
High Level Activity Recognition using Low Resolution Wearable Vision

Sudeep Sundaram, Walterio W. Mayol Cuevas

Department of Computer Science

University of Bristol, UK

sundaram@cs.bris.ac.uk, wmayol@cs.bris.ac.uk

Abstract

This paper presents a system aimed to serve as the en-

abling platform for a wearable assistant. The method ob-

serves manipulations from a wearable camera and clas-

sifies activities from roughly stabilized low resolution im-

ages (160x120 pixels) with the help of a 3-level Dynamic

Bayesian Network and adapted temporal templates. Our

motivation is to explore robust but computationally inexpen-

sive visual methods to perform as much activity inference as

possible without resorting to more complex object or hand

detectors. The description of the method and results ob-

tained are presented, as well as the motivation for further

work in the area of wearable visual sensing.

1. Introduction

Activity recognition and event classification are of prime

relevance to any intelligent system designed to assist on the

move. There have been several systems aimed at the cap-

turing of signals from a wearable computer with the aim of

establishing a relationship between what is being perceived

now and what should be happening. Assisting people is in-

deed one of the main championed potentials of wearable

computing and therefore of significant research interest for

a range of applications.

Most of the successful systems for wearable activity

recognition to date, have relied on the instrumentation of

limbs or the immediate environment (e.g. [15],[21], [8],

[16]). In these cases the use of “low-level” sensors such as

flexion sensors, accelerometers or passive microphones of-

fer a degree of robustness that is important when perform-

ing complex manual tasks, and which other more advanced

sensors such as cameras have not been able to fully de-

liver. It is interesting however to note that some of the very

first approaches related to activity recognition from a wear-

able were based on visual sensing. In [5] and [1], for ex-

ample, low-resolution vision is used to recognize previous

locations which have been hand-labeled by the user using

rough positioning. And in [12] an active wearable camera

observes and classifies basic hand manipulations from skin

images. In [20] a different approach altogether is used in

that a simulated VR environment serves as the testbed for

the recognition of activity.

These latter systems show how using reduced visual pro-

cessing it is possible to achieve a degree of robustness to

tolerate some of the challenges of wearable vision. Having

a system that uses visual signals remains highly appealing

as cameras are small, affordable and powerful sensors, able

to detect an array of features from wearable environments

that range from untagged object identities, wearer’s manip-

ulation events and social interactions.

In this paper, we present a framework for higher-level

activity recognition that processes very low resolution mo-

tion images (160x120 pixels) to classify user manipulations.

For this work, we base our test environment on supervised

learning of the user’s behavior from video sequences. The

system observes interaction between the user’s hands and

various objects, in various locations of the environment

from a wide angle shoulder-worn camera. The objects being

interacted with are indirectly deduced on the fly from the

manipulation motions. Using this low-level visual informa-

tion user activity is classified as one from a set of previously

learned classes.

The system is broadly divided into two sections - (1) the

vision section, which recognizes manipulation motion, and

(2) a Dynamic Bayesian Network that infers locations, ob-

jects and activities from a sequence of actions. An adapted

version of temporal templates [4] to the wearable non-static

camera domain is used to classify manipulation motion,

while the inference model consists of a 3-level Dynamic

Bayesian Network (DBN), which treats each activity as a

hierarchy, and inference is performed at all three levels.

We present a detailed analysis of the vision algorithms

stage, as well as our initial results on the higher-level activ-

ity recognition.

2. Related Work

Understanding hand motion has been an area that has re-

ceived significant attention, primarily in Human-Computer
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Interaction. Vision-based gesture recognition systems can

be used for various applications, such as visual control of a

mouse [2], sign language recognition [6][19] and control of

music applications [10] to name a few. Methods have fo-

cused on minimal restrictions on the user’s hands, and have

proved to some extent that the use of a single visual sensor

is sufficient to recognize complex articulated motion.

Action recognition, dealing with human motion as a

whole, has been also an active area of research in applica-

tions such as behavior analysis and surveillance. In recent

years, spatio-temporal modeling of human actions has been

a common approach for recognizing actions. Gorelick et

al. [3], Ke et al. [9] and Yilmaz and Shah [23] model ac-

tions as space-time shapes in 3D, which can be matched

with learned data. Similar work, but in 2D, is to produce

temporal templates [4] to represent action classes. All of the

spatio-temporal action modeling systems use a static cam-

era strategically placed to observe the user’s actions. Our

work differs on this front in that we use a body-worn camera

to observe actions, which poses a host of new challenges.

In terms of frameworks for modeling a succession of

events, the most common approaches consider Hidden

Markov Models [17] and Dynamic Bayesian Networks

(DBN) [13]. And in terms of the kind of sensors, many

wearable activity recognition systems, such as Patterson et

al. [15], Ward [21] and Huynh [8], make use of non-visual

wearable sensors to monitor user activity, while Clarkson et

al. [5] use a combination of visual and non-visual sensors.

RFID has also been used to tag objects in order to observe

the user’s interaction with them in work by Wu et al. [22]

and Park et al. [14].

Our work on activity recognition is close to that carried

out by Liao et al. in finding transportation routines [11],

where a single low level sensor (GPS) is used to infer trans-

port routines using a DBN, and to that of Sridhar et al. [18]

use a visual sensor to infer object categories by modeling a

spatio-temporal activity graph.

3. Manipulation Recognition

Related to our efforts, there has been significant attempts

to develop systems that can detect and recognize hand poses

or activity. for a recent overview of hand detection and

recognition from visual methods see [12]. Detecting hands

is important as a cue to what the person is doing and what

s/he plans to do. However, hand detection and recognition is

challenging because the higher number of degrees of free-

dom involved. From the point of view of a conventional

camera this is also challenging as frame rates are low com-

pared to other sensing strategies such as accelerometers (25-

30 Hz vs 100s Hz). In this work we avoid the direct, con-

stant, detection of hand pose or gestures and concentrate in-

stead on developing methods that indirectly tell us what the

person is doing at a rougher level of description. This rough

hand activity is what we will refer to in this paper as manip-

ulation and that serves as the main input to our recognition

algorithm.

Manipulation recognition is performed on low resolu-

tion images using temporal templates - first proposed by

Bobick and Davis [4]. Temporal templates (or motion

history images) capture any motion detected in the video,

with weights inversely proportional to the temporal distance

from the frame in which the motion was detected, to the cur-

rent frame. This discussed further in Section 3.2.

3.1. Image Registration

Given that the system’s setup consists of a body-worn

camera, actions performed by the user will result in tempo-

ral templates that consist not only of his/her hand actions,

but also the relative motion of the environment with respect

to the camera. This results in a noisy template with minimal

information about hand actions.

In order to address this problem, the camera motion

needs to be compensated in each frame before computing

temporal templates. We have achieved reasonable success

by using a dictionary of affine transformations as an approx-

imation to compensate camera motion between frames. We

assume that, relative to the background, the hands take up a

less significant portion of the frame.

Let Ik be the current frame being processed, and Ik+1

be the next incoming frame. Let φ(I, µ) denote the result

obtained when an image I is affine transformed by param-

eter vector µ. We approximate the compensating of camera

motion by finding the affine transformation parameter vec-

tor µk such that the difference between φ(Ik, µk), and Ik+1

is minimized.

µk can be estimated as

µk = argminµ(Ik+1 − φ(Ik, µ)) (1)

The difference image Dk is given by

Dk = Ik+1 − φ(Ik, µk) (2)

Any remanent background noise is removed using a sim-

ple 2x2 averaging filter on Dk, after which the image is

thresholded to obtain outlines of objects that have moved in

the frame.

The composition of µ can be determined based on the

expected camera motion in the environment. In our case,

we include parameters related to scale, rotation and transla-

tion. The dictionary of µ is created by uniformly sampling

parameters of scale, rotation and translation over a range of

pre-defined values. The dictionary consists of variations of

scale between 0.95 and 1.05, rotation between −2o and 2o,

X-translation between −4 and 4 pixels, and Y-translation
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(a) Ik (b) Ik+1

(c) Ik+1 − Ik (d) Dk

Figure 1. Approximate Image Registration

between −2 and 2 pixels. This results in a total of approx-

imately 1350 affine transformations, which the system pro-

cesses at about 20 frames per second.

3.2. Temporal Templates

Based on the assumption that the background takes up

a significant portion of the frame, Dk now contains infor-

mation of any motion (including hand motion) that has oc-

curred in the workspace visible to the camera. This motion

information is collated over a sequence of images, with the

intensity of each varying as a function of time in order to

obtain motion history. A pixel that has experienced motion

n frames prior to the current frame, is assigned an intensity

that is an n−1 factor of the intensity assigned to pixels that

have experienced motion in the current frame.

As a measure to enhance the response of the hand de-

tection, and differentiate it further from the background, we

use the chroma red component of the image for computing

the temporal templates.

It can be seen intuitively that the length L of the se-

quence of frames encoded in a temporal template is equal

to the number of intensity quantization levels used to create

the temporal template. If we consider the maximum im-

age intensity as Pmax, then the temporal template can be

described as

ηk =

L
∑

i=1

(
i

L
Pmax)Dk−i (3)

Figure 2 shows some samples captured at equal intervals

from a video sequence of the use removing a bottle cap, and

the corresponding temporal templates. This clearly demon-

strates how the action’s temporal information is captured in

the template.

Frame 00

Frame 05

Frame 10

Frame 15
Figure 2. Temporal Templates corresponding to sampled frames

3.3. Temporal Template Matching

Recognition of manipulations was carried out by match-

ing temporal templates to learned priors. In the training

stage, samples that contributed less were filtered out us-

ing RANSAC, and mean templates were computed for each

action class. Simple image matching techniques were em-

ployed to match temporal templates obtained from the se-

quences to the means. Experiments were carried out on

three image matching techniques -

• Using sums of row and column intensities as features

• Hu’s set of scale, translation and rotation invariant mo-

ments [7]

• Normalized cross-correlation

Based on tests carried out using 141 action templates,

normalized cross-correlation was found to be the most suit-

able technique. Experimental results for the same are pre-

sented and discussed in Section 6.1

4. Activity Recognition

4.1. Activity Hierarchy

In order to complete an activity, the user performs a set of

manipulations in a conducive environment, objects within

which are used to accomplish tasks. The environment may

be a complex one, where the objects are distributed in var-

ious places, which gives rise to the possibility of the user
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Figure 3. Activity defined as a bag of events. Events are sequences

of interactions, which in turn are determined by the current manip-

ulation, object and location

having to move to different locations within the environ-

ment to complete the task on hand.

Based on the above scenario, we can now define an in-

teraction as the manipulation performed by the user on an

object within a definite location in the given environment.

Further, we define an event as a fixed sequence of interac-

tions. For example, the event of pouring water from a jug

into a cup effectively involves two interactions - one to pour

from the jug and the other to place the jug back in its origi-

nal position.

Putting a set of events together, we now define an activ-

ity as a collection of events, with or without the constraint

that the events are to take place in a defined sequence. For

example, while setting up a dining table, it does not matter

whether we first place the spoons or the forks. However, we

need to make sure that the dishes are placed before serving

food! This gives rise to the requirement of a model that pro-

vides a restricted measure of freedom to the order of events.

The hierarchy of such a model is shown in Figure 3.

4.2. Hierarchical DBN for Inferring Activity

Figure 4 shows a three level Dynamic Bayesian Network

used to recognize the user’s activities. The highest level in-

fers user activity based on past events, which in turn are

recognized in the second level based on past interactions.

Interactions are determined based on the current manipu-

lation, and estimates of the object and location. Location

is inferred by analyzing interactions of the user with doors,

and sometimes other objects in the environment. The object

being interacted with is inferred based on the currentmanip-

ulation and the likelihood distribution of where the object is

located on the map.

ak Recognized manipulation at frame k

Da

k
Delay state for manipulation ak

Ok Estimated object being interacted with at frame k

Lk Estimated location of user at frame k

F a

k
Action switch for at frame k

Ik Estimated interaction at frame k

Ek Estimated event at frame k

DE

k
Delay state for event Ek

F E

k
Event switch at frame k

Ak Estimated activity at frame k

DA

k
Delay state for activity Ak

F A

k
Activity switch at frame k

Figure 4. Two-frame slice of Activity Recognition Model

4.2.1 Inferring Objects

Based on sequences collected during the training stage, the

system learns a likelihood distribution of objects with re-

spect to locations. For instance, considering a map of an

apartment, a kettle is more likely to be found in the kitchen,

less likely to be found in the bedroom and very unlikely to

be found in the bathroom. Also, the system learns a likeli-

hood distribution of objects being used with respect to the

user’s manipulations. The action of unscrewing the lid of a

bottle is likely to occur on a milk bottle and rather unlikely

on a door. Recall that we do not detect objects directly, but

through their interaction with the user and the associated

manipulations.

We can thus define the object model p(Ok|Lk, ak),
which computes the probability of an object being used,

given the current location and hand action.
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4.2.2 Inferring Location

In these experiments we assume that different locations on

the map are connected by doors, thus enforcing the rule that

a change in location happens only when a door is opened,

and also that when a door is opened, the location of the user

has changed. The manipulation recognition system learns

temporal templates obtained on opening doors, and this fa-

cilitates availability of location information at the lowest

level in the hierarchy.

Change in location is straightforward to deduce when the

current location consists of only a single door, thus restrict-

ing the location that the user enters after opening the door.

In some cases, however, a location on the map may con-

tain more than one door. When the user opens a door from

such a location, the new location cannot be determined right

away, and the system switches to the ’lost’ state.

Also, at any location and time in the sequence, the sys-

tem might sometimes fail to recognize that a door has been

opened, and has a chance of erroneously persisting with the

previous location. Detection of the latter case is done by

analyzing the set of most recent actions and the correspond-

ing inferred objects. If manipulations are being recognized

with high confidences, and there is very little likelihood that

these manipulations are performed with objects in the cur-

rent location, then the system is again said to be ’lost’.

In the ’lost’ state, the system switches to a flat object

likelihood distribution i.e. all objects are equally likely to

be found in the current location. This enables the system

to continue inferring activity without depending on knowl-

edge of location. In the next l frames, the user’s manip-

ulations are used to determine the location by considering

the conditional probabilities p(li|ai). Though conditional

probabilities are considered for each manipulation, location

inference is not carried out using a Bayesian approach, in

order to avoid the use of an lth order DBN. Instead, we

determine the location merely as the one that produces the

highest product of probabilities p(li|ai) for i between l − k

and k.

4.2.3 Delay States and Switches

The use of temporal templates for manipulation recognition

gives room for the possibility of obtaining high confidence

values for a manipulation within a temporal window of n

frames on both sides of the current frame, since the gen-

erated template does not change much in a few time steps.

If the recognized outputs from more than one frame within

this window are input to the hierarchical model, they will

be seen as two separate actions performed by the user. This

brings about the need for the delay state Da
k . The model

learns the minimum time (number of frames) τ(a) taken

up by the user to complete a given manipulation. When a

manipulation is recognized with high confidence, the delay

state acts as a count-down timer, and is set to τ(a). For the
next τ(a) frames, the delay state blocks any update in the

model. This is facilitated by the presence of the switch F a
k ,

which is reset to 0 when the delay state is active, and set to

1 when the count reaches 0.

Switches and delay states for the lowest level are mod-

eled in Equations 4 and 5. Delay states and switches are

also present for events and activities at the middle and top

levels of the model. At the middle level, delay state DE
k ,

is set to the number of component interactions in the candi-

date event when the event starts. At the top level, delay state

DA
k is set to the number of component events in the candi-

date activity once the activity starts. Models for delay states

and switches corresponding to events and activities can be

derived in a similar manner to Equations 4 and 5.

4.2.4 Modeling Interactions and Events

As mentioned earlier, interactions are built using three ba-

sic elements - manipulation, object and location. The confi-

dence of a recognized interaction thus depends on the con-

fidence of these components. An interaction can be rec-

ognized only when the action switch F a
k is active, else it

remains unrecognized. The interaction model has been de-

fined in Equation 6.

Since an event is defined as a fixed sequence of interac-

tions, the model consists of a window whose size is equal

to the number of interactions in the sequence. The likeli-

hood of the event can be computed from the likelihoods of

the component interactions within the window. If lEk
de-

notes the length of the interaction sequence for Ek, we can

describe it as p(Ek|Ik−lEk
:k).

4.2.5 Modeling Activities

Keeping in mind that an activity has been defined as a bag of

events that may or may not be performed in the same order,

training the activity recognition level in the DBN becomes a

challenging task. If one analyzes the available data, we have

on hand a finite number of ways in which the activity can

be accomplished - each essentially a unique order of com-

ponent events. From this, we can compute the probability

distribution of the event that occurs first. Similarly, transi-

tion probabilities between component events can be com-

puted statistically. These distributions represent the π and

A models of an HMM, which is simpler to train and use in

this scenario. The distribution B is computed directly for

each event using its component interactions, as described in

Section 4.2.4. We can thus use HMMs to model the highest

level of the DBN, in order to recognize activities.

The event delay states and switches play a vital role in

the recognition of activities, since these define when an

event transition can take place. An activity is said to be
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P (F a
k |D

a
k−1 = d) = δ(d, 0) (4)

P (Da
k = d′|Da

k−1 = d, ak = α) =











δ(d′, d − 1) d > 0, F a
k−1

= 0

undefined d = 0, F a
k−1

= 0

δ(d′, τ(α)) d = any, F a
k−1

= 1

(5)

P (Ik|F
a
k−1) =

{

δ(Ik−1, Ik) f = 0 (remain in same state)

p(Ik|Lk, ak, Ok) f = 1 (move to new state)
(6)

(a) User (b) Map

Figure 5. Experimental Setup

complete when the activity switch FA
k is set. Event transi-

tions are modeled using Equation 7.

If we consider the number of events in the ’bag’ corre-

sponding to activity Ai as lAi
, then Equation 8 gives the

likelihood that Ai has been completed in frame k.

5. Experimental Setup

Daily morning routine sequences were captured from a

single user over a period of two weeks. Many of the ac-

tivities were centered around kitchen routines. This section

describes the setup and experiments in detail.

5.1. User

The hardware consists of a USB camera, connected to

a notebook, which is placed in a backpack. The camera

is strapped on to the user’s shoulder, appropriately placed

to capture motion of both hands. The field of view of the

camera is a vital feature that is to be taken into account. A

narrow angled lens will not cover the space of motion of the

hand, unless restrictions are placed on the user. The camera

used for our experiments has an 80◦ diagonal FOV, which

although not entirely satisfactory is a good compromise for

the current activities considered. A snapshot of the setup is

shown in Figure 5.

5.2. Map

Experiments were carried out in an apartment, whose

layout is shown in Figure 5. The grey sectors indicate

swinging doors. Note that the Out, Bedroom, Bathroom and

Kitchen locations each connect to a single door, so there is

no ambiguity with respect to updating the user’s location

when a door is opened from one of these locations. How-

ever, the Corridor connects to 4 doors, and once the user

opens a door from the corridor, the system depends on the

DBN to resolve the location based on the user’s manipula-

tions.

5.3. Manipulations, Objects and Activities

The system was trained to recognize a total of 12 primi-

tive manipulations:

0 Screw/Unscrew Lid 1 Remove Lid 2 Eat/Drink

3 Open Door (Enter) 4 Open Door (Exit) 5 Stir

6 Wipe (circular) 7 Wipe (to and fro) 8 Scoop

9 Drop ’A’ into ’B’ 10 Pour 11 Place Back

Objects that the user interacts with in the environment

include:

Cup Hot Chocolate Bottle Kettle

Tea Bottle Coffee Bottle Sugar Bottle

Milk Bottle Spoon Door

Activities captured during morning routines include:

Making a cup of coffee

Making a cup of tea

Making a cup of hot chocolate

Wash a dish

Wipe kitchen platform

6. Results

Work is currently in progress to verify the performance

of the activity recognition system for very long periods of

operation, though initial results on a reduced number of se-

quences are encouraging. In this section, we go over the

available results at lowest and highest levels of the model.

6.1. Manipulation Recognition

As mentioned in Section 3.3, three image matching tech-

niques were used to match temporal templates. Confusion

matrices were generated using a subset of the listed actions

on a limited dataset. Normalized cross-correlation proved

to perform the best among the three methods with 60.99%

accuracy, while the Image Moments and Intensity Vectors

methods were respectively 42.33% and 54.62% accurate.
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P (Ek = j|Ek−1 = i, Fk−1 = f) =

{

δ(i, j) f = 0 (remain in the same state)

A(i, j) f = 1 (move to state j)
(7)

P (Ak = Ai) = π(Ek−lAi
)p(Ek−lAi

)

k
∑

j=k−lAi
+1

A(j − 1, j)p(Ej) (8)

Figure 6. Confusion Matrix for matching a subset of manipula-

tion classes using Normalized Cross-Correlation. Manipulation

IDs correspond to those in Section 5.3

The confusion matrix for manipulation recognition using

normalized cross-correlation is shown in Figure 6. This lack

of accuracy at the lowest level is handled by higher levels in

the activity recognition system.

6.2. Activity Recognition

Recognition confidences of all manipulation classes are

fed into the lowest level of the model at each update. Events

and activities are recognized using the procedure described

in Section 4.2. To illustrate the process, we have considered

two sequences, the first being of the user washing a dish,

and the second of the making of a cup of hot chocolate. Fig-

ures 7 and 8 show the variation of recognition confidences

for all activities plotted against the interaction number in

the input sequences. Note that activities remain low on con-

fidence until enough interactions have taken place for their

respective completion. In 7, the confidences of 3 of the 5

activities remain low throughout the sequence since they all

need more than 4 interactions to be completed. The hori-

zontal line shows the confidence threshold for declaring a

valid recognition. In 8 snapshots of the sequence at dif-

ferent frames are shown. Note that several of the activities

tested are challenging to differentiate as they all are related

to making drinks with similar objects and steps.

6.2.1 Sensitivity Tests

In this section, we present results of a simulation carried out

to test the activity recognition’s sensitivity to misclassified

manipulations at the lowest level of the model.

Consider an activity A that consists of NA manipula-

tions. As part of the simulation, we start by providing cor-

Figure 7. Activity Recognition Confidences against Interactions

for a sequence of ”Wash Dish”. The red line indicates the recog-

nition threshold.

(a) I-1 (b) I-4 (c) I-9 (d) I-11 (e) I-13

Figure 8. Activity Recognition Confidences against Interactions

for a sequence of ”Make Hot Chocolate”. The red line indicates

the recognition threshold.

rect inputs for all NA manipulations, and start introducing

errors step by step. In the ith step, we introduce i − 1 er-

rors. Errors are introduced by randomly picking one of the

component manipulations ao and replacing it with another

randomly picked manipulation ar (a misclassification). We

now have an updated sequence of manipulations, which we

will call M , of length NA. The model is then sequentially

updated with each manipulation.

For each update j, we choose manipulation M [j] as the
mean and fit a normal probability distribution over the space

of all manipulations, which are fed into the lowest level of

the model. The standard deviation of the normal distribution

is varied over 200 steps in order to carry out tests over a
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Figure 9. Noise Sensitivity of Activity Recognition Model for two

activities (”Make Coffee” and ”Make Hot Chocolate”).

large range of values. Recognition rates are determined by

finding the average likelihood over all standard deviations

for a given percentage of input noise.

Figure 9 shows the sensitivity of the model in recognition

of two chosen activities. It can be seen that the model per-

forms relatively well for inputs that are 20% or less noisy.

The simulations indicate that ss long as manipulations occur

in the right order, misclassification of activities is unlikely.

7. Discussions

We have proposed a framework to recognize activities

by observing actions and manipulations performed by the

user with non-adorned hands and using a wearable cam-

era. We have shown the inference of high level activity

from roughly registered low resolution images. A Dynamic

Bayesian Network has been proposed to infer location, ob-

jects, interactions, events and activities, and we have pre-

sented results from a simulation to show that this model is

robust to reasonable levels of misclassification.

Further work includes collection of a large and more ex-

haustive set of daily routine sequences of day-to-day activi-

ties, and testing of the model with this data. The accuracy of

temporal template matching can also be improved in order

to ensure better performance.

References

[1] H. Aoki, B. Schiele, and A. Pentland. Realtime personal position-

ing system for wearable computers. In Proc. International Symp. on

Wearable Computing, 1999.

[2] A. A. Argyros and M. I. A. Lourakis. Vision-based interpretation

of hand gestures for remote control of a computer mouse. In ECCV

Workshop on HCI, pages 40–51, 2006.

[3] M. Blank, L. Gorelick, E. Shechtman, M. Irani, and R. Basri. Actions

as space-time shapes. In Computer Vision, 2005. ICCV 2005. Tenth

IEEE International Conference on, volume 2, pages 1395–1402 Vol.

2, Oct. 2005.

[4] A. Bobick and J. Davis. The recognition of human movement us-

ing temporal templates. Pattern Analysis and Machine Intelligence,

IEEE Transactions on, 23(3):257–267, Mar 2001.

[5] B. Clarkson, K. Mase, and A. Pentland. Recognizing user context

via wearable sensors. In Wearable Computers, 2000. The Fourth

International Symposium on, pages 69–75, 2000.

[6] K. G. Derpanis, R. P. Wildes, and J. K. Tsotsos. Hand gesture recog-

nition within a linguistics-based framework. In Computer Vision

ECCV 2004, pages 282–296, 2004.

[7] M.-K. Hu. Visual pattern recognition by moment invariants. Infor-

mation Theory, IRE Transactions on, 8(2):179–187, February 1962.

[8] D. T. G. Huynh. Human Activity Recognition with Wearable Sensors.

PhD thesis, TU Darmstadt, 2008.

[9] Y. Ke, R. Sukthankar, and M. Hebert. Spatio-temporal shape and

flow correlation for action recognition. In Computer Vision and Pat-

tern Recognition 2007, pages 1–8, June 2007.

[10] M. Kolsch and M. Turk. Fast 2d hand tracking with flocks of features

and multi-cue integration. In CVPRW ’04: Proceedings of the 2004

Conference on Computer Vision and Pattern Recognition Workshop

(CVPRW’04) Volume 10, page 158, Washington, DC, USA, 2004.

IEEE Computer Society.

[11] L. Liao, D. J. Patterson, D. Fox, and H. Kautz. Learning and inferring

transportation routines. Artificial Intelligence, 171(5-6):311 – 331,

2007.

[12] W. Mayol and D. Murray. Wearable hand activity recognition for

event summarization. In Proc. IEEE Int. Symposium on Wearable

Computers, 2005.

[13] K. P. Murphy. Dynamic bayesian networks. In Probabilistic Graph-

ical Models, 2002.

[14] S. Park and H. Kautz. Hierarchical recognition of activities of daily

living using multi-scale, multi-perspective vision and rfid. In Intelli-

gent Environments, 2008 IET 4th International Conference on, pages

1–4, July 2008.

[15] D. Patterson, D. Fox, H. Kautz, and M. Philipose. Fine-grained ac-

tivity recognition by aggregating abstract object usage. In Wearable

Computers, 2005. Proceedings. Ninth IEEE International Sympo-

sium on, pages 44–51, Oct. 2005.

[16] B. Paulson and T. Hammond. Office activity recognition using hand

posture cues. In HCI2008, United Kingdom, 2008.

[17] L. Rabiner and B. Juang. An introduction to hidden markov models.

ASSP Magazine, IEEE [see also IEEE Signal Processing Magazine],

3(1):4–16, 1986.

[18] M. Sridhar, A. G. Cohn, and D. C. Hogg. Learning functional

object-categories from a relational spatio-temporal representation. In

M. Ghallab, C. D. Spyropoulos, N. Fakotakis, and N. M. Avouris,

editors, ECAI, volume 178 of Frontiers in Artificial Intelligence and

Applications, pages 606–610. IOS Press, 2008.

[19] T. Starner, A. Pentland, and J. Weaver. Real-time american sign lan-

guage recognition using desk and wearable computer based video.

IEEE Trans. Pattern Anal. Mach. Intell., 20(12):1371–1375, 1998.

[20] D. Surie, F. Lagriffoul, T. Pederson, and D. Sjolie. Activity recogni-

tion based on intra and extra manipulation of everyday objects. In 4th

International Symposium of Ubiquitous Computing Systems, Tokyo,

Japan, 2007.

[21] J. A. Ward. Activity Monitoring: Continuous Recognition and Per-

formance Evaluation. PhD thesis, Swiss Federal Institute of Tech-

nology, 2006.

[22] J. Wu, A. Osuntogun, T. Choudhury, M. Philipose, and J. Rehg. A

scalable approach to activity recognition based on object use. In

Computer Vision, 2007. ICCV 2007. IEEE 11th International Con-

ference on, pages 1–8, Oct. 2007.

[23] A. Yilmaz and M. Shah. Actions sketch: a novel action representa-

tion. Computer Vision and Pattern Recognition, 2005. CVPR 2005.

IEEE Computer Society Conference on, 1:984–989 vol. 1, June 2005.

32


