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Abstract

Temporal segmentation of human motion into actions is
central to the understanding and building of computational
models of human motion and activity recognition. Several
issues contribute to the challenge of temporal segmenta-
tion and classification of human motion. These include the
large variability in the temporal scale and periodicity of
human actions, the complexity of representing articulated
motion, and the exponential nature of all possible move-
ment combinations. We provide initial results from inves-
tigating two distinct problems - classification of the over-
all task being performed, and the more difficult problem of
classifying individual frames over time into specific actions.
We explore first-person sensing through a wearable camera
and Inertial Measurement Units (IMUs) for temporally seg-
menting human motion into actions and performing activity
classification in the context of cooking and recipe prepa-
ration in a natural environment. We present baseline re-
sults for supervised and unsupervised temporal segmenta-
tion, and recipe recognition in the CMU-Multimodal activ-
ity database (CMU-MMAC).

1. Introduction
Temporal segmentation of human motion into actions

is central to the understanding and building computational
models of human motion and activity recognition. Research
that addresses the problem of detection, recognition and
synthesis of human human motion have gained substan-
tial interests from both academia and industry over the last
few years due to the large number of applications[1], [20],
[13], [15], [22]. Unsupervised techniques for learning mo-
tion primitives from data have recently drawn the interest
of many scientists in computer vision [9], [28], [27], [17]
and computer graphics [4], [16], [3], [8]. Although previ-
ous research has shown promising results, recognizing hu-
man activities and factorizing human motion into primitives
and actions (i.e. temporal segmentation) is still an unsolved
problem in human motion analysis. The inherent difficulty
of human motion segmentation stems from the large intra-
person physical variability, wide range of temporal scales,

Figure 1. Action segmentation and classification from first-person
sensors from the CMU-MMAC dataset.

irregularity in the periodicity of human actions, and the ex-
ponential nature of possible movement combinations. In
this work we explore the use of Inertial Measurement Units
(IMUs) and a first-person camera for overall task classifi-
cation, action segmentation and action classification in the
context of cooking and preparing recipes in an unstructured
environment. As a first step to exploring this space, we in-
vestigate the feasibility of standard supervised and unsuper-
vised Gaussian Mixture Models (GMMs), Hidden Markov
Models (HMMs), and K-Nearest Neighbor (K-NN) tech-
niques for action segmentation and classification on these
two modalities. Furthermore, to alleviate the need of man-
ual annotation, we also investigate the use of unsupervised
techniques and compare performance with the supervised
methods.

This paper provides baseline results for recipe classifica-
tion, action segmentation and action classification on the
Carnegie Mellon University Multimodal Activity (CMU-
MMAC) database [6]. The database contains data from
human behavior in a natural kitchen environment, includ-
ing sensor modalities that capture the user’s perspective.
Figure 1 illustrates the problem of temporal segmentation:
given a stream of IMU data and first-person vision, we want
to find a temporal decomposition and classification of the
recipe the user is cooking.

The remainder of the paper is organized as follows. Sec-
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tion 2 discusses prior work, section 3 introduces the action
database we used, and some of the challenges it presents
are examined in section 4. Sections 5 and 6 show baseline
experiments using the IMU sensors and first-person video
from the CMU-MMAC database. Finally, Section 7 con-
cludes the paper and outlines future work.

2. Previous work
In the area of wearable and ubiquitous computing

Schiele et al. [24] proposed an interactive computer vision
and augmented reality system that autonomously provides
media memories based on objects in the view. Object recog-
nition is performed using multidimensional histograms of
Gaussian derivatives from images collected by a wearable
camera. Mayol and Murray [19] recognize hand activity
by detecting objects subject to manipulation using a wear-
able camera on the shoulder. Data was collected from one
subject and five events are recognized via their associated
objects. IMUs for action recognition have been explored by
several groups. For example, Lester et al. [14] use discrim-
inative classifiers and HMMs to recognize a small set of
ten actions (e.g. running, walking, etc.) from a multimodal
data set (e.g. accelerometer, audio, light sensor on a sensor
board) in an unconstrained environment.

There exists an extensive graphics and computer vision
literature that addresses the problem of grouping human ac-
tions. In the computer graphics literature, Barbic et al. [3]
proposed an algorithm to decompose human motion into
distinct actions by detecting sudden changes in the intrinsic
dimensionality of the Principal Component Analysis (PCA)
model. Jenkins et al. [11], [8] used the zero-velocity cross-
ing points of the angular velocity to segment the stream
of motion capture data. Jenkins and Mataric [12] further
extended the work by finding a non-linear embedding, us-
ing Isomap [26], that reveals the temporal structure of seg-
mented motion. Recently, Beaudoin et al. [4] developed a
string-based motif-finding algorithm to decompose actions
into action primitives and interpret actions as a composi-
tion on the alphabet of these action primitives. The al-
gorithm allows for a user-controlled compromise between
motif length and the number of motions in a motif. Rui
and Anandan [23] used principal components of frame-to-
frame optical-flow to discover temporal trajectories of hu-
man motion in video. Recently, Guerra-Filho and Aloi-
monos [9], [10] presented a linguistic framework for mod-
eling and learning of human activity representations. The
low level representation of their framework, motion primi-
tives, referred to as kinetemes, are studied as the foundation
for a kinetic language.

In work using cameras observing the subjects, Schuldt
et al. [25] presented a method using local space-time fea-
tures to capture six types of human actions (walking, jog-
ging, running, boxing, hand waving and hand clapping)
from video. Blank et al. [5] perform action recognition, de-
tection and clustering on several outdoor actions on known

background using local space-time saliency, action dynam-
ics, shape structure and orientation. Efros et al. [7] recog-
nize actions at a distance on a ballet, tennis, and a soccer
dataset. They introduce a novel motion descriptor based on
optical flow measurements in a spatio-temporal volume. In
contrast to using cameras observing the subject from a dis-
tance, we investigate the first-person vision modality from
the CMU-MMAC database.

From the action recognition literature using other sen-
sors, Bao and Intille [2] investigated performance of recog-
nition algorithms with multiple, wire-free accelerometers
on 20 activities (e.g. running, walking, reading) using data
sets annotated by the subjects themselves. Wu et al. [29]
presented a DBN model which incorporates common-sense
activity descriptions, RFID sensor events, and video data
from a static camera to perform recognition of 16 daily
kitchen activities. In contrast to the type of activities ex-
plored in this work, the CMU-MMAC database contains
data from preparing complete recipes as experienced from
the user’s perspective.

This project differs from previous work in that it explores
action classification in a non-instrumented environment, us-
ing modalities collected from the user’s perspective and tar-
geted at the class of actions observed in performing every-
day cooking.

3. Dataset
The Carnegie Mellon University Multimodal Activity

database (CMU-MMAC)[6] database contains multimodal
measures of the human activity of subjects performing the
tasks involved in cooking and food preparation. A kitchen
was built and to date forty subjects have been recorded
cooking five different recipes: brownies, pizza, sandwich,
salad and scrambled eggs. The following modalities were
recorded: • Video: (1) Three high spatial resolution (1024
x 768) color video cameras at 30 Hertz. (2) One low spatial
resolution (640 x 480) color video cameras at 60 Hertz. (3)
One low spatial resolution (640 x 480) color video cameras
at 30 Hertz. (4) One wearable medium spatial resolution
(800 x 600) camera at 30 Hertz.
• Audio: Five balanced directive microphones at 44100
Hertz and 16 bit/sample.
• Motion capture: A Vicon motion capture system with 12
infrared MX-40 cameras. Each camera records images of 4
megapixel resolution at 120 Hertz.
• IMU: (1) 5 3DM-GX1 IMUs, each with a triaxial ac-
celerometer, gyro and magnetometer sensor sampling at
125 Hz. (2) 4 6DOFv4 Sparkfun Bluetooth IMUs, each
with a triaxial accelerometer, gyro and magnetometer sen-
sor sampling at 62 Hz.
• Wearable: (1) Wearable e-watch - triaxial accelerometer
and light intensity sensors [18]. (2) Bodymedia Sensewear
Pro 2 (Bodymedia, Pittsburgh, PA), measuring Heat Flux,
Galvanic Skin Response, Skin Temperature and Near-Body
Temperature. (3) RFID reader i-Bracelet at 1 Hz [29].
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Figure 2. Examples of various ways subjects stirred the brownie mix - first pouring in the brownie mix, then stirring; stirring while pouring
in the brownie mix; stirring while holding two utensils. Top row is first-person vision, middle row shows the top 90 components of the gist
for 100 frames before the snapshot, and 100 frames after the snapshot, bottom row is IMU data for same time interval (approximately 7
seconds total length).

The various modalities were recorded using several com-
puters, which were synchronized using the Network Time
Protocol (NTP). The dataset can be downloaded from
http://kitchen.cs.cmu.edu/.

For these initial results we consider two recipes per-
formed by seven subjects - making brownies from a dry mix
box, and making an omelet. We explore two sensor modal-
ities - five IMUs located on each of the subject’s wrists, an-
kles, and one on the waist, and the first-person vision cam-
era. The average number of frames for each person for the
brownies recipe is 11784, for the omelet recipe is 6875, and
the data from the seven subjects consists of a total of 82489
frames for the brownies recipe, and total of 48131 for the
omelet recipe, all at 30Hz sampling frequency.

This dataset differs from other activity recognition
databases as it contains a multitude of cooking activities
from a larger number of people. The subjects were asked
to perform the recipes in a natural way, and no instructions
were given as to how to perform each task. The actions
vary greatly in time span, repetitiveness, and manner of ex-
ecution. In addition to the variety of actions, this dataset
contains key modalities that directly relate to the person’s
perspective - wearable IMUs and first-person vision.

4. Challenges
4.1. Data annotation

As an initial step to exploring the dataset, we first con-
sider possible levels of annotating actions. After initial eval-
uation of the data, we have found that data labeling of every-
day activities is ambiguous due to the various ways a task
can be performed and described.

For instance, we can label at the recipe level (e.g. ”beat
two eggs in a bowl”), at a more detailed action level (e.g.
”break an egg”), or at a very fine-grained level of simple

movements (e.g., ”reach forward with left hand”). As a
first step to evaluating performance of action recognition on
this dataset, we label 29 actions for seven subjects making
brownies, as shown in Table 4.2.

Not all actions were performed by all subjects, and some
frames belong to unlabeled actions (e.g., frames in between
two distinct actions are difficult to classify at the chosen
level of annotation).
4.2. Variability in action execution

One of the big challenges in this dataset is the great va-
riety of performing each of the daily kitchen actions ob-
served, as no instructions of how to perform the recipe were
given to the subjects. For example, one of the subjects pours
the brownie mix in the bowl of beaten eggs and then stirs the
ingredients, while another stirs while pouring in the brownie
mix, and yet a third person stirs while holding a second
utensil in the mix (see Figure 2). This diversity presents am-
biguity in describing the action as either ”pouring in mix”
or ”stirring mix,” or as a separate action ”pouring in mix
while stirring.”
4.3. Object recognition and scene detection

Many of the objects in the dataset lack texture as the dis-
tinctive parts may not be visible from the typical viewpoint
of the user, making it difficult to use object recognition and
object tracking algorithms based on texture features (all ob-
jects used in this dataset were taken from the usual everyday
kitchen inventory).

In addition, cooking involves transforming ingredients
from one shape and color to another, e.g. breaking eggs and
beating them, pouring in brownie mix, etc, rendering ob-
ject tracking very difficult. The cooking ingredients con-
stitute a significant number of the objects in view in first-
person vision, and are thus an important part of activity un-
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Open cupboard (bowls) Get fork
Open cupboard (brownie) Walk to fridge
Open fridge Get eggs
Close fridge Walk to counter
Break one egg Beating egg(s)
Pour in water in bowl Get oil from cupboard
Pour oil in cup Put oil away
Open brownie box Pour in brownie mix
Pour oil in bowl Stir brownie mix
Get baking pan Spray with Pam
Put Pam away Set stove settings
Pour mix in baking pan Put pan in oven
Pour tap water in cup Put cap on
Get Pam from cupboard Remove cap
Read recipe

Table 1. List of 29 manually selected action classes for annotation
of the brownies recipe.

derstanding. An alternative method to object recognition
that can provide information about the objects in use is an
RFID bracelet that reads tags on objects, as was success-
fully used in [29]. While we have tagged several objects
in the kitchen, some key cooking ingredients used in this
dataset (e.g., eggs, forks) do not lend themselves to an easy
and effective tagging.

As a start, we explore action classification without ob-
ject use information, concentrating on the type of scene as
observed through the first-person camera. Specifically, we
investigate if the global scene information from the first-
person video has discriminative power for recipe identifi-
cation and action classification. The first-person video ex-
hibits substantial amount of rapidly changing pixel values as
the subject performs the recipe steps. However, we note that
most actions are performed while the background remains
somewhat constant. For example, breaking eggs, beating
eggs, pouring ingredients in a bowl, etc, are always per-
formed while looking at the bowl on the counter, and not
while looking in the fridge, which is associated with the ac-
tion of fetching the eggs.

5. Unsupervised segmentation
As a first step to exploring features from first-person vi-

sion and IMU sensors in the context of daily activities, we
investigate data segmentation through unsupervised tech-
niques. We perform two tasks - recipe classification and
unsupervised temporal segmentation on three data modali-
ties: vision only, IMU sensors only, and combined vision
and IMU sensor data. To evaluate the unsupervised re-
sults, each estimated cluster is displayed against the man-
ually segmented data. A decision is made whether each
cluster contains coherent chunks of frames as defined by
the manual labels. We report the total number of frames
in the learned clusters that correspond to the chosen action
cluster.

5.1. Task classification from first-person vision
One of the key benefits of first-person vision is that it re-

lates to the user’s intentions. We expect that what the user
sees should be correlated with the action they are perform-
ing. As an initial analysis of the first-person vision modality
we explore scene type as one possible cue to determine what
stage in the recipe each frame belongs to.

We investigate if global features capture the recipe type
by modeling the sequence of scene transitions in time. Not-
ing that many actions are performed while looking at a
somewhat constant background, we consider the gist [21]
of each frame as a possible way of describing the scene
the person is looking at. In this context, the gist is used
to discriminate between indoor locations (e.g. the counter,
the fridge, the stove top, etc) as observed through the first-
person camera, which is on average 2-3ft away from objects
and surfaces.

We compute the gist of each frame at 4 scales and 8 ori-
entations, discretized into 4x4 blocks, producing a 512 di-
mensional feature vector per video frame. We perform stan-
dard dimensionality reduction by concatenating the feature
vectors of the seven subjects, performing PCA analysis and
retaining smaller size feature vectors (32 or less). The data
is then normalized to zero mean and variance of one. The
data for the brownie and omelet recipe is reduced separately.

We investigate whether the extracted video features clus-
ter into similar scenes by estimating a Gaussian Mixture
Model in an unsupervised manner. Considering brownie
and omelet recipes separately, we use the gist features from
the seven subjects after dimensionality reduction.

For unsupervised scene segmentation, we estimate a
GMM for several combinations of parameters. We explore
various size feature vectors from the computed PCA com-
ponents (3, 8, 16, 32) and number of clusters (20, 30, 40),
with a threshold of 30 iterations, using 2 replicates and di-
agonal covariance. The GMM model is learned from the
data from all seven people one recipe at a time, and each
frame is assigned to a cluster.

In Figure 3 we visualize seven of the estimated clusters,
noting that the majority of frames in this set roughly cor-
respond to the manually labeled ”stirring” action. From a
total of 20401 frames manually labeled as ”stirring,” 14432
were assigned to the set of these seven estimated clusters
(70%), 5969 frames were not assigned to this set (29%).
From the 5228 frames in the estimated clusters that belong
to different actions (26%), most of them belong to actions
involving ”pouring.” When changing the model parameters
we observe that some manually labeled actions (e.g.”walk
to fridge,” ”walk to counter,” ”take eggs,”) are more coher-
ently clustered by the model. This suggests the need for
individual classifiers for each action.

For the recipe classification, we describe the sequence
of scenes for the two recipes by estimating an HMM with
mixture of Gaussians outputs from the reduced gist features
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Figure 3. Unsupervised segmentation of the brownies recipe sequence using only the gist. The GMM segmentation uses 32 PCA com-
ponents and 30 clusters, the HMM uses 16 PCA components and 29 states. Several of the unsupervised clusters capture the action of
”stirring,” as shown in the first two snapshots. The black clusters are the ground truth for this action. Two frames which belong to other
actions are also shown. Note that the estimated clusters group actions per person and don’t generalize across people.

in an unsupervised manner. The combinations of parame-
ters considered are: 1, 2, and 3 mixture of Gaussians output,
20, 30, and 40 hidden states, using feature vectors of length
3, 8, and 16, spherical covariance, and a maximum of 10
iterations for convergence.

Evaluation of recipe classification performance was per-
formed by learning an HMM for the brownie recipe from
all but one subjects, learning an HMM for the omelet recipe
from all subjects, computing likelihood of the withheld se-
quence under both models, and classifying it as the more
likely type. This is repeated in a cross-validation manner,
withholding all people in turn from both recipes. Best aver-
age classification performance of 92.8% (13 out of 14 tests
correctly predicted) was reached with an HMM with 32-
dimensional feature vectors, 40 hidden states, and 3 mixture
of Gaussians outputs. We note that the higher dimensional
vector tests perform better, with the number of states and
mixtures having less effect.

In addition to recipe classification, the data for all people
can also be segmented using the classes produced by com-
puting the Viterbi path from the estimated HMM from each
recipe separately. Figure 3 shows the frames from four clus-
ters that best match the frames labeled as ”stirring,” along
with the GMM segmentation and the manually labeled data.

Compared to the GMM performance, the HMM cluster-
ing fails to cluster the manually labeled frames into coherent
chunks. For the HMM model using 16 PCA components
and 29 states, a total of 9865 (48%) of the 20401 frames
labeled as ”stirring” were clustered together in the chosen
set of clusters. The total number of frames in these HMM
clusters is 12287, where 2422 frames (20%) belonging to
actions with different manual labels. Experimenting with
the model parameters, we note that a small number of PCA

components produces clusters spread randomly on the time-
line (compared to the manually labeled data), and a larger
number of components produces coherent segmentations of
a few actions. However, these segmentations do not gener-
alize across people - one cluster models an action from one
subject, while another cluster models the same action from
another subject.

5.2. Action segmentation from IMU sensors
Inspired by prior work with accelerometer sensors for

classification of various actions [2], we explore unsuper-
vised techniques for recipe classification and data segmen-
tation using the IMU sensors from this dataset. Previous
work has successfully performed classification of repetitive
actions like walking, running, washing windows, plates, etc,
from accelerometer data [2] by computing features using
a sliding window. However, some of the actions in this
dataset span a very short amount of time, while others are
performed over a longer period. It is not clear at this point
how to extract IMU features using a sliding window frame-
work.

For this initial analysis we smooth the sensor data by
taking the mean of every four frames, while sub-sampling
the 125Hz signal to 30Hz. The resulting data points are 45-
dimensional feature vectors - each of the five accelerometer,
gyro and magnetometer sensors report values for 3 axes. We
perform PCA on the concatenated IMU data from the seven
subjects separately per recipe and retain a smaller size fea-
ture vectors (32 or fewer). The data is then normalized to
have zero mean and one variance. We estimate an HMM
with a mixture of Gaussians output for the two recipes sep-
arately from the seven subjects using the IMU features after
the dimensionality reduction. We tested 3, 8, 16, and 32-
dimensional feature vectors, 10, 20, and 30 hidden states,
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Figure 4. Unsupervised segmentation using HMM on the multimodal data. Displayed are a set of seven estimated clusters which roughly
correspond to the action of ”stirring.” The HMM uses 16 dimensional features and 30 states. 50% of the manually classified frames fall in
these estimated clusters.
and 1,2, and 3 mixtures of Gaussian outputs.

For recipe classification we perform the same cross-
validation experiment as for the first-person vision: we train
models for both recipes by withholding one person, and
then classify the withheld sequence using the most likely
model. Recipe classification performance is 100% from an
HMM with 3-dimensional feature vectors, 20 hidden states,
and 3 mixture of Gaussians outputs. We note that higher
dimensional vectors performed worse (85% performance
from an HMM with 8-dimensional vector, 20 hidden states
and 3 mixtures).

We also explore unsupervised segmentation of the IMU
data using an HMM. However, no coherent clusters are pro-
duced for the parameters used - the frames from the result-
ing clusters are widely spread along the timeline.
5.3. Action segmentation from multi-modal data

The goal is to explore the combination of first-person
vision and IMU sensors for recipe classification and ac-
tion segmentation using unsupervised algorithms. The first-
person video and the IMU features are integrated by con-
catenation after normalizing the features by their norm, and
then computing PCA for all seven people together, sepa-
rately per recipe.

For the recipe classification task we estimate HMM mod-
els for both recipes by withholding one subject at a time
and classifying the test sequence according to the most
likely model. We explored models using 3, 8, 16, and 32-
dimensional features, 20, 30, and 40 hidden states, and 1,
2, and 3 mixture of Gaussians output. From the HMM pa-
rameter options we tested, the best recipe classification per-
formance was 92.8% using an 8-dimensional feature vector,
30 hidden states, and 3 Gaussian mixtures. We note that the
number of hidden states and mixtures did not affect the out-
come as much as the dimension of the feature vectors used.

Figure 4 shows a comparison between one of the esti-
mated unsupervised segmentations and the available man-
ual action annotations.

While unsupervised segmentation cannot clearly convey

the action being performed, the segmentations resulting by
changing the model parameters show promise in discover-
ing some of the manually labeled actions. Different actions
are clustered better for different model parameters, suggest-
ing the need for multiple levels of segmentation.

6. Supervised action classification
To evaluate action classification on this dataset we con-

sider standard supervised algorithms that use the 29 man-
ually annotated actions for the brownies recipe (see Ta-
ble 4.2), with chance at roughly 3%. From the combined
82496 data points from the seven subjects, 81.4% (67191)
of the frames are annotated. Note that the action ”stirring
the brownie mix” comprises approximately 25% of these
frames. To handle the lack of fully annotated data, we re-
move the unlabeled frames from the dataset and train only
on the labeled frames. Two models were considered - a su-
pervised HMM and a K-Nearest Neighbor model.

6.1. Action classification using supervised HMM
We train an HMM on the three data modalities after di-

mensionality reduction by providing the class labels in the
training stage of the model. We explored 5, 8, 16 and 32-
dimensional feature vectors, and 1, 2, and 3 mixtures of
Gaussian outputs, with 29 states. We estimate an HMM
from six people, and test performance on the withheld per-
son, repeating this for all seven people. We classify each
test frame as belonging to one of the 29 classes from the
manual annotation.

Using gist features, the best average frame classification
achieved over all seven people was 9.38% (with chance
at 3%), using an HMM with 16-dimensional feature vec-
tor, 29 states, and two mixtures of Gaussians outputs. Us-
ing IMU data alone, average classification performance was
10.4% from an HMM with 32-dimensional feature vectors,
29 states, and 2 mixtures of Gaussians outputs. Combining
both modalities, we reach 12.34% average frame classifica-
tion performance, using an HMM with 16-dimensional fea-
ture vector, 29 states, and 2 mixtures of Gaussians outputs.
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Figure 5. Classification performance from supervised 3-NN, merging 30 feature vectors without overlap, using the full 557 dimensional
multimodal data. Plot shows the classification performance for subject 3: 61% of the frames were correctly classified. The ”stirring” action
has more training frames than the other actions, and it is classified more often by NN.

6.2. Action classification using K-Nearest Neighbor
In the spirit of [7], we also explored matching test frames

in the framework of nearest-neighbor. For the brownies
recipe, we classify each frame from a withheld person’s se-
quence based on the grouping of the frames in the remain-
ing six sequences. We explored 1-NN and 3-NN for clas-
sification, with a Euclidean distance and majority rule with
nearest point tie-break options.

Using first-person data only, the average frame classi-
fication performance over the seven tests for 1-NN was
48.64% (chance is at 3%), when using the entire 512-
dimensional feature vector. When using IMU data alone,
performance was 56.8% using the full 45-dimensional fea-
ture vector. Best performance of 57.8% was achieved when
using both modalities with the full 557-dimensional feature
vector. Figure 5 shows the results from the multi-modal
frame classification for one subject. We varied the num-
ber of neighbors used for classification and we also con-
structed new feature vectors by concatenating v consecutive
vectors together without overlap, with v = [2, 5, 10]. We
observe that NN models capture the ”stirring” action rea-
sonably well, and by changing the parameters we get more
coherent clusters for a few other actions. Similarly to the
results from HMM and GMM, an unsupervised k-means al-
gorithm produces one cluster for an action from one subject,
and another cluster for the same action, performed by an-
other person. By varying the parameters we obtain clusters
for different people and different actions.

We argue that the high increase in performance of NN
versus GMM and HMM is due to the high dimensionality of
the data (NN with full dimensional features performs best)

and also because more data is available for this action: 25%
of the frames are manually classified as ”stirring.”

7. Discussion and future work
This work presents baseline results from unsupervised

temporal segmentation and supervised activity classifica-
tion from multimodal data. The performance of unsuper-
vised methods is difficult to evaluate in general, however in
this case we see promising results in multi-modal data seg-
mentation compared with the chosen level of action anno-
tation. Since multiple levels of action annotation are possi-
ble, comparing the unsupervised segmentation with manual
labels is ambiguous. However, by varying the model pa-
rameters, we show that standard models (GMM, HMM and
K-NN) capture some sets of distinct actions. In future work
we will explore methods for more robust evaluation of the
unsupervised results.

Overall task classification in the context of recipe classi-
fication between brownies and omelet from seven subjects
shows promising results. We will perform this task on a
larger sample - more subjects and more recipe types (this
data is already available in the CMU-MMAC database).

From the supervised experiments, initial results show
that using a simple K-NN model for frame classification
outperforms the standard HMM and GMM models. The re-
sults suggest that the data has a high dimensionality which
cannot be handled by GMM and HMM. We will explore
more robust methods for feature selection and dimension-
ality reduction in future work. Furthermore, the explored
models cluster actions per subject and do not generalize
well across people. To address this issue, we will explore
individual classifiers per action.
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Overall, the presented baseline supervised results show
that using gist and IMU data is a reasonable direction in
the exploration of daily kitchen action classification. Initial
results are promising and bring up many interesting ques-
tions regarding action classification in the CMU-MMAC
database.
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