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Abstract

In this paper, we study the self lane assignment problem,
i.e. given an image taken inside a vehicle, infer on which
lane the image is taken. This problem serves as an exam-
ple of active egocentric vision application with data fusion.
In this application, a camera is mounted inside the vehicle
looking outside to the world. Combined with a GPS with a
digital map this smart mobile camera is capable of reason-
ing on which lane the vehicle is. This inference result is then
fed back to the GPS to provide the driver with more intelli-
gent navigation instructions. We form the self lane assign-
ment inference problem as a scene classification problem
which requires classifying scenes in finer categories than
the traditional case. We design the features to represent the
image in a holistic way bypassing individual object detec-
tion, develop an automatic horizon detection algorithm, and
employ and compare three learning algorithms for decision
making on the lane number. The experiment results show
that our method can achieve the precision and recall rates
around or above 90% at the same time.

1. Introduction

Most vision-based applications are developed using a

single modality and independent processing of visual data.

However, in many practical applications, a vision module

alone may not be able to solve the problem effectively or ro-

bustly. Fusion of visual data with other sensing mechanisms

and prior information can offer a more effective solution in

a variety of applications.

In this paper, we study an application developed based on

the fusion of visual information with a vehicular navigation

system. In this setup, a camera is mounted inside the vehicle

and looks outside. Equipped with a smart camera with the

capability of not only sensing the world but also reasoning

about the world, the vehicle in our application becomes an

active embodiment of an egovision concept. From an ego-

centric view, we use this mobile smart camera together with

the GPS to serve the driver with more intelligent navigation

instructions. To give an example, imagine that you are driv-

ing on the highway at 70 mph and trying to figure out which

lane you should follow to exit at some distance in front. The

precision of the current GPS map is not able to tell which

lane you are on, so the instruction given by the GPS is just

as simple as “take the exit right”, possibly resulting in the

driver’s panic as to how quickly he has to change lanes to

exit. However, if we have a smart camera mounted inside

the vehicle which is capable of inferring the current lane

the vehicle is on and feeding this information into the GPS,

then based on this inferred current position and the target

position more intelligent instructions like “stay on the cur-

rent lane” or “change to your next right lane” can be offered

to the driver.
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Figure 1. System Diagram

Figure 1 shows the diagram of our system. The self lane

assignment inference algorithm plays a central role as the

convergence point of data fusion. The videos/images of the
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(a) Lane 1 (b) Lane 2

(c) Lane 3 (d) Lane 4
Figure 2. Sample images from four different lanes (classes)

outside world captured by the camera and the road informa-

tion (number of lanes) provided by the GPS with a digital

map are fed into the self lane assignment inference algo-

rithm, and then the inference results are fed back to the

GPS to provide the user with more intelligent navigation

instructions. In addition, there are two possible extensions.

One is that the inference algorithm can instruct the camera

to adjust certain parameters based on the image processing

results and the vehicle CAN bus can also be synchronized

with the camera to provide the steering angle to the infer-

ence algorithm to improve the reasoning accuracy. In the

current work, we focus on combining the images taken by

the camera and the GPS information to infer on which lane

the vehicle is.

We form the self lane assignment inference problem as a

scene classification problem and discuss feature design and

representation, horizon detection and learning algorithms in

section 2. In section 3, we present experiment results and

analyze the effectiveness of our methods. Finally, section 4

concludes the paper.

2. Approach
2.1. Problem Formation

In this work, we focus on the highway situation where

lanes exhibit low curvature and the number of lanes is as-

sumed as a prior information. As shown in Figure 1, this

prior information comes from the digital map used by the

navigation system.

Figure 2 shows four sample images from different lanes.

To infer on which lane the image is taken, we can think

of this problem as a scene classification problem in which

given an image we want to classify it into four categories

corresponding to four scenes seen on lanes 1, 2, 3, and 4,

respectively (lane 1 corresponds to the leftmost lane, and

others are indexed from left to right).

There are two potential paradigms for solving the scene

classification problem. The first one is based on individual

object detection after which the inference is done in a higher

layer. However, the detection of lane markers and vehicles

are not reliable in such a dynamic environment seen by a

moving camera. Due to the occlusion, perspective projec-

tion and constantly changing environment, the appearance

of the lane markers and vehicles varies in a large range and

the lane markers on the side lanes are sometimes even un-

observable. Therefore, some previous work on lane detec-

tion only focused on the detection of a single lane in front

of the vehicle or detection of multiple lanes without occlu-

sions from other vehicles [1, 2]. For vehicle detection, most

existing methods (a survey at [3]) only focus on mid-range

vehicle detection. Moreover, multiple tasks of detecting dif-

ferent individual objects can cost more processing time and

accumulation of detection errors which will adversely affect

the inference in the later stage.

To avoid these problems, the second paradigm is to de-

scribe the scene in a holistic way. For example, [4, 5, 6, 7]

successfully developed holistic representation of an image

either in a supervised or unsupervised fashion to classify

images into very broad categories such as office, highway,

forest, mountain, and so on. However, methods in [4, 5, 6]

do not keep the spatial information of the features which

is critical in our case as discussed in the next section. Al-

though the method in [7] keeps the spatial information, if

the same clustering based method is applied to our problem,

it is very likely that the lane marker information cannot be

extracted as an independent cluster due to the sparsity of

this feature. Moreover, all these methods are developed to

classify classes with relatively large differences while our

problem is more like to distinguish sub-classes within a sin-

gle class which requires understanding the scenes in a finer

granularity. So the existing methods cannot be used to ef-

fectively solve our problem. In the following sections, we

discuss our feature design and representation based on low-

level features in a global way to bypass explicit individual

object detection while achieving the goal of classifying im-

ages into finer categories.

2.2. Features

2.2.1 Feature Design

Based on how the humans distinguish different lane classes,

there are three desired types of information that a good fea-

ture design needs to capture:

• Lane markers. Lanes are separated and defined by lane

markers, so they are the most discriminative informa-

tion.

• Vehicles. If there are multiple vehicles on your right,

then it is less likely that you are on the rightmost lane,

and similarly for the left lane.

• Spatial distribution. In addition to the presence of

lane markers and vehicles, the more important infor-

mation is how they are spatially distributed on the im-

age plane.

58



To capture the information above, as shown in Figure 3(a), a

filter bank consisting of oriented steerable filters with even

and odd phases [8] is used to implicitly capture the textures

for both lane markers and vehicles. Due to the perspective

projection, the scale of edges at different positions on the

image plane varies, so we used two sets of 12 filters which

are at two different scales. To keep the spatial information,

the image is partitioned into multiple cells below the hori-

zon as shown in Figure 3(b). The upper part above the hori-

zon is discarded as this area is usually the sky and gives no

discriminative information about different classes.

(a)

(b)

Figure 3. (a) A filter bank consisting of 12 oriented steerable filters

per 30 degrees with even and odd phases (b) The spatial partition

below the horizon.

2.2.2 Feature Representation

Denote the filters as Fk,m where k = 1, 2 corresponds to

two sets of filters with different scales and m = 1, 2, · · · , 12
corresponds to each filter turned to different angles with

even or odd phases. In addition, the image is partitioned

into M × N cells, where M = 3 and N = 6. Let the

grayscale image be I and then the response of the image at

a specific cell to each of the filters is incorporated into:

xi,j,k,m =
∑

(x,y)∈Ci,j

|(I ∗ Fk,m)(x, y)| (1)

where Ci,j corresponds to the cell at the ith row and the

jth column with i = 1, · · · ,M and j = 1, · · · , N . In or-

der to make the response less sensitive to the illumination

and contrast of the image, for each cell the 12-dimensional

vector xi,j,k,· = [xi,j,k,1, xi,j,k,2, · · · , xi,j,k,12]T is nor-

malized to have energy 1, i.e., ‖xi,j,k,·‖2 = 1. But if the

energy of xi,j,k,· is too small, the vector is not normalized

so that uniform road regions can be captured. Furthermore,

three statistics of the responses for a set of 12 filters within

one cell are also incorporated into the feature vector. These

three statistics include mean, argmax and max−median of

the components of xi,j,k,·. So each cell is associated with a

(12 + 3)× 2 dimensional descriptor, and all the descriptors

from 3×6 cells are stacked into a single 15×2×3×6 = 540
dimensional feature vector as a representation for each im-

age.

2.3. Horizon Detection

As mentioned earlier, the image is partitioned into multi-

ple cells below horizon. The horizon is obtained by detect-

ing the vanishing point in two steps as follows:

1. Lone line detection. We used the method developed

in [9] to detect lone lines in the image and filtered out

those nearly vertical or horizontal lines to reduce out-

liers. Denote the number of lone lines after filtering

as L and these lines are parameterized by θi and ri as

follows:

x sin θi + y cos θi = ri i = 1, 2, · · · , L (2)

2. Robust fitting in the Hough domain. Since the vanish-

ing point is located at the intersection of the L lines, we

estimate the vanishing point by minimizing the norm

of the residual:

minimize ‖Ax− r‖1 (3)

where,

A =

⎛
⎜⎜⎜⎝

sin θ1 cos θ1

sin θ2 cos θ2

...
...

sin θL cos θL

⎞
⎟⎟⎟⎠ r =

⎛
⎜⎜⎜⎝

r1

r2

...

rL

⎞
⎟⎟⎟⎠

We used the 1-norm instead of the ordinary least

square to make the estimation less sensitive to outliers.

This convex optimization problem 3 is solved using

CVX [11]. Figure 4 shows some detection results.

2.4. Learning Algorithm

Different dimensions in the feature vector do not pro-

vide equal information. For example, the features from the

cell that is in front of the vehicle contain little information

(which are almost the same for all classes). To have bet-

ter generalization error, it is necessary to reduce the model

complexity to avoid overfitting, so three different learning

algorithms are chosen as follows:

1. Adaboost with decision trees. We used the logistic re-

gression version of Adaboost [12, 10] with weak learn-

ers based on decision trees. Decision trees make good
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Input:

• Training dataset: D = {(x(1), y(1)), (x(2), y(2)), . . . , (x(m), y(m))}, where y(i) ∈ {−1,+1}
• Initial weights: w1 = {w1

1, w
1
2, . . . , w

1
m}

• Number of nodes per decision tree: Nn

• Number of weak learner decision trees: NT

Procedure:
For t = 1, . . . , NT :

(a) Fit a Nn-node decision tree Tt to the weighted dataset with weight distribution wt

(b) Assign to each terminal node Tt,k a weight: ft,k = 1
2 log

∑
i:y(i)=1,(x(i),y(i))∈Tt,k

wt
i∑

i:y(i)=−1,(x(i),y(i))∈Tt,k
wt

i

(c) Update weights: wt+1
i = 1

1+exp(y(i)
∑ t

t′=1 ft′,k
t′

)
with kt′ : (x(i), y(i)) ∈ Tt′,kt′

Output:

• A series of decision trees: T1, T2, . . . , TNT

• Weighted log-ratio for each node of each tree: f1,1, . . . , fNT ,Nn

Figure 5. Boosted decision tree using logistic regression version of Adaboost

Figure 4. Sample horizon detection results. Color lines are the

detected long lines and the cross is the detected vanishing point.

weak learners, since they provide explicit feature se-

lection and limited modeling of the joint statistics of

features, and boosting gives better results than a sin-

gle tree in general. The training procedure of boosted

decision tree using logistic regression version of Ad-

aboost is described in Figure 5.

2. Bayesian logistic regression. By assuming a prior on

the coefficients in logistic regression, Bayesian logis-

tic regression is capable of shrinking the coefficients to

avoid overfitting [13]. To be more specific, the poste-

rior is:

p(θ|D) ∝
(

m∏
i=1

1
1 + exp(−θT x(i)y(i))

)
p(θ) (4)

where D is the training dataset

{(x(1), y(1)), (x(2), y(2)), . . . , (x(m), y(m))}, and the

prior of θ is a multivariate Gaussian with mean 0 and

covariance σ2I , i.e. θ ∼ N (0, σ2I). Then the log

posterior over θ (ignoring the normalization constant)

is :

l(θ) =−
m∑

i=1

log(1 + exp(−θT x(i)y(i)))

−
n∑

j=1

(log σ +
log 2π

2
+

θ2
j

2σ2
) (5)

where n is the dimension of the feature vector x. Fi-

nally, the single point estimation of θ is:

θ∗ = argmax l(θ) (6)

Since the negated log-posterior is convex, we can use

gradient descent to solve the MAP problem 6. We used

the implementation from [14].

3. SVM. Although SVM doesn’t provide explicit feature

selection or shrinkage, it is still possible to have rela-

tively low error rate. We used the implementation from

[15] with linear kernel.
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3. Experiment and Result

3.1. Data

To prepare the data, two segments on the highway are se-

lected. An IP camera is mounted at the position of the rear

mirror inside the vehicle facing the front towards outside.

The camera is synchronized with the GPS data through the

CAN bus in the vehicle [16]. Eight short video sequences

have been taken repeatedly on these two segments at dif-

ferent daytime hours. We randomly sampled from these se-

quences to get images from different lanes. The numbers

of images collected for lane 1 to lane 4 are 112, 500, 750

and 750 respectively. The images are sampled sparsely to

reduce the correlation between consecutive frames. Since

the dataset is unbalanced, in the later training phase, we set

the initial weights for Adaboost according to the propor-

tion of the number of images for each class, and also adjust

the penalty parameters of relaxation for different classes in

SVM according to the ratio between different classes.

3.2. Horizon Detection

We estimated the horizon positions for all the 2112 im-

ages, and the results are summarized in Table 1 and Fig-

ure 6. Around 98% of the detected horizon lies in the ap-

proximate 5% relative error band. The mean of the relative

error is only 1.33% which is 3 pixels in our case.

mean of the relative error std of the relative error

1.33% 3.85%

Table 1. Horizon Detection Error Rate

0 500 1000 1500 2000 2500
100

150

200

250

300

350

400
estimated horizon position
5% relative error band

Figure 6. Estimated horizon positions. The x-axis is the index of

each image, and the y-axis is the y coordinate of the estimated

horizon.

Lane 1 Lane 2 Lane 3 Lane 4 Recall

Lane1 109 3 97.32%
Lane2 2 435 53 10 87.00%
Lane3 36 688 26 91.73%
Lane4 8 43 699 93.20%

Precision 98.20% 90.25% 87.76% 95.10%

Table 2. Confusion Table for Adaboost with Decision Trees

Lane 1 Lane 2 Lane 3 Lane 4 Recall

Lane 1 110 2 98.21%
Lane 2 3 464 30 3 92.80%
Lane 3 23 689 38 91.87%
Lane 4 3 40 707 94.27%

Precision 97.35% 94.31% 90.78% 94.52%

Table 3. Confusion Table for Bayesian Logistic Regression

Lane 1 Lane 2 Lane 3 Lane 4 Recall

Lane 1 110 2 98.21%
Lane 2 2 453 37 8 90.60%
Lane 3 46 670 33 89.33%
Lane 4 6 44 700 93.33%

Precision 98.21% 89.35% 89.21% 94.47%

Table 4. Confusion Table for SVM

3.3. Classification

The classifier for each class is trained in one vs. all fash-

ion. At the test stage, the classification result is chosen as

the one with the highest probability. We used 3-fold cross-

validation to both choose parameters associated with the al-

gorithm and evaluate the performance of the three different

methods. The fold number is 3 instead of the more common

5 or 10 because we want to reduce the correlation between

the training and test data.

The confusion table for each algorithm is shown in Ta-

bles 2, 3 and 4. All three methods give comparable results,

and Bayesian logistic regression has slightly better accuracy

for lane 2 and lane 3. In general, the precision and recall

rate for each class is around or above 90%. In addition, the

results are consistent with the intuitions in terms of: i) lane

1 and lane 4 have higher accuracy than lane 2 and lane 3,

since lane 1 and lane 4 are less likely to be confused by

other classes; ii) lane 2 and lane 3 are more likely to be con-

fused by each other than to be confused by lane 1 or lane 4;

iii) lane 1 is more likely to be confused by lane 2 than lanes

3 or 4, and lane 4 is more likely to be confused by lane 3

than lanes 1 or 2.

Moreover, top features selected by Adaboost with de-

cision trees are shown in Figure 7. The oriented filters

at different cells correspond to the selected features. In-

terestingly, these top selected features have good interpre-

tations: the positions and orientations of these filters are

more or less consistent with the positions and orientations

of the lane markers or the vehicles. For example, for the
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(a) Lane 1

(b) Lane 2

(c) Lane 3

(d) Lane 4
Figure 7. Selected top features by Adaboost with decision trees for

different classes.

lane 2 classifier, most of the filters are at the positions of

the lane boundaries and the orientations are either parallel

(strongest response) or orthogonal (weakest response) to the

lane markers. Another example is the vertical filter at [2nd

row, 3rd column] and the horizontal filter at [3rd row, 2nd

column] for the lane 3 classifier, since the vertical and hori-

zontal edges are probably generated by vehicles.

4. Conclusion and Discussion
In this paper, we studied the self lane assignment infer-

ence problem as an example of active egocentric vision ap-

plication with data fusion. We proposed a novel and effec-

tive algorithm to infer the lane number from a single im-

age based on a holistic representation from low-level fea-

tures. The experiment results showed that the proposed

method achieves high accuracy with precision and recall

rates around or above 90%. Some further improvements

could include incorporating temporal dimension using CRF

(Conditional Random Fields) and making spatial partition-

ing more robust, perhaps by drawing rays from the vanish-

ing point.
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