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Abstract

The number of digital images that needs to be acquired,
analyzed, classified, stored and retrieved in the medical
centers is exponentially growing with the advances in med-
ical imaging technology. Accordingly, medical image clas-
sification and retrieval has become a popular topic in the
recent years. Despite many projects focusing on this prob-
lem, proposed solutions are still far from being sufficiently
accurate for real-life implementations.

Interpreting medical image classification and retrieval
as a multi-class classification task, in this work, we in-
vestigate the performance of five different feature types in
a SVM-based learning framework for classification of hu-
man body X-Ray images into classes corresponding to body
parts.

Our comprehensive experiments show that four conven-
tional feature types provide performances comparable to
the literature with low per-class accuracies, whereas local
binary patterns produce not only very good global accuracy
but also good class-specific accuracies with respect to the
features used in the literature.

1. Introduction
Storing, archiving and sharing patient information

among hospitals has become a very important topic for to-
morrow’s medical field. Companies but also governments
are now looking forward to building patient centric IT sys-
tems like targeted by the Ratu e-Health Project of North-
ern Finland which is aimed at building a national elec-
tronic patient records archive that is estimated to manage
550 petabytes of data by 2025 1.

According to the usual saying ”To be seen by a doctor”,
digital images represent a huge part of the data that need to
be stored in medical centers. Those images can, for exam-
ple originate from standard radiography (X-Ray), magnetic
resonance imaging (MRI) computer tomography (CT), en-

1http://pre20090115.stm.fi/pr1105954774022/passthru.pdf

doscopy, ultrasonography, etc. In hospitals a dramatic num-
ber of those images have to be managed each year in order
to be stored in an archiving system. Manual labeling of this
data cannot be handled by a single person. Indeed, such
a task is very time consuming and, moreover, it can easily
lead to ambiguities due to different observations made by
each individual. In order to realize an accurate classification
we need to develop tools that allow high performance auto-
matic image annotation, where, without any user input, a
given image is automatically labeled with a describing text,
or code.

Several attempts for automatic classification in the field
of medical images have been performed in the past. For
example, we can mention the WebMRIS system [6], aim-
ing at retrieving cervical spinal X-Ray images, or the AS-
SERT system [11], aiming at retrieving CT images of lung.
While these projects only aim at retrieving a specific body
part, other initiatives have been proposed in order to retrieve
multiple body parts.

The IRMA project 2(Image Retrieval in Medical Appli-
cation), from the Aachen University of Technology (RWTH
Aachen), is aiming at developing high-level methods for
content-based image retrieval with prototypical application
to medico-diagnostic tasks on a radiologic image archive.
One of the goals of this project is the automated classifica-
tion of X-Ray images with respect to the body region exam-
ined. To achieve this, the IRMA project has built a database
containing more than 10,000 images that were arbitrarily
chosen. The images represent body parts of different peo-
ple from different ages, of different genders, under different
viewing angles and with or without pathologies.

In order to build a powerful classification system, the im-
age data has to be translated into a more compact and more
manageable representation containing only the relevant fea-
tures. Several feature representations have been investi-
gated in the past for such a classification task. Among oth-
ers, image features, such as average value over the complete
image or blocks within this image, have been investigated
by Rahman et. al in [10]. Or as proposed by Mueen et. al

2http://libra.imib.rwth-aachen.de/irma
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in [7] , one can also consider the usage of color features,
such as color histograms. Because many medical images
can easily be distinguished by their texture, texture features
like gray-level co-occurrence matrices should also be con-
sidered as described Rahman et. al, which also mentions
shape features to describe the images using the MPEG-7
edge histogram descriptor.

Motivated by the considerations above, we present in this
paper the performance of four conventional feature types
and the performance of the Local Binary Patterns (LBP) [9]
applied to the IRMA images dataset.

The paper is organized as follows. In Section 2, we first
introduce the image database on which the features extrac-
tion is performed. Then the five features representation for
the generation of the classifier’s input are discussed in de-
tails. Next, in Section 3, the classification technique we use
is presented, namely Support Vector Machines [2]. In Sec-
tion 4, the performed experiments and the obtained results
are described. Finally, Section 5 presents our conclusions.

2. Method
2.1. Database

Since 2005, the automatic medical image annotation task
of ImageCLEF -Cross Language Evaluation Forum- com-
pares state-of-the-art approaches for automatic image anno-
tation and classification.

In order to facilitate the comparison with [10], we also
use the IRMA database. It consists of medical radiographs
taken randomly from medical routine at the RWTH Aachen
University Hospital and subdivided into 116 classes. Fig-
ure 1 displays example images from this database along
with class numbers. Note that the classes in this database
are not uniformly distributed (Figure 2): while the most
populated class 111 holds 19.3% of the images, 6 classes
have only 0.1% or less. This non-uniform distribution of
images among the classes is actually done on purpose; in-
deed in the clinical settings one can expect that some radio-
graphs are acquired more often than others (for e.g, more
thorax X-Rays than single finger images).

2.2. Image Description

In this part we introduce the descriptors that characterize
the content of the image relative to luminance, texture and
shape. Please note that not all descriptors we present are in-
variant to translation and rotation. However as the database
is nicely oriented and centered on the body part, this issue
is not problematic for our application.

2.2.1 Average Gray Descriptor (AGD)

As gray level values are an indication of texture in radio-
graphs, we use the Average Gray Descriptor (AGD) value

Figure 1. Exemplary images from the IRMA database and their
corresponding class numbers.

Figure 2. Distribution of images in the IRMA database.

over blocks to capture this information. As a measure of
luminance, in AGD we resize images down to 64 × 64 and
128× 128 pixels, equally divide them into non-overlapping
blocks, compute the average gray value of each block and
concatenate these values into a feature vector. Figure 3
shows the AGD performed using 4× 4 block sizes.

2.2.2 Color Layout Descriptor (CLD)

The Color Layout Descriptor (CLD) [5] is a color feature
description for images. This descriptor specifies the spatial
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Figure 3. Example of average gray computation with 4× 4 blocks
from an image resized to 64× 64 pixels.

distribution of colors with a few nonlinear quantized Dis-
crete cosine transform(DCT) coefficients of grid-based av-
erage colors. We can use this feature for a gray level image
in order to describe the luminance. We compute a two di-
mensional DCT. The two-dimensional transform is equiv-
alent to a one-dimensional DCT performed along a single
dimension followed by a one-dimensional DCT in the other
dimension. In the following formula, A represents the input
image.

DCTpq=αpαq

M−1∑
m=0

N−1∑
n=0

Amncos
π(2m+1)p

2M
cos

π(2n+1)q
2N

,

where :

αp =
{

1/
√
M, p = 0√

2/M, 1 ≤ p ≤M − 1

αq =
{

1/
√
N, q = 0√

2/N, 1 ≤ q ≤ N − 1

To obtain more than one feature per image, we compute
the DCT on sub-areas. For example the image can be di-
vided in non-overlapping blocks. Figure 4 represents the
low frequency values of CLD captured with different block
sizes.

Figure 4. Example of CLD : Input image and the output image for
8× 8 and 16× 16 sized blocks.

2.2.3 Edge Histogram Descriptor (EHD)

The essential idea of the Edge Histogram Descriptor (EHD)
descriptors is that local object appearance and shape can be
described rather well by the distribution of local intensity
gradients or edge directions. The method uses local his-
tograms of image gradient orientations as image features.

In practice the EHD features are extracted by dividing the
image into subparts and for each subpart a local 1-D his-
togram of gradient directions over the pixels is computed.
Typically, the contributions to the histogram are weighted
by the gradient magnitude. The combined histograms then
form the object representation as a feature vector.

2.2.4 Gray-level Co-occurrence Matrix (GLCM)

Gray-level Co-occurrence Matrix (GLCM) is defined as a
sample of the joint probability density of the gray levels
of two pixels separated by a given displacement. This co-
occurrence of values is computed using two distance lev-
els between pixels and in four orientations (Figure 5). For
each distance level, results from all orientations are aver-
aged to form the averaged GLCM matrix. We then extract
the eleven features proposed by Haralick et. al in [3] from
the averaged GLCM matrix and use their statistical proper-
ties as descriptors.

Figure 5. Distance and orientation for GLCM computation.

2.2.5 Local Binary Patterns (LBP)

LBP [9] is a gray-scale invariant local texture descriptor
with low computational complexity. The LBP operator la-
bels image pixels by thresholding a neighborhood of each
pixel with the center value and considering the results as a
binary number. The neighborhood is formed by a symmet-
ric neighbor set of P pixels on a circle of radius R. Formally,
given a pixel at (xc,yc), the resulting LBP code can be ex-
pressed in the decimal form as follows,

LBPP,R(xc, yc) =
P−1∑
n=0

s(in − ic)2n

where n runs over the P neighbors of the central pixel, ic
and in are the gray-level values of the central pixel and the
neighbor pixel, and s(x) is 1 if x ≥ 0 and 0 otherwise.

After labeling an image with a LBP operator, a histogram
of the labeled image fl(x, y) can be defined as

Hi =
∑
x,y

I(fl(x, y) = i), i = 0, . . . , L− 1 (1)
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Figure 6. The image is divided into small regions from which LBP
histograms are extracted and concatenated into a single, spatially
enhanced histogram.

where L is the number of different labels produced by the
LBP operator and

I(A) =
{

1, if A is true,
0, if A is false (2)

The derived LBP histogram contains information about
the distribution of local micro-patterns, such as edges, spots
and flat areas, over the image, so can be used to statistically
describe image characteristics. As mentioned by Ojala et. al
in [9], not all LBP codes are informative, therefore we use
the uniform version of LBP and reduce the number of infor-
mative codes from 256 to 59 (58 informative bins + 1 bin for
noisy patterns). Finally, similar to the face recognition work
of Ahonen et. al [1], to obtain a more local description of
the image we divide the images into small equal-sized non-
overlapping regions and concatenate the LBP histograms
extracted from each region into a single (Figure 6).

3. Learning Algorithm: Support Vector Ma-
chines

SVM is a popular machine learning algorithm that pro-
vides good results for general classification tasks in the
computer vision and medical domains: e.g. nine of the
ten best models in ImageCLEFmed 2006 competition were
based on SVM [8].

In a nutshell, SVM maps data to a higher-dimensional
space using kernel functions and performs linear discrimi-
nation in that space by simultaneously minimizing the clas-
sification error and maximizing the geometric margin be-
tween the classes. Figure 7 illustrates this classification ap-
proach for a two-class case.

Among all available kernel functions for data mapping
in SVM, Gaussian radial basis function (RBF) is the most
popular choice, and therefore it is used here.

RBF : K(xi,xj) = exp(−γ ‖ xi − xj ‖2), γ > 0

Figure 7. SVM trained on two classes. Samples on the margin are
called the support vectors.

where γ is a parameter defined by the user. Besides γ, there
exists an error cost C that controls the trade-off between
allowing training errors and forcing rigid margins. An opti-
mum C value,that should also be explored by the user, cre-
ates a soft margin while permitting some misclassifications.
In this work we used a Matlab implementation of SVM,
namely the Spider toolbox (version 1.71) 3. In our frame-
work we use a RBF kernel and optimum values C and γ
that we found empirically on the IRMA dataset.

4. Evaluation
4.1. Experiments

According to Hsu et. al in [4], the extracted features
need to be normalized before being introduced to SVM in
order to avoid domination of attributes with greater numeric
ranges over small ones. Accordingly we linearly scale each
feature to [-1,+1] range.

The evaluation of the SVM-based learning is performed
using cross validation, which is the statistical practice of
partitioning a sample into subsets such that the analysis is
initially performed on a single subset, while the other sub-
sets are retained for subsequent use in confirming and val-
idating the initial analysis. In our case, we use five-fold
cross validation, where the database is partitioned into five
subsets, each subset is used once for testing while the rest
are used for training, and the final result is assigned as the
average of the five validations. Note that for each validation
all classes were equally divided among the folds.

The measures we will use to compare the image classifi-
cation results are the True Positive (TP) and False Positive
(FP) rates, as well as the F-Measure defined as follows :

3http://www.kyb.tuebingen.mpg.de/bs/people/spider/
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F-measure =
2× Precision ∗Recall
Precision+Recall

Note that higher F-measure scores depict more accurate re-
sults.

4.2. Optimal Features Parameters

Based on experiments we conducted during the feature
investigation process, we observed that the following
parameters allowed the best performance per feature type:

AGD : non-overlapping blocks of 4 × 4 pixels on a
resized version of the input image (128× 128 pixels).

CLD : computed on the original image using non-
overlapping blocks of 32× 32 pixels.

EHD : The edge descriptors is computed over 16
non-overlapping blocks of identical size. The orientation is
quantized over 8 orientations on a 0◦-360◦ range.

GLCM : The Gray Level Co-Occurrence Matrix is
computed over five equal-sized sub-parts of the image
using a distance of 6 pixels.

LBP : The LBP histograms are computed on 16 equally
sized image sub-part using the uniform version of this
feature.

5. Results
Here, we present our results at a global level, meaning

the performance on the complete database, but also at a
class-specific level, where we average the classification
rates of all classes evaluated separately. We follow this pro-
cedure, because as mentioned earlier the IRMA database
is very unbalanced, and therefore a very good performance
on the major classes can hide a lack of accuracy on the less
predominant ones.

As presented in Table 1, we can see that using the
conventional features (EHD, GLCM, CLD and Average
gray) we achieve results comparable to those reported
in the literature. It is also interesting to notice that the
Local Binary Patterns clearly outperform the other types
of features. In average, they provide an improvement of at
least 10% in the true positive rate without hampering the
false positive rate.

This big difference in performance comes from the fact
that LBP operator is invariant to illumination change, and
therefore is more robust on an image set where exposure
varies noticeably. Moreover, the uniform version of this

global accuracy %
TP FP F-measure

AGD 80.7 0.2 89.3
CLD 79.0 0.2 88.2
EHD 77.9 0.2 87.5
GLCM 79.6 0.2 88.5
LBP 89.1 0.1 94.2

Table 1. Global accuracies on the IRMA database.

operator is less sensitive to noise in the image because by
default it discards non-informative patterns from the feature
vector.

At the class level, we can see in Table 2 that even if
the performance at the global level is acceptable for the
four conventional features, the classification is not accurate
enough in terms of the true positive rate per class. Indeed,
while at the global level those features present a true
positive rate above 75% they drop to slightly above 50%
when considering their performances at the class level. As
a consequence many small classes have an error rate of
100%, but due to their small amount of images their impact
on the overall performance is not visible.

On the contrary, we can clearly see that the LBP opera-
tor provides significant improvement compared to the pre-
viously mentioned features. Indeed, while we observe a de-
crease of at least 30% in the true positive rates of other fea-
tures when comparing global vs. class-specific accuracies,
this decrease is only 15% for the LBP operator. As a con-
sequence, LBP exhibits clearly high F-measure figures with
respect to the others both at the global and class-specific
levels.

class-wise accuracy %
TP FP F-measure

AGD 54.8 0.2 70.8
CLD 52.9 0.2 69.1
EHD 47.6 0.2 64.4
GLCM 53.5 0.2 69.6
LBP 73.5 0.1 84.7

Table 2. Class-specific accuracies on the IRMA database.

6. Conclusion
Due to the high number of digital medical images rou-

tinely acquired in the medical centers, automated classifi-
cation and retrieval of these images has become a popular
research area. In this paper we introduced a classification
work where the aim is to automatically detect body parts
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from X-Ray images. For this purpose, we employed four
conventional feature types and the recently popular local bi-
nary patterns within a SVM-based learning framework. Our
comprehensive experiments on the IRMA database revealed
that local binary patterns not only outperform other feature
types in global and class-specific accuracies, but also pro-
vide performance values better than the features proposed
in the literature.
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