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Abstract

We propose a novel diffusion tensor imaging (DTI) registration
algorithm, called Tensor Image Morphing for Elastic Registration
(TIMER), which leverages the hierarchical guidance of regional
distributions and local boundaries, both extracted directly from
the tensors. Currently available DTI registration methods gener-
ally extract tensor scalar features from each tensor to construct
scalar maps. Subsequently, regional integration and other opera-
tions such as edge detection are performed to extract more features
to guide the registration. However, there are two major limitations
with these approaches. First, the computed regional features might
not reflect the actual regional tensor distributions. Second, by
the same token, gradient maps calculated from the tensor-derived
scalar feature maps might not represent the actual tissue tensor
boundaries. To overcome these limitations, we propose a new ap-
proach which extracts regional and edge information directly from
a tensor neighborhood. Regional tensor distribution information,
such as mean and variance, is computed in a multiscale fashion
directly from the tensors by taking into account voxel neighbor-
hoods of different sizes, and hence capturing tensor information at
different scales, which in turn can be employed to hierarchically
guide the registration. Such multiscale scheme can help alleviate
the problem of local minimum and is also more robust to noise
since one can better determine the statistical properties of each
voxel by taking into account the properties of its surrounding. Also
incorporated in our method is edge information extracted directly
from the tensors, which is crucial to facilitate registration of tissue
boundaries. Experiments involving real subjects, simulated sub-
jects, and fiber tracking indicate that TIMER performs better than
the other methods in comparison [12, 14].

1. Introduction

Diffusion tensor imaging (DTI) is capable of non-
invasively measuring water diffusion in vivo. While DTI
has been widely employed to delineate potential white mat-
ter abnormality in different neurological diseases, registra-
tion of diffusion tensor images across different subjects is a

critical prerequisite for detailed statistical analysis on voxel-
by-voxel basis. However, spatial normalization of diffusion
tensor images is challenging both technically and computa-
tionally given that tensor data representation is high dimen-
sional in nature, and it is required that the tensors not only
be spatially warped, but also be reoriented to appropriately
reflect the anisotropic diffusivity.

To quantify diffusion tensor abnormalities based on
voxel-based statistical analysis, spatial normalization is
necessary in order to minimize the anatomical variability
between studied brain structures. Conventional methods
generally extract tensor scalar features from each tensor in-
dividually, and by constructing scalar maps, regional in-
tegration and other operations such as edge detection can
be performed to extract final features for correspondence
matching. As an example, Yang et al. [12] capitalize on
tensor structural geometry and orientation information for
registration guidance. Specifically, geometric measures, de-
scribing the diffusion tensor geometrical resemblance to the
generic structures of prolateness, oblateness, and sphericity
[12], are computed for each voxel. The distributions of the
measures in a spherical neighborhood of each voxel are then
estimated using local histograms. These local histograms,
together with boundary information extracted from the frac-
tional anisotropy (FA) and apparent diffusion coefficient
(ADC) maps are finally fed into a deformable correspon-
dence matching mechanism [9] to align the images.

There are, however, two major limitations with these ap-
proaches. First, the computed regional features might not
reflect the actual regional tensor distributions. Second, by
the same token, gradient maps calculated from the tensor-
derived scalar feature maps might not represent the actual
tissue tensor boundaries. While it is possible to use the re-
sults of structural image registration to establish correspon-
dence matching as required in the registration process, it is
natural to expect that the inclusion of additional informa-
tion within the diffusion tensor will lead to more accurate
matching and hence more robust registration, particularly
in white matter regions where the microstructural variation
is not observable in previous methods. In view of this, new
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Figure 1. The principal diffusitivies of the mean in the neighborhood of the point indicated in (a) is compared with those of the other points
in the image volume. Dark red indicates high similarity and dark blue indicates otherwise. (b), (c) and (d) are the results obtained at fine,
middle and coarse resolution representations of the diffusion tensor image, respectively. (e) is the result when all the individual resolutions
in (b), (c) and (d) are combined. The small delineated dark red area in (e) is indicative that a correspondence can be correctly located as
opposed to (b), (c) and (d) where the dark red regions are spread out with no clear clue of where the corresponding point is. The white
cross in (e) corresponds with the red cross in the top image.

approaches are proposed to work directly on the tensors.
However, methods involving single voxel correspondence
matching can be susceptible to the effect of noise and also
spurious variation in anatomical structures. A more robust
approach is to leverage information gathered from the voxel
neighborhood to help estimate better voxel statistics, so as
to make correspondence matching less affected by noise.

In this paper, we propose a novel diffusion tensor im-
age registration algorithm, called Tensor Image Morphing
for Elastic Registration (TIMER). Instead of working with
the tensors in a voxel-wise fashion, we estimate the statis-
tical properties, such as mean and variance, at a particular
voxel location by taking into consideration the information
furnished by the voxel neighborhood. Notably, these re-
gional information are obtained directly from the tensors
and not their scalar maps. Scalar maps do not retain full
tensor information as some information is discarded in the
process of their computation, and hence they do not reflect
true tensor stuctures. As a simple example, a homogeneous
region on a FA map might contain tensors of radically dif-
ferent orientations and there is no way to tell the difference
by solely gauging from the FA map, simply because the FA
map does not hold orientation information. Computing re-
gional distribution directly using the tensors take all these
information into account and yields a more precise estima-
tion of the statistical property at a particular voxel location.
However, measures derived from tensor regional distribu-
tions in a single resolution are very limited in its discrim-
nating power as in reality anatomical details often appear in
different scales. This problem can be overcome by simply
combining a set of regional features at multiple resolutions.
Tensor regional information from each scale captures dif-
ferent spatial information and when combined forms a rich
discriminative feature vector. It can be observed from Fig. 1
that regional information irrespective of the neighborhood
size is not adequate for differentiating different anatomical
structures, but by simply combining regional information
gained from three different resolutions, we can sufficiently
achieve differentiation.

It is worth noting that features captured from regional
distribution information are coarse features, thus the use of
these features might not yield accurate correspondence de-
tection. To ensure accurate alignment of the tissue bound-
aries, local features such as SIFT [7] and RIFT [6] can be
incorporated to aid the registration. To this end, we extend
Canny edge detector to work directly on the diffusion ten-
sors. The Canny edge detector outputs a point-wise bound-
ary map, with zero as non-boundary and other non-zero
values indicating tensor boundary strength. Computed at
a coarse scale, boundaries of major white matter tracts can
be located and employed to yield an initial estimation of
the alignment, and at the same time mitigate the matching
ambiguity posed by the more detailed white matter tracts
at a finer scale. More boundaries are included in a con-
certed effort to refine the initial alignment at later stages of
the registration. Edge information, together with the above-
mentioned, regional information is employed to form an at-
tribute vector for each voxel, which serves as morphological
signatures to reflect the anatomical context of each voxel
at multiple scales. These attribute vectors are utilized to
assist an automated correspondence detection which is for-
mulated in a hierarchical and spatially deformable fashion
[9]. TIMER is essentially a feature-based registration algo-
rithm which utilizes anatomical knowledge in determining
point correspondences. During the initial stage of the reg-
istration, a small number of the most representative voxels
are selected to guide the registration. This essentially mit-
igates the problem of local minima, which often happens
when voxels with less discriminative attribute vectors are
employed, resulting in ambiguity during correspondence
matching. As the registration progresses, more and more
voxels are included so that they can work in a concerted
manner to refine the registration. The tensors are finally re-
oriented using the method proposed in [10].
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2. Tensor Image Morphing for Elastic Regis-
tration (TIMER)

2.1. Attribute Vectors

In medical imaging, it is important to build deformable
anatomical models that take into account the underlying
anatomy, and not simply the similarity of image intensities.
To this end, an attribute vector is attached to each voxel, re-
flecting its underlying anatomical structure in a local scale
and also its relationship to more distant voxels in a global
scale. A rich enough attribute vector can potentially dif-
ferentiate different parts of the anatomy that would other-
wise look similar. In this paper, building upon the ideas in
[9], we formulate a deformable registration scheme which
aims to minimize the effect of local minima, which is a crit-
ical problem since brain anatomy is inherently high dimen-
sional, complex and ambiguous. The energy function being
optimized is successively approximated using a sequence
of lower dimensional smooth energy functions. This is ac-
complished in a hierarchical fashion in which initially only
a small set of the voxels with highly distinctive attribute
vectors are used to drive the volumetric deformation, which
is equivalent to an approximate optimization of the energy
function. In the later stages, the number of voxels is grad-
ually increased to optimize the energy function more accu-
rately in a higher dimensionality. The driving voxels and
hence their attribute vectors are selected hierarchically ac-
cording to how uniquely they stand out among other at-
tribute vectors in the image, hence reducing ambiguity and
local minima. To make the feature vector more discrimina-
tive, the above attribute vector is computed at multiple scale
so that different anatomical structures are accounted for.

Figure 2 illustrates how multiscale features are extracted
from the image. Instead of varying the neighborhood size,
the image is progressively downsampled and multiscale fea-
tures are extracted from the fine, middle and coarse resolu-
tion images using a fixed neighborhood radius. The attibute
vector in TIMER is designed to comprise of three differ-
ent types of features: 1) Regional features (means and vari-
ances), 2) Edge features (tensor edges and FA map edges),
and 3) Geometrical features (FA values and Principal Dif-
fusivities). A number of other features can be used in place
of these features. For regional features, possible candidates
include fiber-tract organization measures [2], higher order
moments [8], and also other inter-tensor measures [1]. For
local boundary features, SIFT [7] and RIFT [6] are possi-
ble choices. And for tensor geometrical features, prolate-
ness, oblateness, and sphericity measures [12] and orien-
tation features [12] can be employed. However, we find
that the current choices of features used in TIMER are suffi-
ciently distinctive to give good registration accuracy. These
multiscale features are grouped into an attribute vector for

each voxel, i.e.:

a =
[(

aRegional
F , aEdge

F , aGeometrical
F

)
,(

aRegional
M , aEdge

M , aGeometrical
M

)
,(

aRegional
C , aEdge

C , aGeometrical
C

)]
(1)

where the subscripts denote the resolution (F:fine,
M:middle, C:coarse) from which the features are derived.
The similarity of two attribute vectors a(x1) and a(x2),
after normalizing each of these attributes to be within the
range of [0, 1], is defined as:

m(a(x1), a(x2)) =

Πs∈{F,M,C}
[
Πi(1 − |aRegional

s,i (x1) − aRegional
s,i (x2)|)×

Πj(1 − |aEdge
s,j (x1) − aEdge

s,j (x2)|)×
Πk(1 − |aGeometrical

s,k (x1) − aGeometrical
s,k (x2)|)

]
(2)

where aRegional
s,i (x), aEdge

s,j (x), and aGeometrical
s,k (x) are the i-

th, j-th and k-the element of aRegional
s (x), aEdge

s (x), and
aGeometrical

s (x) at scale s ∈ F, M, C, respectively. Fig. 3
shows that the attribute vectors are rich enough to war-
rant the differentiation of different anatomical structures
and hence can be utilized to assist correspondence match-
ing in the course of registration. More detailed descriptions
of the features used in TIMER is furnished in the following
sections.

2.2. Regional Statistical Features

For each point in the diffusion tensor image, multi-scale
regional tensor distribution information can be extracted
from its multi-scale neighborhoods. Specifically, for a given
tensor D(x), we can extract the regional tensor distribu-
tion information from its neighborhood {D(t)|t ∈ N (x)},
where N (x) is the set of coordinates of voxels in the neigh-
borhood of x. By varying the size of neighborhood N (x)
or scaling the image, we can obtain a rich set of multi-scale
regional tensor distribution information, which can be used
to extract tensor information at different scales and hence
drive the registration hierarchically. For effective estimation
of tensor distribution information, we first use logarithm to
transform the original tensor to its log-space counterpart,
i.e., log(D(x)), and then utilize some conventional tech-
niques to estimate the tensor distribution information. In
TIMER, we have used two commonly used statistical mea-
sures — mean and variance. But it is not necessary to stop
at the means and variances. From these means and vari-
ances, we can always further derive some other features.
For example, we can first utilize the mean to measure the
distribution of tensors at neighborhoods of multiple scales
in the log-space. A matrix exponential operation can then be
performed to transform the mean M(x) back to the original
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Figure 2. Computation of multiscale features. Instead of changing neighborhood size, the image is progressively downsampled and mul-
tiscale features are computed using a fixed neighborhood radius as indicated by the circle. This approach cuts down on the computation
time. The first three images on the left show the coarse, middle and fine resolution images, respectively. The next three images show the
edges detected in different resolutions.

tensor space, obtaining M̂(x), and from this tensor we can
compute a series of geometric features, which can include
FA, ADC, and also prolateness, oblateness, and sphericity
measures as suggested in [12]. The variance V(x) can be
dealt with in a similar way.

2.2.1 Regional Mean:

Utilizing Log-Euclidean metrics, we can define the regional
mean in a neighborhoodN (x) of voxel x as:

M̂(x) = exp

[∑
t∈N (x) log(D(t))

|N (x)|

]
(3)

where |N (x)| is the cardinality of set N (x). From the
mean, we can compute the principal diffusivities, i.e., the
eigenvalues, as:

λ
(M̂)
1 (x) ≥ λ

(M̂)
2 (x) ≥ λ

(M̂)
3 (x) (4)

where λ
(M̂)
k (x) represents the k-th largest eigenvalue of ma-

trix M̂(x).

2.2.2 Regional Variance:

Similarly, we can define the regional variance as:

V(x) =

⎡⎢⎣ ∑
t∈N (x)

[
log(D(t)) − log(M̂(x))

]2

|N (x)|

⎤⎥⎦ (5)

and the principal varibilities as:

λ
(V)
1 (x) ≥ λ

(V)
2 (x) ≥ λ

(V)
3 (x). (6)

These eigenvalues are further scaled according to the fol-
lowing equation to yield their mean normalized values:

λ̃
(V)
i (x) = λ

(V)
i (x)/

3∑
k=1

λ
(M2)
k (x). (7)

We have used M 2 instead of M to match the dynamic range
of V.

2.3. Boundary Features

Edge information extracted from tissue boundaries is
crucial for facilitating tensor image registration especially
when boundary accuracy is concerned. In TIMER, edge in-
formation from both tensors and FA map are incorporated.

2.3.1 Edge Detection on Tensors:

To better extract tissue boundaries, we propose to extend
Canny edge detector to cater for diffusion tensor images.
Canny edge detector is regarded as one of the best edge
detectors developed in the field. It can be used to extract
maximal image gradient boundaries, and is robust to noise
due to the employment of Gaussian filter to smooth out
noise prior to edge detection. For fast edge detection, 3D
Gaussian-based image filtering is implemented using three
subsequent steps of one-dimensional (1D) Gaussian filter-
ing along the anterior-posterior, superior-inferior and left-
right directions, which is then followed by gradient maps
computation. Using these steps, edge detection can be ac-
complished rapidly and robustly. Note that in TIMER, di-
rect tensor edge detection is performed in the logarithmic
space. For each voxel in the volume, a gradient HTensor(x)
can be computed, and from which, after non-maximum
suppression, a final edge magnitude HTensor(x) can be ob-
tained.

Figure 3. Distinctiveness of attribute vector. The similarity map
in the green box is magnified for a closer inspection. Dark red
indicates high similarity and dark blue otherwise.
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2.3.2 Edge Detection on FA Map:

Fractional anisotropy is an important measure of the de-
gree of anisotropy. By performing edge detection on the
FA map, one can detect edges formed by highly anisotropic
constituents of the brain against those which are less
anisotropic. In TIMER, the edge information furnished by
the FA map delineates the white matter. Edges from ten-
sors and edges from FA map are complementary to each
other and, by using both, potentially all major kinds of tis-
sue boundaries, that is, those formed between white matter
(WM), gray matter (GM) and cerebro-spinal fluid (CSF),
can be detected and aligned in the registration. We denote
the edge magnitude returned by the FA map detection at
point x as HFA(x).

3. Experimental Results

A number of experiments were designed to evaluate
the accuracy of TIMER. Whenever appropriate, results ob-
tained using DTI registration algorithms proposed by Yang
et al. [12] and Zhang et al. [14] will be included for com-
parison, and they are referred to as YANG and ZHANG1

respectively in rest of the paper.

3.1. Dataset

The dataset consists of diffusion tensor images of 22
subjects, acquired using a 1.5T scanner. Each of the
dataset consisted of 30 gradient directions with the diffu-
sion weighting of b = 700 s/mm2 (NEX = 2). The imaging
dimension was 256 × 256 with a rectangular field of view
(FOV) of 240 × 240 and image resolution of 0.9375mm ×
0.9375mm×2.5mm. All of the diffusion tensor data, as well
as the derived scalar maps, were skull-stripped to extract the
brain parenchyma before they were used in the experiments.

3.2. Real Subjects

One subject was selected from the dataset and taken as
the template. 21 subjects were then registered onto this tem-
plate. By averaging all the registered images, we could vi-
sually inspect the accuracy of the registration. The result
is shown in Fig. 4. It can be observed that for the FA map
based affine registered images, their average image, shown
in Fig. 4(b), is fuzzy especially in areas near the cortical
surface. In comparison, after registration with TIMER, the
average image, Fig. 4(c), shows much improved sharpness.
Jones et al. [5] defines the normalized standard deviation of
tensors as:

1
||D̄||F

√√√√ 1
N − 1

N∑
k=1

||Dk − D̄||2F (8)

1The version used in our experiments is an extension of [14], which can
handle relatively larger deformations as mentioned in [13].

(a) Template (b) Affine (c) TIMER

Figure 4. Group-averaged images resulting from the registration
of the 21 subjects. The FA weighted first principal directions are
shown in their color coded representations: green for the anterior-
posterior direction, blue for the superior-inferior direction, and red
for the left-right direction. The tensors in the yellow boxes are
shown in their FA weighted ellipsoidal representations in the bot-
tom panels.

where || · ||F is the Frobenius norm, and D̄ the tensor mean,
computed by element-wise averaging, of the same voxel lo-
cation from a set of N diffusion tensor images and Dk is
the tensor from the kth image. The results for a few slices
of the images registered with TIMER and also affine regis-
tration are shown in Fig. 5. The images yielded by TIMER
are generally darker and is hence indicative of less regis-
tration variability. To further quantify the accuracy of the
registration, a normalized scalar product of the FA map of
each individual registered image with that of the template
can be taken. Given the FA maps of the template, I(x), and
the subject, J(x), the normalized scalar is defined as:

S =
∑

x∈V I(x) · J(x + u(x))[∑
x∈V I2(x) · ∑x∈V J2(x + u(x))

] 1
2

(9)

where u(x) is the subject-to-template deformation field and
V denotes the image volume. The average values over all
registered images yielded by TIMER, YANG, ZHANG and
affine registration are 0.9126, 0.9094 (p = 4.92 × 10−4)2,
0.8894 (p = 3.54×10−14), and 0.8293 (p = 1.59×10−21),
respectively. For real images, the main problem lies in the
fact that one-to-one correspondences between anatomical
structures of two images do not always exist. The relatively
high value yielded by TIMER is indicative of its ability to
cope with situations as such.

3.3. Simulated Deformation Fields

To further evaluate the accuracy of TIMER, we gen-
erated 20 simulated deformation fields using the statisti-
cal model of deformation (SMD) proposed by Xue et al.

2p-values are obtained from paired t-tests performed using the individ-
ual values returned by all images. The same goes for the rest of the paper.
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Figure 5. Normalized standard deviation. Starting from the left, the odd and even images are those generated using TIMER and affine
registration respectively.

[11]. One human brain was utilized as the template and
the 20 simulated deformation fields, which also served as
the ground truths, were applied to the template, resulting in
20 simulated human brains. These 20 simulated brains were
then registered back onto the template using TIMER and the
deformation fields estimated by the registration were com-
pared with the ground truths. The accuracy of the estimated
deformation fields were evaluated by the average difference
m̄d and the standard deviation (SD) σd of the two deforma-
tion fields, i.e. :

m̄d =
1
|V|

∑
x∈V

||ug(x) − ue(x)||,

σd =

√
1
|V|

∑
x∈V

(||ug(x) − ue(x)|| − m̄d)
2

(10)

where || · || is the Euclidean distance, |V| the number of vox-
els in the image volume V , and ug(x), ue(x) the template-
to-subject deformation vectors at location x of the ground
truth deformation field and the estimated deformation field,
respectively. The average error for the 20 simulated brains
is 0.83mm, which indicates that TIMER is accurate to a sub-
voxel level. A summary of the results for the whole brain in
comparison with YANG and ZHANG is shown in Table 1.
In fact, as can be seen from the table, two sets of results
of are included, one (SET I) for the previously mentioned
20 simulated images and the other (SET II) for 20 more
images simulated in the same manner but with more com-
plex local deformations. The deformation fields for SET I
are more regular and generally have smaller displacement
magnitudes, whereas those of SET II are more complex and
have larger magnitudes, generated using a larger variance
in SMD [11]. For SET I, the accuracy yielded by TIMER
is closely followed by that of ZHANG and is better than
YANG by a larger margin. But for SET II, the improvement
brought by TIMER is clearly quite significant. For all cases,
TIMER is also more consistent as indicated by the smaller
standard deviation values. Also shown in Table 1 are the re-
sults for the cortical regions and similar conclusions can be
drawn. Overall, TIMER shows improvement over YANG
(p = 8.69 × 10−25) and ZHANG (p = 2.98 × 10−5).

3.4. Fiber Tracking

Local diffusion patterns characterized by the restricted
motion of cellular fluid within brain white matter gives an
estimation of the orientation of the underlying fibers. The
potential of DTI, capitalizing on this fact to reveal white
matter integrity, disruption and pathology, makes it the pre-
ferred modality for studying white matter diseases. Accu-
rate DTI registration is essential to establish intersubject
homology for further statistical inference. Using a trac-
tography method know as Fiber Assignment by Continuous
Tracking (FACT) [4], fiber bundles passing through some
regions of interest (ROIs) were tracked, extracted, and com-
pared for quantifying how well TIMER performs in these
specific ROIs. We present here two sets of results. For SET

I, two ROIs were selected so that two fiber bundles, one re-
siding in the genu and the other in the splenium of the cor-
pus callosum (CC), could be extracted for comparison. For
SET II, we evaluated TIMER in a more difficult situation
where a fiber bundle near the cortical surface was consid-
ered. Registration of near cortical surface regions is often
the Achilles’ heel of many registration algorithms. All the
fiber bundles are shown in Fig 6. The similarity of two fiber
bundles was then measured in a similar way to that used in
[14]. The similarity measure is defined as:

1
|F| + |G|

⎡⎣ ∑
Fi∈F

min
Gj∈G

d(Fi, Gj) +
∑

Gj∈G
min
Fi∈F

d(Fi, Gj)

⎤⎦
(11)

Figure 6. Fiber bundles extracted for comparison. The fiber bun-
dles shown in yellow and green reside in the genu and the splenium
of the corpus callosum, respectively. In red is a fiber bundle near
the cortical surface.
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Table 1. Averages and standard deviations of deformation estimation errors (mm).

Whole Brain Cortical Region
TIMER YANG ZHANG TIMER YANG ZHANG

SET I
Mean 0.83 1.36 0.84 0.86 1.44 0.92

Std. Deviation 0.48 0.82 0.76 0.47 0.82 0.81

SET II
Mean 1.11 1.87 1.44 1.18 2.03 1.68

Std. Deviation 0.82 1.48 1.75 0.88 1.59 1.96

Table 2. Average fiber distances (mm). Values in the brackets are the standard deviations.

TIMER YANG ZHANG

SET I
Genu 0.62 (0.025) 0.78 (0.043) 0.67 (0.019)

Splenium 0.77 (0.004) 0.82 (0.004) 1.00 (0.043)

SET II Cortical 1.25 (0.125) 1.49 (0.115) 1.91 (0.208)

where d(Fi, Gj) is a pairwise distance between fibers Fi ∈
F and Gi ∈ G, which in our case, is defined as the mean of
the closest distance for every point of two fibers [3]. When
two fiber bundles are perfectly aligned, the value returned is
zero. This measure approximately establishes anatomic cor-
respondences between points along fibers of different sub-
jects. A summary of the results of all fiber bundles, with
those of YANG and ZHANG included, is shown in Table 2.
Due to the inherent nature of fiber tracking, accurate reg-
istration of the fiber bundles are not only determined by
the correct estimation of the deformation field, as was ex-
amined in the previous experiment, but also by the correct
reorientation of tensors. TIMER incorporates a tensor re-
orientation scheme which attempts to estimate the under-
lying fiber orientation by considering an appropriate small
neighorbood around each voxel [10], and is hence less vul-
nerable to noise. This is attested by the results yielded by
TIMER in comparison with YANG (p = 4.57 × 10−6) and
ZHANG (p = 2.68 × 10−8), where fiber bundles extracted
with TIMER are consistently closer to the ground truths.

4. Conclusion

In conclusion, Tensor Image Morphing for Elastic Reg-
istration or TIMER is proposed as a relatively accurate dif-
fusion tensor registration algorithm in this paper. The main
novelty of TIMER lies in its direct extraction of regional
and edge information from the tensors to guide the registra-
tion in a hierarchical fashion. Although TIMER performs
reasonably well in all experiments performed, we feel that
there is still room for improvement. One possible direction
is to employ an example based learning method to learn sep-
arate sets of appropriate features for registration guidance
of different brain regions. Research in this direction can be
conducted with the hope of a more refined DTI registration
algorithm.
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