, we measure the success rate if we could localize the
camera. A match with a reliable score is counted as a suc-
cess, no or a bad matches annotate a failure.

Test Person Frames Missed Right Missed Left
P1 250 25 16
P2 200 35 26

Table 4. The object localization and the number of overall frames
and the number of frames without a good match for the two cups

7.2.2 Object Movement

We visualize in Figure 9(b) the movement of the right cup
in the pouring action. It can be seen that the object moves
first up then to the left side and back to its old place. Table 4
shows the frequency of successful object localization in two
scenes. Again those data were observed and manually de-
cided over a success or failure. As soon as the object orien-
tation or its position gets obviously wrong, a missed frame
was counter. Respective occurring occlusions the frequency
of localization is good. The right cup is occluded partially
by the hand of the test person during manipulation, while
the left cup is occluded by the right cup during the pouring
itself.

7.3. Complete Sequence Data

We test both hand and object tracking in a sequence
which shows that a person reaches his hand for milk and
pours milk from a milk box to a cup. Here is some im-
ages about the tracking results on his right hand and milk
box. There still some problems on the result of hand track-
ing. Because thumb is totally occluded during the process
of pouring, we can not get thumb position correctly after
pouring. Some of the most important frames are visualized
in Figure 9.

8. Conclusion
In this paper we present EYEWATCHME, an integrated

vision and state estimation system for a gaze-directed cam-
era that at the same time tracks the positions and the poses
of the acting hands, the pose that the manipulated object,
and the pose of the observing camera. EYEWATCHME is an
enabling technology for inside-out activity recognition, in-
terpretation and analysis. The key contributions of our work
are the tight coupling of pose estimation, hand and object
tracking and visual popout mechanisms that reliably and
quickly reinitialize the system after rapid eye movements.
EYEWATCHME is also interesting for its hand pose estima-
tion techniques that solve a high DOF estimation problem
even in the case of partial occlusions of the hand caused by
itself as well as the manipulated object. Our current work
focuses on achieving more reliability and accuracy in hand
and object tracking even in cases where most of the tracked
entities are occluded and on the reduction of the computa-
tional resources required. This as well as automatic self-
monitoring and reinitialization are key steps towards auto-
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(a) Eye movement during pouring action in the
scene camera.

(b) Object movement of the right cup during pour-
ing action.

(c) Hand movement of the right hand during a
pouring action.

(d) Pregrasp. (e) Get the object. (f) Start pouring, the object detection failed here.

Figure 9. Results for hand tracking and the inside-out action analysis.

matic long term activity recognition. Another thread is the
broadening towards more comprehensive observation mod-
els and towards additional application domains. Thus we
intend to extend the system to recognize important aspects
in computational motor control such as contact events, the
pregrasp pose, and the focus on attention at object levels.
These capabilities will turn EYEWATCHME into a powerful
tool for the investigation of human everyday manipulation
tasks in the cognitive, neural, and medical sciences.
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