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Abstract
This paper presents a fully automatic method for segmen-

tation of Multiple Sclerosis (MS) lesions from multiple se-

quence MR (T2-weighted and FLAIR) images. Our method

treats MS lesions as outliers to the normal brain tissue dis-

tribution, and the separation is achieved by minimizing a

statistically robust L2E measure, which is defined as the

squared difference between the true density and the as-

sumed Gaussian mixture. Pre- and post-processing proce-

dures including intensity normalization and false positive

pruning are designed to remove various signal artifacts. Our

method is fully automatic and doesn’t require any training,

atlas or thresholding steps. The results of our method are

compared with lesion delineations by human experts, and a

high classification accuracy is demonstrated on 16 datasets

containing small to moderate lesion loads.

1 Introduction
Multiple Sclerosis (MS) is a central nervous system (CNS)

disease where myelin sheathes of the neurons are destroyed

by the immune system. This disease is associated with brain

tissue damage (e.g. lesions) that can be observed through

Magnetic Resonance Imaging (MRI). These lesions can ap-

pear as a hyperintense signal or as a hypointense signal de-

pending on its properties and on the use MRI sequence.

Previous research has shown that the FLAIR (Fluid Atten-

uated Inversion Recovery) sequence contains the most dis-

tinctive lesion-healthy tissue differentiation for segmenta-

tion of white matter lesions. The radiological criteria for

MS include the number of lesion on the MRI, their loca-

tions and their sizes, and these quantitative information is

also crucial for studying the progression of MS lesions and

the effect of drug treatments.

To segment the lesions from MRIs is the prerequisite step

for performing various quantitative analyses of the disease.

Manual lesion segmentation has been a dominate approach

in the past, but it is a tedious and labor intensive task and

the segmentation results are inevitably affected by intra and

inter-expert variabilities. Automatic segmentation is greatly

desired due to its high levels of reproducibility and relia-

bility. For this reason, a number of researchers have been

working on developing automatic lesion segmentation solu-

tions in the past decade.

1.1 Related Work

A variety of approaches to MS lesion segmentation have

been proposed in the literature. Generally speaking, they

can be classified into two groups: outlier-based and class-

based methods.

In outlier-based methods [8, 12, 17, 6, 7], MS lesions are

treated and detected as the outliers to the normal brain tissue

distribution, which is usually modelled with a Finite Gaus-

sian Mixture (FGM) of CSF, GM and WM classes. Van

Leemput et. al. [8] pioneered this approach. Under their

framework, MR field inhomogeneities, parameters of the

Gaussian distribution and membership are computed iter-

atively, with the contextual information being incorporated

using a Markov random field. Observed intensity values

whose Mahalanobis-distances exceed a predefined thresh-

old are marked as lesions. The thresholds are empirically

set in this work.

The approach proposed by Prastawa et. al. [12] com-

bines outlier detection and region partitioning together. The

salient point of this approach lies in the way contextual in-

formation is incorporated: tissue typing is carried out based

on regions (connected groups of voxels) instead of indi-

vidual voxels. Voxels labeling is conducted through max-

imizing overall relative entropy or Kullback-Leibler diver-

gence between neighboring regions. Samples with Ma-

halanobis distance greater than a manually chosen thresh-

old are treated as outliers. Souplet et. al. [17, 6] also

model lesions as a outlier class. A segmentation of the

brain into CSF, GM and WM is first performed on the T1-
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weighted (T1w) and T2-weighted (T2w) sequences. Le-

sions are then detected through a thresholding step on T2w

+ FLAIR sequences. A similar procedure was adopted in

Garcia-Lorenzo et. al. [7, 2]. Their solution consists of

three steps: 1) robust estimation of normal appearing brain

tissue (NABT) parameters, 2) refinement of outlier detec-

tion and 3) application of lesion rule. After the NABT distri-

bution is obtained through a robust Expectation Maximiza-

tion (EM) algorithm, each voxel in the image can be labeled

as an outlier (candidate for lesions) if the Mahalanobis dis-

tance for each class is great than a given p-value. The final

lesion rule step refines the segmentation result by discrim-

inating White Matter Lesions (WML) from false positives

within other tissues and pruning the latter. Manually cho-

sen thresholds are involved in both the outlier detection and

WML separation steps.

Class-based methods [22, 3, 4, 5, 11, 19] model the le-

sions as an independent class to be extracted. In [22], a

combination of intensity-based k-nearest neighbor classi-

fication (k-NN) and template-driven segmentation (TDS+)

was designed to segment different types of brain tissue.

Lesions are modeled as one of the expected tissue types,

and the class parameters are obtained through a operator-

supervised voxel sampling on two randomly selected scans.

Since the manual training step is highly data-dependent, it

is expected be conducted for each study or data set. A

similar approach was proposed in [3]. The segmentation

method determines for each voxel in the image the prob-

ability of being part of MS-lesion tissue, and the classifi-

cation is conducted also based on K-NN. Voxel intensities

and spatial information are integrated as discriminative fea-

tures, and voxels are classified based on their proximity to

the pre-classified samples in the feature space. It should be

noted that manual or semiautomatic training is normally a

required step in k-NN based methods, and the value of k

(number of classes) has to be determined in advance, either

interactively [22] or empirically [3].

Atlas-assisted segmentation framework proposed in [5,

11, 19] makes use of the relative consistent continuity and

relationship residing in neighboring anatomical structures

within the same group of subjects. Lesions are treated as

a subclass within the White Matter tissue, and a topology

preservation criterion is employed to guarantee strict topo-

logical equivalence between the segmented image and the

atlas. However, to ensure the strict correspondence between

atlas and the patient images, an atlas that accurately repre-

sents the group subjects is likely to be required for each

study.

One should note that in the class-based approaches

[22, 3, 16, 5, 11, 19], a training procedure, to either cali-

brate the classifier parameters or to choose the tissue class

representatives, is normally required. In order to obtain de-

sired segmentation results, the testing data sets are also ex-

Figure 1: Work flow of our MS lesion detection algorithm

pected to be highly similar to the training sets, ideally from

the same group. Outlier-based models [8, 12, 17, 6, 7, 2]

relax the training requirement, but they usually subsume a

thresholding step. Those thresholds, critical for segmen-

tation performance and system reproducibility, usually re-

quire certain prior to be set up precisely therefore are often

difficult to be determined.

In this paper, we develop a fully automatic method for

MS lesions that requires no training, atlas, or thresholding

steps. Our method can be regarded as a combination of the

class-based and outlier-based approaches. The core algo-

rithm consists of three steps, and the separation of the lesion

class from other normal tissue types is achieved by mini-

mizing a statistically robust measure called L2E criterion,

which is defined as the squared difference between the true

density and the assumed Gaussian mixture.

2 Method

The method proposed in this article segments MS lesions

from two MRI sequences: T2-weighted and FLAIR. The

overall procedure is comprised of a sequence of steps, as

depicted in Figure 1. Firstly, two preprocessing steps, skull

stripping and intensity normalization, allow to reduce image

artifacts and to focus on a region of interest. Secondly, an

Expectation-Maximization (EM) classification is applied to

prune the background and CSF and extract the GM + WM

portion of the image. Then, a robust detection algorithm

based on Integrated Squared Estimation (L2E) is applied to

separate the lesions from the normal WM + GM portion.

Finally, false positives in extra-cortical areas are removed

through a refinement step.

Skull stripping deletes the non-brain tissue from the im-

age to simplify the following lesion segmentation. It is per-

formed using the Brain Extraction Tool (BET) of FSL li-

brary in our work. Intensity normalization step is to correct

the RF field inhomogeneities existing in the acquired MRIs

and we used SPM2 for this purpose.

To locate the lesions, the CSF portion of an image needs

to be extracted and eliminated. This step is based on FLAIR
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images alone, and an EM-based segmentation routine is ap-

plied.

2.1 Extract MS lesions from GM+WM

Statistical brain segmentation algorithms usually assume

the intensities of the normal brain tissues, CSF, GM and

WM, conform to a Finite Gaussian Mixture (FGM) distri-

bution. MS lesion could be directly added as an extra class

to the FGM models, but they tend to vary in size, shape

and location across different stages of the disease, and not

to follow a multivariate Gaussian distribution when multi-

channel images are used. In light of these difficulties, most

outlier-based methods avoid modeling lesions and simply

treat them as outliers to the normal tissue types. However,

the thresholds to define outliers are either manually or em-

pirically set in these methods, which tend not to work con-

sistently across different data sets.

The new MS lesion segmentation method developed in

this paper provides a remedy to the above mention draw-

backs. Our method also treats the lesions as outliers, but

the separation between normal tissue clusters and outliers

is automatically obtained. No manually chosen threshold is

involved.

2.1.1 Integrated Square Estimation (L2E)

In [15], L2 distance has been investigated as an estimation

tool for a variety of parametric statistical models. Estima-

tion through the minimization of the integrated square error,

or L2E error, is shown to be inherently robust. Since then,

several works have been published in applying L2 measure

for image registration [9, 20]. A brief introduction of the

L2E measure is given as follows.

Suppose y(x) is an unknown density function. The para-

metric approximation of y(x) is ŷ(x|θ). The L2E mini-

mization estimator for θ is given as:

θ̂L2E = arg min
θ

∫
[ŷ(x|θ) − y(x)]2dx (1)

= arg min
θ

∫
[ŷ2(x|θ) − 2ŷ(x|θ)y(x) + y2(x)]dx

Observing that y2(x) doesn’t contain any θ term, it

can thus be dropped from the functional minimization in

equation (1). Considering y(x) is a density function,∫
ŷ(x|θ)y(x) can therefore be viewed as the expectation of

ŷ(x|θ). Putting these two considerations together, equation

(1) can be rewritten as:

θ̂L2E = arg min
θ

[∫
ŷ2(x|θ)dx − 2

n

n∑
i=1

ŷ(xi|θ)
]

(2)
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Figure 2: Parameter estimation using EM and

FGML2E. True distributions: (a) 0.7N(5, 2) +
0.3N(15, 2); (b) 0.7N(5, 1) + 0.3N(8, 2); (c)

0.41N(3, 2) + 0.41N(9, 1) + 0.18N(15, 1); (d)

0.41N(3, 2) + 0.41N(9, 1) + 0.18N(20, 1) (Figures

are better seen on screen than in black/white print)

2.1.2 Inherent Robustness Properteis of L2E in Fitting
Finite Gaussian Mixture (FGM)

In FGM models, the pixel intensity values for each tissue

type are assumed to conform to a Gaussian distribution.

Expectation-Maximization (EM) algorithm, the estimator

of Maximum Likelihood (ML) measure, is currently a pop-

ular solution in many FGM-based segmentation algorithms.

However, ML and EM are inherently not robust and poten-

tially influenced by input outliers. In this paper, we adopt

the L2E as the FGM estimator. To demonstrate the robust-

ness of L2E with respect to outliers, which also serves as

the motivation of our model, a group of experiments have

been conducted, based on simulated data sets. The detailed

formulation of L2E estimator for FGM will be given later

in this paper.

Let K be the number of the Gaussian components.

Fig. 2.(a) shows an experiment for a single-mode Gaussian

(K = 1) case. The input data is made of a single Gaus-

sian plus an outlier portion. The EM estimates, as shown in

Fig. 2.(a), are greatly deviated from the true values, while

L2E captures the single Gaussian part very well. Fig. 2.(b)

presents the results of the second experiment, in which the

outlier portion has bulky overlap with the inlier part. L2E
maintains the ability to capture the major component, with-

out being affected by the outlier.

Fig. 2.(c) shows the result for a two-Gaussian mixture

(K = 2) case. The data is composed of two Gaussians
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and one outlier portion. The result using EM demonstrates

the impact of outliers on the global parameter estimation

– none of the two Gaussians is estimated correctly by the

EM. L2E, to the contrary, successfully gets hold of the two

major Gaussians with great accuracy. A similar experiment

is shown in Fig. 2.(d), where the outlier portion is located

at a higher position of the intensity spectrum. This time,

the outliers, instead of Gaussian components, got captured

by the EM algorithm. Therefore if an algorithm is based on

EM, the classification results would likely be far away from

the true values, if this same data set is applied. L2E still

works perfectly in rejecting the outliers and producing the

desired results.

For the examples showed above, if extra classes are as-

signed, EM algorithm can manage to capture both the in-

liers and the outliers. However, to separate the inlier por-

tion off the outliers usually requires some prior knowledge

or certain post-classification user intervention, which cer-

tainly demands extra efforts in practice.

Comparing with the M-estimators, L2E differs in the

sense that it is not formulated with any scale parameter.

This property can again be counted as an advantage of L2E,

as the success of the M-estimators is heavily dependent on

the often elusive setup of the scale parameter. Another proof

of the superiority of L2E comes from ([21],[15]). The au-

thors compared L2E with 15 other robust estimators, and

L2E often came out on top, particularly with the outlier-

abundant, heavy-tailed data sets.

2.1.3 MS Lesion Detection using L2E (MSLD −L2E)

The remaining problem is how to separate the clusters of

normal tissues (GM and WM) from the outliers (MS le-

sions). This is achieved through a 3-step procedure:

Step 1: Based on the one-dimensional histogram of a

combined T2w + FLAIR image, model the lesion

part with an independent class and make a prelimi-

nary separation between lesions and the normal tis-

sues.

Step 2: Use multivariate Gaussian fitting to capture

the GM and WM portion in T2w/FLAIR two-

dimensional joint histogram.

Step 3: Conduct automatic outlier (MS-lesions) detec-

tion based on the Gaussian components from step

2 and the separation line obtained in step 1.

In step 1, aiming to combine the information from T2w

and FLAIR, we adopt an integrated image as the segmenta-

tion basis, whose intensity is given by

Icomb =
√

I2
T2w

+ I2
FLAIR (3)

Since the histogram of the Icomb is one dimensional,

it’s easy to fit it with a 1D finite Gaussian mixture of

three classes: GM, WM and MS-lesions. Let θ =
{v1, μ1, σ1, v2, μ2, σ2, v3, μ3, σ3} be the combined vector

representing the portions, means and standard deviations of

the three Gaussian components. The optimal θ is obtained

to minimize the L2E metric given by

L2E1d(θ) =
3∑

k=1

v2
k

2
√

πσ2
k

− 2
n

3∑
k=1

n∑
i=1

[
vkφ(xi|μk, σ2

k)
]

(4)

where n is the number of voxels.

An example of the 3-step lesion detection procedure is

shown in Figure 3. Fig. 3(a), 3(b) and 3(c) are 2D slices

of T2w, FLAIR and the combined image (with background

and CSF removed), respectively. The histogram of the com-

bined image appears as a single bump with a long tail. The

long tail corresponds to an agglomeration of the lesion vox-

els, while the single bump is actually the summation of two

highly overlapping Gaussians, one for WM, and other for

the cortical GM. Our L2E-based FGM algorithm can accu-

rately capture the 3 components, especially the lesion part

away from the other two components. Fig. 3(e) shows the

fitting result. Black curve is the constructed histogram of

Icomb ; green line shows the overall fitting, with three indi-

vidual components plotted in red. The separation line is set

as the intersection of the rightmost two components (corti-

cal GM and the lesions) in the histogram. Fig. 3(f) is the

zoom-in version of 3(e).

The one-dimensional image Icomb is convenient to use,

however, it doesn’t contain as much information as the two-

dimensional joint T2w/FLAIR histogram. In step 2, we use

the latter to better capture and describe the GM and WM

portions. This time, however, the lesions part no longer con-

form to a Gaussian distribution, so we only focus on GM

and WM, and the number of classes is reduced to 2. Let

φ(x|μk,Σk) denotes the k-th (k = 1, 2) component multi-

variate normal density, the parametric distribution assumed

by FGMs is as follows: y(x|θ) =
∑K

k=1 wkφ(x|μk, Σk)
where θ = {w1, μ1,Σ1, w2,μ2,Σ2} represents the por-

tions, means, and covariance matrices of the two Gaussian

components. The optimal θ is obtained to minimize the

L2E metric given by

L2E2d(θ) =
2∑

k=1

2∑
l=1

wkwlφ(0|μk − μl,Σk + Σl)

− 2
n

n∑
i=1

[w1φ(x|μ1,Σ1) + w2φ(x|μ2,Σ2)] (5)

where w1 + w2 = 1.

Figure 4 is the FGM fitting result using the 2D L2E met-

ric in eqn. (5). All the voxel pairs whose Mahalanobis dis-
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tance exceeds certain threshold will be counted as prelim-

inary lesions/outliers, where the threshold is determined in

step 3.

(a) (b) (c) (d)

(e)

(f)

Figure 3: MS lesion detection using our MSLD − L2E
method. The input FLAIR (a), T2w (b), the combined im-

age (c) after background and CSF removal. The segmen-

tation result is shown in (d). (e) is an illustration of the

fitting result using 3-class L2E. (f) is a zoom-in version of

(e). The multi-spectral segmentation on FLAIR and T2w is

given in Figure 4. Pictures are better seen on screen than in

black/white print.

It should be noted that, since Icomb =√
I2
T2w

+ I2
FLAIR, the separation threshold obtained

in step 1 corresponds to a quarter circle in the 2D

T2w/FLAIR joint histogram (the black dashed line shown

in Fig. 4). A reasonable Mahalanobis threshold can

therefore be set based on the contact point of the quarter

circle and the closest Gaussian ellipse. This point can be

computed analytically or through an iterative procedure.

In our implementation, we gradually increase the σ of the
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Figure 4: Automatic threshold detection based on the multi-

spectral segmentation of FLAIR and T2w.

two Gaussian components. When any of the Gaussian

ellipses start to inscribe the quarter circle, we stop and

the returned σ is chosen as the Mahalanobis threshold.

The voxel intensities beyond the extreme points/lines are

counted into the lesion class. The extreme lines are marked

with green color in Fig. 4. The resulting segmentation is

given in Fig. 3(d).

2.1.4 Numerical Solution

To minimize the energy in Eqn.(4) and Eqn.(5), the con-

strained minimization routine fmincon in Matlab Optimiza-

tion Toolbox is employed. The underlying numerical

method is sequential quadratic programming. The objec-

tive function of L2E (Eqns (4) and (5)) is implemented in a

Matlab .m file, and sent as an input to fmincon.

2.2 Refinement step to prune false positives
In addition to lesions, the segmentation results obtained

from MSLD − L2E may contain other hyper-intense sig-

nals like bony artifacts and flow artifacts. The latter are

generated by pulsatile CSF flow that causes incomplete

nulling of CSF signal intensities. This type of artifacts are

mainly located around the interface of CSF and cortical

GM, so a dilated CSF mask could potentially erase them

up. However, periventricular areas have to be spared from

the erasion, because the lesions surrounding the ventricles

are most clearly depicted in FLAIR images and have very

little chance to be flow artifacts [14].

To eliminate the extra-cortical CSF artifacts, a region of

interest needs to be defined. Our solution is to develop

two expanded masks, corresponding to extra-cortical and

periventricular areas respectively, based on the available

FLAIR CSF segmentation.Two morphological operations,
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(a) (b)

(c) (d)

Figure 5: Refinement to prune false positives. (a) FLAIR

image; (b) segmentation results before artifact pruning; (c)

extra-cortical (orange) and peri-ventricular (light blue) CSF

masks; (d) final lesion segmentation.

erosion and dilation, are applied. Erosion operation shrinks

an object by one voxel. The separation of ventricular CSF

from other previously connected portions can be achieved

by repeatedly applying the erosion operation on the binary

CSF segmentation. A series of dilation operations on the

disconnected extra-cortical CSF and ventricular CSF can

bring them back to their original size and beyond.

Figure 5 depicts an example of the artifact reduction pro-

cedure. Fig. 5(a) is a 2D FLAIR slice. 5(b) is the seg-

mentation result from our MSLD − L2E procedure. The

orange area in 5(c) shows the expanded extra-cortical CSF

mask, where detected ”lesions” will be regarded as false

positives and removed. Blue mask delineates the periven-

tricular areas where the MSLD − L2E responses should

be preserved.

In some data sets, third ventricle area also tends to have

extra-bright FLAIR artifacts. To remove these artifacts, we

identify the brain middle plane based the method proposed

in MindBoggle [10]. A deformation registration [18] pro-

cedure is applied to capture the third ventricle, and false-

positives lesions falling in this area are then deleted. Fi-

nally, lesions in non-ventricular area those size is smaller

than 4 voxels are regarded as noise responses and removed.

Fig. 5(d) shows the final segmentation of the lesions after

all the artifacts removal steps.

Figure 6: Classification of patients with small (first row)

and moderate (second row) lesion loads. From left to right:

T2w, FLAIR, the MS lesion segmentation result and super-

imposed on the FLAIR image.

3 Experimental Results
The experiment we conducted is based on 16 set of T2 and

T2w-FLAIR data sets obtained from the University of Ken-

tucky Hospital. The data are 0.94mm x 0.94mm x 3mm in

spacing and 256 x 256 x 41 in volume size. Based on the

lesion size estimated by eye, we divided the 16 data into 2

groups: patients with small lesions load, and with moder-

ate lesion load. In Figure 6, example images are shown of

the classification results from these two groups. For each

patient category, the following images are shown: T2w,

FLAIR, segmentation from our MSLD −L2E model, and

the FLAIR image with the segmentation superimposed

3.1 Evaluation measures
To assess the accuracy and consistency of the results, a com-

parison between the automatic segmentations and manual

segmentations from an expert neuro-scientist has been per-

formed. The performance metrics used are: Volume Differ-
ence, Dice Coefficient, Sensitivity and Specificity.

The volume difference captures the absolute percent vol-

ume difference to the expert manual segmentation. Dice

coefficient measures the similarity of two sets and ranges

from 0 for sets that are disjoint to 1 for sets are identical. It

is defined as:

K(S1, S2) =
2 × |S1 ∩ S2|
|S1| + |S2| (6)

Segmentation sensitivity of certain tissue type A is the

probability of the voxels in A (in the ground truth) being

correctly classified by the estimated segmentation. Speci-

ficity, on the other hand, is the probability that a voxel u(X)

is not labeled as A given u(X) doesn’t belong to A.

Table 1 shows the MS lesion segmentation results from

our L2E-based scheme. The average Dice coefficients
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(similarity index) for the patients with small lesion load and

moderate lesion load are 0.6336 and 0.8405 respectively,

which are higher than the reported numbers in [3] and [12].

Although no direct comparison with other works can be

made at this point due to the different testing data used,

the high similarity indexes obtained for both subgroups are

good indications of the accuracy and robustness of our so-

lution.

Data Vol. Diff Dice Sensi. Specif. Lesion

Set [%] Coeff. Size

1 20.3600 0.6936 0.6998 0.9998 S

2 1.5700 0.7174 0.7231 0.9997 S

3 32.5200 0.6323 0.5394 0.9998 S

4 4.2400 0.9281 0.9084 0.9998 M

5 25.7000 0.7023 0.7029 0.9999 S

6 30.0000 0.4938 0.4196 0.9997 S

7 6.6200 0.3400 0.3417 0.9999 S

8 5.5800 0.6861 0.6880 0.9997 M

9 22.3600 0.6236 0.7284 0.9997 S

10 22.9700 0.7327 0.6484 0.9991 S

11 9.0160 0.8361 0.8398 0.9998 M

12 11.7800 0.8474 0.7974 0.9998 M

13 28.6500 0.6743 0.5777 0.9998 S

14 18.9600 0.8606 0.7790 0.9999 M

15 63.5200 0.5304 0.3619 0.9999 S

16 6.3800 0.8844 0.9126 0.9997 M

Ave. (S) 23.56 0.6336 0.6003 0.9998

STD. (S) 17.9645 0.1564 0.1848 0.0001

Ave. (M) 9.32 0.8405 0.8209 0.9998

STD. (M) 5.4316 0.0824 0.0853 0.0000

Ave. (All) 19.38 0.6989 0.6667 0.9997

STD. (All) 15.52 0.1561 0.1774 0.0001

Table 1: MS lesion segmentation results from our L2E
scheme. ”S” stands for Small, and ”M” for Moderate.

Since our automatic segmentation procedure scrutinizes

an image more thoroughly than a human rater, and in-

evitably there are artifacts that can not be completely elimi-

nated through the refinement step, it shouldn’t be a surprise

that the lesion result produced by MSLD − L2E is close

to a superset of the manual segmentation. This is reflected

in the high specificity and relative low sensitivity scores list

in Table 1.

The obtained Dice Coefficients and Sensitivity also sug-

gest that the proposed method produces better results for

patients with a moderate lesion load than for patients with

a small lesion load. This can be explained by the fact that

small errors have a relatively larger effect on a smaller ref-

erence area. We expect the values to be increased when our

method is applied to the patients with larger lesion load.

3.2 Program running time

The algorithm presented in this paper is implemented with

Matlab 7 R14, under an IBM Thinkpad T60 laptop (Intel

Core Duo T2300 / 1.66 GHz processor, 2.0GB of RAM).

The average running time for Kentucky data is around 2

minutes per set. The L2E parameters update routine is im-

plemented purely using Matlab m-files so far. We expect a

significant reduce in the whole running time after the core

level set part is implemented with mex-C.

4 Discussion and future work

We have described a fully automatic algorithm for MS-

lesion detection that requires virtually no user interaction.

The segmentation models lesion voxels in an additional

class to the mixture of the normal brain tissues, CSF, GM

and WM. Neither training nor thresholding is needed in our

model.

It should be noted that most of the methods for MS lesion

segmentation described in the literature are semi-automated

rather than fully automated methods. Some of efforts are to

facilitate the tedious task of manually delineating by human

raters, and to reduce the associated intra and inter-expert

variabilities. Other models, though rely on certain auto-

matic classifiers to make final labeling, often involve an

interactive process during the training stage. While these

methods have proven to be useful, they remain inconve-

nient or sometimes impractical when massive amount of

scans need to be analyzed. In contrast, our method is fully

automated and the only user interaction needed is feeding

data to our system. As the algorithm requires no training, it

has the potential to be directly applied to images generated

using different MR scanners or different scanning param-

eters. Extension to other lesion characteristics or different

MR scanning sequences can be done in a fairly straightfor-

ward way.

Another advantage of our approach lies in the fact that it

involves no thresholding step. Most outlier-based methods

avoid explicit lesions modeling because MS lesions tend to

vary greatly in size, shape and location, and some of them

don’t even contains a sufficient number of voxels for es-

timating the model parameters easily. However, without

explicit modeling, either soft or hard rejection, a prede-

termined threshold has to be used to decide the separation

line/plane between the normal tissue and the outlier vox-

els. Since the thresholds are often data-dependent, man-

ually chosen values tend to not work consistently across

different data sets. Our method overcomes this problem,

thanks to the strong capture capability of L2E estimation,

and achieves great flexibility and broad applicability.
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