
Learning texton models for real–time scene context

Alex Flint, Ian Reid and David Murray
Active Vision Laboratory
Oxford University, UK

{alexf,ian,dwm}@robots.ox.ac.uk

Abstract

We present a new model for scene context based on the
distribution of textons within images. Our approach pro-
vides continuous, consistent scene gist throughout a video
sequence and is suitable for applications in which the cam-
era regularly views uninformative parts of the scene. We
show that our model outperforms the state–of–the–art for
place recognition. We further show how to deduce the cam-
era orientation from our scene gist and finally show how
our system can be applied to active object search.

1. Introduction
Traditional computer vision systems have taken a local

approach to image understanding in which visual elements
are sought by searching exhaustively over an image. For
example, a typical approach to object detection is to invoke
a classifier on many windows within an image, inputting
for each region some local image evidence and outputting
the presence or otherwise of the relevant objects ([16] for
example).

Recently, several researchers have taken a different ap-
proach in which features generated from the whole image
are provided to the inference process alongside the tradi-
tional local image evidence [14, 3]. This gives context to
the local inference process since the global image informa-
tion can be used to infer how the local evidence fits into
the “bigger picture”. For example, the accuracy of object
detection improves when using global image features since
detections in unlikely places (pedestrians in the sky, cars in
trees) can be removed [14, 1].

Many of these approaches are designed to operate on
well–posed photographs—the type that humans generate
when a camera is oriented and directed at the scene with
some care [2, 8]. In contrast this paper is concerned with
so–called “egocentric” applications in which the camera is
attached to some agent (often a human) that is acting in
the world without concern for how the camera’s view is
affected. Such applications are characterized by frequent

frames that contain uninformative views of the scene. For
example, consider Figure 1: the top row shows typical im-
ages from the dataset of Fei–Fei and Perona [7] while the
bottom row shows random frames from an ego–centric se-
quence. Such sequences also tend to contain more frequent
motion blur and poorer illumination conditions as a result
of the agent’s lack of concern for the camera.

Figure 1. Well–posed photographs (top row) versus frames cap-
tured in an egocentric application (bottom row). The latter contain
less informative frames, often poorly composed and illuminated.

Applications in the egocentric domain often require the
system to process incoming frames at video rate in order
to provide timely feedback to the wearer or in order that
the system can update its knowledge about the world. Even
when the system is not required immediately to report its
knowledge, video frames will be arriving continuously and,
given an unknown sequence length and limited storage ca-
pacity, the system will have to process the video at frame
rate or else eventually start dropping frames.

We are particularly interested in indoor environments
since these tend to produce particularly challenging images
(often containing just a patch of carpet or section of a wall)
but are the context in which vision for assistive applications
and household robots will be required to operate.

In this paper we present progress towards a new model
for scene context that is suitable for egocentric applications.
Our approach transforms input frames into a set of textons
and then deduces scene context from the spatial layout of
the textons. We can examine the spatial layout of textons
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in an image in order to recognize places or deduce facts
about the camera orientation. Alternatively we can model
the spatial relationship between textons and some object of
interest in order to perform “active search” by using the ob-
served textons to assess the probability of finding the object
of interest at locations inside and outside the image.

The remainder of this paper is organized as follows. In
section 2 we describe previous work in this area, then in
section 3 we present our texton model for scene context. In
section 4 and 5 we describe two classification problems to
which we have applied our system, place recognition and
camera orientation classification. In section 6 we show how
our system can be used for active object search. Finally,
section 7 contains closing remarks.

2. Previous work
The work of Torralba et al. has been very influential in

underscoring the importance of context in vision [13]. In
[11, 14] Oliva and Torralba proposed the “gist” descriptor
to capture holistic image context. Under their approach an
image is divided into a 4 × 4 grid and then passed through
a bank of Gabor filters. The average response for each filter
in each cell is inserted into a feature vector and then PCA is
used to reduce dimensionality. Torralba demonstrates scene
category recognition by estimating Gaussian mixtures for
each class in gist feature space. The goal of our work is sim-
ilar to theirs but we model the texture structure of scenes in
a more explicit way that allows both improved recognition
performance and reduced training data requirements.

Hoiem, Efros, and Hebert (HEH) [2] have shown how
to recover basic geometric structure from a single image.
Their system is able to segment an image into “ground”,
“upright”, and “sky” components. They learn an affinity
metric between superpixel pairs using a range of appearance
statistics including colour, texture, location, and vanishing
points. They further show how this model can be combined
with an object detector to improve both geometry estimates
and object detection [3]. Our system is also intended to
capture geometric context although it is not as explicitly
3–dimensional as their method. However, our system is
intended for video sequences that would be unsuitable for
the HEH system for a number of reasons: apart from con-
taining indoor environments (they concentrate on outdoor
scenes) our dataset contains frequent uninformative images
(see Figure 1) as well as images captured at odd camera ori-
entations. Unlike the HEH approach, our system runs in
real–time and does not require ground–truth segmentations
for training.

Heitz and Koller have demonstrated an object detection
system in which spatial context is introduced by learning
relationships between objects and the appearance of image
patches that are likely to appear nearby [1]. They cluster
superpixels based on colour and texture features and then

apply structural EM to learn the object/region relationships.
Our work is distinct to theirs because (1) our approach is
not inherently tied to object detection, (2) we use textons
instead of superpixels, (3) we model continuous relation-
ships between scene parts, whereas they select from a pool
of discrete relationships (“left of”, “below”, etc), and (4)
our system operates in real–time.

Within the robotics domain, context has been used by
Mozos et al. [10] to deduce place categories from laser
range data. They compute a number of geometric features
from the range scans and use AdaBoost to recognise rooms,
doorways, and corridors.

The first account of textons was given by Julesz [5], who
introduced the idea to the neuroscience community over 25
years ago. The texton notion that we adopt in the present
work was first formulated in the computer vision domain
by Malik et al. [9]. They run a bank of linear filters over
the image and then vector quantize using K–means clus-
tering, with the resultant cluster centres becoming texton
exemplars.

The use of textons for material recognition was also ex-
plored by Varma and Zisserman [15], who model material
appearances in terms of a histogram over texton frequen-
cies. Our notion of textons follows this work closely, al-
though we apply it to a completely different problem. Two
alternative definitions of textons were discussed in [17], but
neither of these is appropriate for our application due to
training data requirements and efficiency.

3. Textons for Scene Context
In this section we describe our model for scene context.

For each image we run a bank of Gabor filters containing
no orientations and ns scales. Each pixel is then assigned
a (no × ns + 3)–dimensional feature vector consisting of
the the filter responses at that point as well as the pixel’s co-
ordinates in HSV colour space. In our experiments we set
no = 4 and ns = 3 but in practice we found that varying
these parameters had little effect on the performance of our
algorithm. This agrees with the finding in [14] that even
using entirely different filters does not significantly affect
overall performance (their comment was with regard to Ga-
bor filters versus steerable pyramids).

Using K–means we cluster the feature vectors for all pix-
els in all images. The output cluster centres become the
texton codebook. We then return to the original images and
label each pixel by the index of the texton that best matches
(in the Euclidean sense) its feature vector. This reduces the
dimensionality of the pixel data substantially, and makes
our model tractable in terms of both time and training data
requirements. In our experiments we set K = 25 but sim-
ilar results were obtained with values between 15 and 50.
For K < 15 there are too few cluster centres to capture im-
portant scene structure and for K > 50 the system selects
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outliers as many of the cluster centres, which has negligible
effect on classification performance but increases the com-
putational complexity of the model.

Our system is predicated on the hypothesis that the lay-
out of textons in images is correlated with scene structure
and can be used for inference about visual context. This
correlation can be seen explicitly in Figure 7: the bottom
two rows depict textons that the system has selected to ex-
emplify edges that are roughly vertical (3rdrow) and roughly
horizontal (4throw). The three rightmost columns show an
average over the occupancy maps for all images in our “cor-
ridor” dataset. These are instructive because they show that
the texton locations encode some of the geometric structure
of the environment. For example, the “vertical edge” texton
(3rdrow) tends to be stratified such that vanishing points are
below the image centre when the camera is facing down-
wards and above it when the camera is facing upwards, as
expected. Hence the system has identified without supervi-
sion some of the image elements and geometric constraints
that are sought explicitly in other vision systems (e.g. [6]).

The textons generated for a typical indoors training set
are as follows. The first 20% or so of the textons represent
image regions that are essentially textureless (i.e. the Gabor
responses are all close to zero). The next 60% or so repre-
sent edges at different orientations and scales. The remain-
ing textons typically represent more exotic image elements
such as blobs and ridges.

We wish to model image categories according to the lo-
cations in which textons appear. One popular approach
is the bag–of–features model [4] but this would tie us to
the image frame (and hence to a particular camera orienta-
tion) since pixel locations are represented relative to the im-
age origin. Instead we propose a new bag–of–texton–pairs
model in which an image is represented as a collection of
observed texton pairs {(ti, tj , si,j)} where ti and tj are the
texton labels and si,j is the displacement between the image
locations at which they were observed. By considering only
displacements and not absolute pixel locations in our model
we gain some robustness to camera orientation.

For an image I containing N pixels there are N2 such
pairwise observations. We model the likelihood given class
c as

p(I | c) =
N∏

i=0

N∏
j=0

p(ti tj si,j | c) (1)

where we have assumed independence between observa-
tions for tractability. We compute the likelihood (1) by esti-
mating the full joint p(ti, tj , si,j , c) using a histogram. We
could have used Parzen windowing [12] for the continuous
variable si,j but due to the very large number of samples we
obtain (even from a modest number of training images) we
found this to be unnecessary.

For images of reasonable size the cost of enumerating all

N2 texton pairs is prohibitively expensive. We overcome
this by overlaying a M ×M grid on the image and count-
ing the occurrences of each texton within each grid cell. We
then enumerate all pairs of grid cells and evaluate the tex-
ton pairs in aggregate. Hence for grid cells Ca and Cb con-
taining na

i and nb
j instances of texton ti and tj respectively,

we evaluate na
i nb

j instances of the observation (ti, tj , sa,b)
where sa,b is the distance between the centres of the grid
cells. We have lost some precision in the texton locations
since each texton is effectively moved to the centre of the
grid cell containing it, but our experiments show that we
are still able to capture sufficient salient information.

During training we evaluate these aggregated observa-
tions by multiplying the entry we make in the histogram by
na

i nb
j , and when classifying some input image I the aggre-

gate observations correspond to multiplications in the class–
conditional log likelihood:

log p(I | c) (2)

=
M2∑
a=0

M2∑
b=0

K∑
i=0

K∑
j=0

na
i nb

j log p(ti tj sa,b | c) (3)

In both cases the aggregated observations can be evaluated
in a single step so the complexity is reduced from O(N2) to
O(M4K2). In practice we found that setting M=8, K=25
was sufficient to capture much of the salient image informa-
tion while allowing our system to run at video frame rate.

4. Place Recognition
We applied our system to the problem of place recog-

nition. Our data set consisted of several video sequences
captured in a hostel using a low–quality camera with a res-
olution of 320 × 240, which moved rapidly with the user’s
upper body. The sequences involved frequent motion blur
and rapid variations in camera orientation.

We labelled each frame with the place that it was cap-
tured in. There were five labels: bedroom, kitchen, common
room, garden, and corridor. As an added challenge we gave
all frames captured in corridors the same label (there were
four different corridors in the sequence with considerable
variations in appearance).

This experiment does not correspond to place category
recognition since most of the labels included frames from
only one place instance. However, it is harder than strict
landmark–style localization because, as shown in Figure 2,
many images with the same label contain non–overlapping
views of the room they were captured in, yet the system is
expected to recognize all of them as belonging to the same
place.

We compared our system with the gist descriptor of Tor-
ralba et al. and a K–nearest–neighbours baseline. For the
gist descriptor we used the same Gabor filter bank that
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Figure 2. Four frames with the “bedroom” label. There are almost
no overlapping scene parts but the system is required to (and did
successfully) recognize each of them as part of the same place.

we used in our own system and we estimated the class–
conditional likelihood in feature space by building Gaus-
sian mixture models with the Gaussians constrained to be
spherical, exactly as described in [14].

Initially we used 230 frames for training and 490 frames
for evaluation (our training and evaluation sets were taken
from separate sequences). The results from this experiment
are shown in the middle row of Table 1 and in Figure 3.
Our system outperformed Torralba’s by a large margin. We
suspected that the poor performance of Torralba’s system
was due to the training data not sufficiently populating the
32–dimensional feature space. This exemplifies one of the
important advantages of our system — namely the ability to
learn from limited training data. However, to show that this
is not the only advantage of our system we ran auxiliary
experiments with larger and smaller training sets. When
the training set was enlarged our system outperformed Tor-
ralba’s by a significant but smaller margin, and when the
training set was decreased our system’s performance dimin-
ished only slightly, whereas we were unable to estimate the
Gaussian mixture for Torralba’s approach due to the spar-
sity of training samples.

Figures 4 and 5 show positive and negative results from
our system respectively. Note how our system recognises
images containing disjoint views of a room as belonging to
the same place.

# train frames Our system Torralba et al. KNN
103 81% — 45%
230 83% 62% 52%
565 85% 70% 55%

Table 1. Place recognition results with varying numbers of training
frames (total for all labels). For the experiment with 103 training
frames (top row) we were unable to estimate the Gaussian mix-
tures required for Torralba’s system due to the sparsity of the train-
ing examples in feature space.

5. Camera Orientation Classification

In this section we show how our system can deduce a
coarse camera orientation from a single image. We are in-
terested only in the tilt of the camera with respect to the
ground plane. Our intention is to rapidly make a coarse es-
timate of camera orientation such as might be provided as

Figure 3. Confusion matrix for place recognition.

a prior to a SLAM system or similar. We pose the prob-
lem as one of classification with three possible labels: “up”,
“straight”, and “down” (see Figure 6). The “straight” la-
bel represents images taken with the camera axis parallel
to the ground plane, plus or minus 22.5◦, and the “up” and
“down” labels represent all orientations facing further up-
wards or downwards respectively.

Figure 6. Labels for camera orientation classification.

We captured three sequences in which the camera ori-
entation was fixed within the one of the above orientation
ranges. We included footage from five different places (the
same ones used in the previous section) but we labelled the
frames according to orientation only. We then trained our
system to distinguish between the three orientation cate-
gories as in the previous section. This represents a difficult
classification task because the system must learn properties
that correlate with camera orientation but are not tied to the
appearance of a particular place.

We again compared with the “gist” of Torralba et al. and
a KNN baseline. We ran auxiliary experiments with an en-
larged training set as in the previous section. The results of
these experiments are shown in Table 2 and Figure 8. Our
system again outperformed both other classifiers by a sig-
nificant margin. Some example frames for which our sys-
tem correctly identified the camera orientation are shown
in Figure 9. Of particular interest is our system’s ability to
generalize across images taken with the same camera orien-
tation at several different locations.

Figure 8. Confusion matrix for camera orientation classification.
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Figure 4. Example frames for which our classifier succeeded. The ground truth label is underlined and the output from our system is
starred. We show the log likelihoods not the actual posterior because the large number of terms in (1) causes the posterior to always be
sharply peaked and hence the log likelihood is more informative for visualisation. Note the variation between frames with the same label,
and the poverty of the information contained in many frames.

Figure 5. Example frames for which our classifier failed. See caption of Figure 4.

# train frames Our system Torralba et al. KNN
88 70% 61% 59%
728 79% 63% 59%

Table 2. Camera orientation classification results using small and
large training sets. We were able to estimate the Gaussians for
Torralba’s system using only 88 training examples because there
were fewer labels than in the place recognition problem.

6. Active Search
To demonstrate the powerful contextual information pro-

vided by our system we applied it to the problem of ac-
tive search. The scope of this problem varies considerably
across the literature: in our case we are interested in deter-
mining where a particular object is likely to appear relative
to the current camera view, and importantly we consider lo-
cations both inside and outside the image. That is, given the

Figure 9. Twelve frames for which our system correctly identified
the camera orientation. From the top to bottom the rows contain
images from the “up”, “straight”, and “down” classes.
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Figure 7. Four example textons generated unsupervised for the camera orientation classification problem. From top to bottom the textons
represent roughly “wall or ceiling”, “floor”, “vertical edge”, and “horizontal edge”. The six columns on the left show examples of where
the texton was found. The three columns on the right show the average occupancy map over our dataset for images taken from an upwards–
facing, horizontal, and downwards–facing camera (from left to right in the figure). The layout of the textons correlate strongly with camera
orientation, which illustrates how our system is able to distinguish between camera orientations based on texton layout.

current image evidence, our system can answer questions
about how likely the object is to appear at locations within
the image and how likely we are to find the object if we
move the camera in various directions. This differs from the
standard formulation in which only locations within the im-
age are considered [14, 1, 3]. This crucial difference stems
from our ultimate goal of “steering” an active camera in or-
der to find an object that may not currently be within the
camera’s field of view (although we do not use an active
camera in the present work), whereas the traditional formu-
lation is motivated by the desire to improve the accuracy
and/or efficiency of an object detector [14, 1, 3].

We wish to evaluate the posterior

p(x | I) (4)

that the object is present at location x in image I . The loca-
tion x is measured in pixel coordinates but may be outside
the image bounds, in which case (4) is to be interpreted as
the probability of observing the object at x were the camera
centre centre to be translated orthogonal to the optical axis
such that the location x became visible in the camera frame.

Following our approach to classification we transform
an input image I into a collection of textons D = {(ti,yi)}
where ti is the ithtexton and yi is its location in the image.
We model the posterior (4) in terms of the observed textons.
For tractability we assume that the textons are conditionally
independent of each other given the object location x. We

have

p(x | D) =
p(x t1 · · · tN y1 · · ·yN )
p(t1 · · · tN y1 · · ·yN )

(5)

=
∏

p(x ti yi)∏
p(ti yi)

(6)

log p(x | D) =
∑

log p(x ti yi)

−
∑

log p(ti yi)

(7)

The first term in (7) describes the relationship between
texton positions and object positions. We model this distri-
bution in terms of the the object–texton displacement:

p(x, ti,yi) = f(x− yi, ti) (8)

By assuming that only the displacement between objects
and textons is important we allow our system to reason
about locations outside the image boundary, and simulta-
neously gain some independence from camera orientation.

We learn the function f in (8) and the second term in (7)
from a training set by building histograms. As in the pre-
vious section, we could have used Parzen windowing but
found it to be unnecessary due to the large number of tex-
tons present in each image.

6.1. Experiments

We trained our system on several common objects ap-
pearing in our indoor sequences. In each case the train-
ing set consisted of a set of frames with the object location
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y marked in each. As described above, the textons were
learned unsupervised.

In one experiment we trained our system on 86 frames
of 3 different fire extinguishers. The intention was that our
system would learn that fire extinguishers are found near
the intersection of the wall and floor. Figure 11 shows the
marginal p(y | D) representing the probability of finding
a fire extinguisher at various heights relative to the camera
centre. Figure 12 shows the probability p(x | D) of find-
ing a fire extinguisher at locations outside the image. Our
system is able to generalize well from the training data and
produces sensible results even in the presence of uninfor-
mative camera views.

In separate experiments we trained our system to find
doorknobs and kettles. In the former case we obtained
results that were equally as encouraging as the fire extin-
guisher sequence, but in the latter case our system was not
able to generalize well from a single training sequence con-
taining only one kettle instance. This suggests that our sys-
tem is best suited for objects that occur frequently in the
environment rather than objects for which there is only one
instance present.

Figure 10. Selected training images for the fire extinguisher active
search experiment.

7. Conclusion
We have shown how scene context can be deduced from

the spatial layout of textons in an image. We have reported
the performance of our system when applied to place recog-
nition, camera orientation classification, and active search
in indoor environments. Our system outperforms the state–
of–the–art for the two classification problems and obtains
encouraging results when applied to active search. Results
are particularly impressive in situations where only a lim-
ited section of the environment is visible, such as frames
containing only a section of the floor or walls.

Our system’s most frequent failure case occurs for im-
ages containing scene parts that are common to several
places. This suggests introducing temporal integration to
represent the dependency between camera locations in con-
secutive frames. In order to focus exclusively on recogni-
tion performance we did not include such experiments in
the present work.

This paper represents preliminary results and we intend
to test our system within a wider class of environments and
with more object types. In particular we intend to com-
pare our findings with those obtained by others on standard

datasets.
A major advantage of our system is its video-rate per-

formance. Most contextual vision systems proposed in the
past have been targeted at object recognition, and speed of
computation has not been a priority. Our system has been
designed expressly for live use, and represents one of the
first applications of contextual vision techniques to this do-
main.
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