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Abstract

The criterion for the correct spatial alignment is a key
component in image registration. We formulate the regis-
tration problem as one that finds the spatial and intensity
mappings of minimal complexity that make images exactly
equal. We do not assume any parametric forms of these
functions, and estimate them within variational calculus.

We analytically solve for non-stationary intensity map-
ping, eliminate it from the objective function and arrive with
a new similarity measure. We name it the Mapping Com-
plexity (MC) similarity measure, because it achieves the op-
timum when intensity and spatial mappings are of minimal
complexity. Due to its general formulation, the similarity
measure works both for complex intensity relationships (e.g.
multimodal registration) and for spatially-varying intensity
distortions. Our similarity measure can be interpreted as
the one that favors one image to lie mostly within a span
of the leading eigenvectors of the kernel matrix, where the
kernel matrix is constructed from the second image. We
introduce a fast algorithm to compute the similarity mea-
sure. In particular, we introduce a fast kernel vector product
(FKVP) algorithm, which is of general interest in computer
vision. We demonstrate the accuracy of the new similarity
measure on several mono- and multi-modal examples with
complex intensity non-uniformities.

1. Introduction
The criterion for the correct spatial alignment is a key

component in image registration [13, 6]. In the simplest
case, we can require two images to have equal intensities
for the correct alignment. Unfortunately, this is rarely valid
due to intensity artifacts, noise or different modalities of
the images. In general, two transformations are required to
make the images equal: spatial transformation and intensity
normalization. To normalize image intensities one often as-
sumes a particular intensity normalization function based
on intensity relationship between the images. For instance,
if the image intensities are related through a linear trans-

formation, then the normalization function includes only
two parameters: scaling and shift in the intensity space.
One can analytically solve for these parameters, eliminate
them from the objective function, and arrive with a similar-
ity measure that depends only on the spatial transformation.
In this example the final similarity measure is the Correla-
tion Coefficient [18]. Notice that the intensity relationship
here is spatially stationary, which does not depend on spatial
location. Popular similarity measures, including Sum-of-
Squared-Differences (SSD), Correlation Coefficient (CC),
Correlation Ratio (CR) and Mutual Information (MI), all
assume a particular spatially stationary intensity relation-
ship [18].

Real-world images often have spatially-varying intensity
relationships. For instance, brain MRI images can be cor-
rupted by slow-varying intensity fields; visual-band images
can have illumination non-homogeneity and reflectance ar-
tifacts [13]. Unfortunately, the real non-stationary intensity
relationship does not allow to simplify for intensity nor-
malization parameters and arrive with similarity measure
that dependends only on spatial transformation. One ap-
proach to account for non-stationary intensity relationship,
used in Statistical Parametric Mapping (SPM), is to simulta-
neously normalize image intensities and spatially align the
images [9, 1]. The intensity normalization was chosen to be
a non-linear intensity transformation followed by a convo-
lution filter. The nonlinear intensity transformation function
is defined as a linear combination of some basis functions
with spatially smooth-varying coefficients (which are de-
fined using another liner combination of basis functions).
The convolution filter has to be chosen manually for a spe-
cific problem or estimated from the images. In more re-
cent work, Ashburner and Friston [1] proposed a probabilis-
tic framework for joint registration, intensity normalization
and segmentation, using alternating optimization of corre-
sponding parameters. This method demonstrates accurate
performance on brain MRI images. A particular paramet-
ric form of intensity normalization function is somewhat
heuristic and may vary among the registration problems.

We formulate the registration problem as one that finds
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the spatial and intensity mappings of minimal complex-
ity that make images exactly equal. We do not assume
any parametric forms of these functions, and estimate
them within variational calculus. We analytically solve for
non-stationary intensity normalization function, eliminate it
from the objective function and arrive with a new similar-
ity measure. The similarity measure depends only on the
spatial transformation, which we estimate using a standard
variational approach for image registration. The new simi-
larity measure is based on general non-stationary intensity
relationship. We name it the Mapping Complexity (MC)
similarity measure, because it achieves the optimum when
intensity and spatial mappings are of minimal complexity.
Due to its general formulation, the similarity measure works
both for complex intensity relationships (e.g. multimodal
registration) and for spatially-varying intensity distortions.
Our similarity measure can be interpreted as the one that
favors one image to lie mostly within a span of the lead-
ing eigenvectors of the kernel matrix, where the kernel ma-
trix is constructed out of the second image. We give a fast
algorithm to compute the similarity measure. In particu-
lar, we introduce a fast kernel vector produce algorithm,
which is of general interest in computer vision. We demon-
strate the accuracy of MC similarity measure on multiple
mono- and multi-modal examples with complex intensity
non-uniformities.

2. Method
The goal of image registration is to spatially align two

given images A and B. We define the correct registration
as the one that represents A in terms of B with minimal
complexity. Mathematically, we want to find a spatial map-
ping T and intensity mappingF of minimal complexity that
make images equal, A = F(B̃(T −1)), or equivalently1

min
F,T

K(F , T ) s.t. A(T ) = F(B̃) (1)

Both F and T are the functions of image attributes. Specifi-
cally, we define the attributes of the image B as its intensity
and spatial features B̃ = (B(x),x). Eq. 1 can be reinter-
preted as the Occam’s razor principle, or to prefer the sim-
plest mapping among multiple equivalent ones that make
the images equal.

We proceed to define the mapping complexity as a norm
of the corresponding functions K(F , T ) = K(F) + K(T ),
where

K(F) =

∫ ∞
∑

l=0

β2l

l!2l

∥

∥DlF(z)
∥

∥

2
dz (2)

penalizes all order derivatives of the function, weighted by
a parameter β [23, 4]. Here D is a derivative operator so

1We assume that spatial transformation T is bijective.

that D2lF = ∇2lF and D2l+1F = ∇(∇2lF), ∇ is the
gradient operator and ∇2 is the Laplacian operator.

We first solve analytically for F regardless of T . We
rewrite the constrained minimization problem of Eq. 1, us-
ing the quadratic penalty method [16], as

E(F , T ) = K(F) +K(T ) +
1

µ

∫

(

A −F(B̃)
)2

dx (3)

where µ > 0 is a penalty parameter. Discretizing images
in Eq. 3 at N pixel locations, we find the minimum of F
function using standard variational calculus. Solving the
corresponding Euler-Lagrange equation, we obtain that F
is in the form [23, 4]:

F(z) =

N
∑

i=1

wiG(B̃, z); where w = (G + µI)−1a; (4)

where w = [w1, .., wN ]T is a vector of coefficients, G is
a Green’s function corresponding to the operator in Eq. 2,
which is a Gaussian function with width parameter β [23,
21, 4], aN×1 is a vector of A image intensities, the kernel
matrix GN×N is square symmetric (semi) positive definite
with elements:

gij = e
−

„

(B(xi)−B(xj ))2

2σ2
int

+
‖xi−xj‖

2

2σ2
spat

«

; i, j = 1..N ; (5)

where we have absorbed the Gaussian normalization con-
stant in µ and have intentionally assign different weights in
intensity σint and spatial σspat directions2. Setting µ = 0,
we obtain the solution to the exact constraint A = F(B̃),
but it is often usefull to relax this equality by treating µ as
a weight parmeter. Finally, substituting Eq. 4 into Eq. 3, we
obtain

min
T

E(T ) = K(T ) + wT Gw +
1

µ
‖a −Gw‖2 =

K(T ) + aT (G + µI)−1a, where a = A(T ). (6)

where the quadratic term wT Gw is obtained from K(F)
after substituting the kernel form (Eq. 4) [4]. To summa-
rize, we have analytically found the minimizer for the F
mapping and eliminated it. The final objective function de-
pends only on the spatial transformation T . The last term
here can be seen as a new similarity measure.

Analysis: To analyze the performance of the new similar-
ity measure, we decompose the Gaussian kernel matrix G

2The actual width of the Gaussian is a single parameter β, which
comes from the Eq. 2. However, non-equal weights σint and σspat help
to balance the influence of intensity and spatial information. More pre-
cisely, non-equal weights are obtained either by rescaling the image inten-
sities and spatial coordinates in advance or by explicitly defining different
weights in the norm definition (Eq. 2).
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in terms of its eigenvalues Λ = d[λ1, .., λN ], λ1 ≥ λn ≥
λN ≥ 0 and eigenvectors Q = [q1, ..qn] : G = QΛQT .
We can rewrite the similarity measure as

E(T ) = aT (G + µI)−1a = aT (QΛQT + µI)−1a =

aT Q(Λ + µI)−1QT a =

N
∑

n=1

1

λn + µ
(qT

na)2 (7)

Thus, by minimizing Eq. 7, we are looking for the trans-
formed image A that mostly lies within a subspace spanned
by the leading eigenvectors3 of the kernel matrix G (formed
out of the image B). The projections of a onto the other
eigenvectors (corresponding to small eigenvalues) are more
heavily penalized.

3. Implementation
Spatial transformation: Recall that K(T ) measures the
complexity of the spatial transformation T and may or may
be in the form of Eq. 2. We follow the standard variational
approach for the transformation estimation [14]. We set
T (x) = x + u(x)4 and define K(T ) = w

∫

‖4u(x)‖
2
dx,

where w is a weight parameter. Thus, the objective function
takes the form:

E(u) = aT (G + µI)−1a + w

∫

‖4u(x)‖
2
dx (8)

The solution for the displacement field u (and thus for T )
is obtained iteratively. We use fast FFT-based solvers to
update the displacement field [14].

The computational bottleneck: The bottleneck of the
method is to computate the inverse matrix (G + µI)N×N

(once), and the inverse matrix vector product (G + µI)−1a

(at each registration iteration). Not only the exact inver-
sion requires enormous computational load O(N 3) (where
N is a number of image pixels), but the construction of the
G matrix itself is prohibited due to the large memory re-
quirement. Nevertheless, we propose a fast solution, taking
advantage of the high structure of the kernel matrix G.

The kernel matrix G (Eq.5) can be factorized into inten-
sity GI and spatial GS kernels

G = GI ◦GS ; g
ij
I = e

−
(B(xi)−B(xj ))2

2σ2
int ; g

ij
S = e

−
‖xi−xj‖

2

2σ2
spat

(9)
where ◦ is the Hadamard (elementwise) product. We first
consider a special cases, when G = GI , that is F depends

3Corresponding to the largest eigenvalues.
4Notice that the transformation T depends only on spatial coordinates,

but in general we can include intensity and other image attributes, e.g in or-
der for different anatomical regions to have different transformation prop-
erties.

only on intensities. Matrix GI has rank K, where K � N

is a number of the distinct intensity levels. Let cK×1 be a
vector of sorted distinct intensity levels and G̃I be a kernel
matrix of these elements,then GI decomposes as

G = GI = PG̃IP
T ; g̃ij = e−(c(i)−c(j))2/2σ2

int (10)

where PN×K is all zeros, but P(n, Ind(B(xn))) = 1 for
n = 1..N and Ind(B(xn)) = 1..K is an integer index
of the corresponding intensity level. Using the Woodbury
identity [17], we obtain

(PG̃IP
T + µI)−1 =

1

µ
I −

1

µ
P(µG̃−1

I + PT P)−1PT

(11)
The inside matrix inversion can be precomputed in O(K3).
Thus, the product (G + µI)−1a requires only O(N + K2)
multiplications.

In the general case, the kernel matrix is built using
both intensity information and spatial information (Eq. 5).
We propose to compute the inverse approximately through
lowrank matrix approximation. We estimate L leading
eigenvectors Q̃ and eigenvalues Λ̃ of G, where L � N ,
through the Lanczos algorithm [7], and use the Woodbury
identity [17]:

(G+µI)−1 ' (Q̃Λ̃Q̃T +µI)−1 =
1

µ
I−

1

µ
Q̃(µΛ̃−1+I)−1Q̃T

(12)
Such approximation is precomputed before the registration
iterations. The product (G + µI)−1a takes only O(LN).

To estimate L leading eigenvectors and eigenvalues of
G, we use the Lanczos algorithm [7] (we used Mat-
lab “eigs” implementation). Lanczos algorithm is itera-
tive and requires the forward matrix-vector product Ga

at each iteration. Here we introduce the fast kernel vec-
tor product (FKVP) algorithm that computes Ga exactly
in O(KN log N) with O(N) memory requirement. The
FKVP algorithm utilizes the reach structure of the kernel
matrix G in image processing.

FKVP: We use the idea that the full kernel matrix G =
GI ◦ GS , GI is low rank and GS is block Toeplitz. The
fast algorithm to find Ga is

Ga =

K
∑

i=1

P(:, i) ◦ (GS ãi); ãi =
(

PG̃I(:, i)
)

◦ a (13)

where P and G̃I are form Eq. 10 and (:, i) denotes the
ith column of the corresponding matrix. The product
GS ãi takes O(N log N), because GS is symmetric block
Toeplitz. To see it, consider the following 2D case of block
Toeplitz matrix vector product GS ãi

GS ãi = (Gx2

S ⊗G
x1

S )ãi = G
x2

S Mat(ãi)G
x1

S (14)
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where ⊗ is the Kronecker product, each G
xd

S has elements
(

Gxd

S

)

ij
= e

−
(xd

i
−xd

j
)

2σ2
spat ; i, j = 1..Nd, and Nd is the image

size in the dth direction. Mat(ãi) denotes the matricize
operation (or to reshape a vector into a matrix in Matlab no-
tations). In the D-dimensional case, Mat(ãi) reshapes the
vector into the D-dimensional array (or tensor) and each
of the G

xd

S matrices (i = 1, .., D) multiplies consecutively
along the ith principal tensor direction. Each of the ma-
trix vector product Gxd

S z is computed by embedding the
Toeplitz matrix G

xd

S into the circular matrix and using the
FFT [2]. Thus the total computation complexity of forward
matrix vector product Ga is O(KN log N) with no explicit
matrix constructions.

4. Results
We have implemented the algorithm in Matlab, and

tested on a AMD Opteron CPU 2GHz with 4GB RAM ma-
chine. We empirically found the parameter values µ = 0.1,
w = 1, σint = 0.1, σspat = 0.5M (where M is the
size of the smallest image dimension) to be satisfactory,
which we use in all experiments unless explicitly stated.
We demonstrate the performance of the MC similarity mea-
sure on the BrainWeb MRI images [5]. Figure 1 shows the
T1-weighted, T2-weighted and proton density (PD) images
from the same subject. For testing, we used 2D images
(217 × 181 pixels). All images are intensity normalized
to [0, 1] interval. We add an artificial intensity distortions
and a spatial deformation to the test images and evaluate the
registration performance. To simulate the synthetic spatial
deformation we put a uniform grid of 6 × 6 control points
over the image, randomly perturb them and interpolate the
image using the Thin Plate Spline (TPS) [3]. This way we
obtain smooth locally varying synthetic deformations. We
compute the average absolute transformation error between
the true and estimated transformations to evaluate the reg-
istration performance as 1

2N

∑

|xtrue − xestimated|. We
do not include the area outside the scull (roughly found by
simple thresholding) during registration and evaluation of
the transformation accuracy.

Figure 2 shows the registration example where one im-
age (the source image) is a deformed version of the other
image (the reference image) with no intensity artifacts. In
this simple example the images have spatially stationary
identity intensity relationship. We set σspat = ∞; we con-
struct a kernel matrix from the intensity information only
G = GI . In this case, the inverse matrix construction
(Eq. 11) takes less than a second. The registration algorithm
reduces the absolute transformation error from 5.65 to 0.58
per pixel. The registered image is visually almost identical
to the reference image. The composite view, obtained by
overlapping edges extracted from the registered image over

T1 T2 PD
Figure 1. The set of test images: T1-weighted, T2-weighted
and proton density (PD) MRI images. The images are spatially
aligned.

(a) reference (b) source (c) true transform

(d) result (e) composite (f) found transform
Figure 2. Monomodal (T1) registration with spatial deformation
only. We register the source image (b) onto the reference image
(a). The absolute transformation error between the true (c) and
estimated transformation (f) is reduced from 5.65 to 0.58 per pixel.
The composite view (e) demonstrates the accurate alignment.

the reference one, also demonstrates the accurate alignment.
In Figure 3 and Figure 4, we tested the method for multi-

modal image registration, by registering T1-T2 and PD-T2
image modalities with no intensity artifacts. Once again,
we construct the kernel matrix from the intensity informa-
tion only: G = GI . The registration algorithm reduces the
absolute transformation error from 5.43 to 1.08 per pixel for
T1-T2 image pair and from 5.12 to 1.22 per pixel for PD-T2
image pair. The registration results are accurate.

Finally, we demonstrate the algorithm performance on
mono- and multi-modal examples with spatially varying in-
tensity nonuniformity. We simulate a multiplicative inten-
sity distortion field by mixture of random low-frequency
2D cosine functions. Precisely we set a matrix of all ze-
ros (same size as images), randomly initialized the first 25
coefficients and take the inverse discrete cosine transform.
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(a) reference (b) source (c) true transform (d) intensity distortion field

(e) result (f) composite (g) found transform
Figure 5. Monomodal (T1) registration with spatial deformation and intensity non-uniformity. We register the source image (b) onto the
reference image (a). The source image (b) includes a synthetic multiplicative intensity field (d). The absolute transformation error between
the true (c) and estimated transformation (f) is reduced from 5.12 to 1.23 per pixel. The composite view (e) demonstrates the accurate
alignment.

(a) reference (b) source (c) true transform (d) intensity distortion field

(e) result (f) composite (g) found transform
Figure 6. Multimodal (T1-T2) registration with spatial deformation and intensity non-uniformity. We register the source image (b) onto the
reference image (a). The source image (b) includes a synthetic multiplicative intensity field (d). The absolute transformation error between
the true (c) and estimated transformation (f) is reduced from 4.96 to 1.03 per pixel. The composite view (e) demonstrates the accurate
alignment.

Figure 5 demonstrates a monomodal (T1) image registration
with a similar set-up as in the Figure 2, but the source image
is also corrupted by the simulated multiplicative intensity

field. In this case we have to compute the full matrix inverse
(Eq. 12) through low-matrix approximation. To speed up
the computations we reduce the colorspace of the reference
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(a) reference (b) source (c) true transform

(d) result (e) composite (f) found transform
Figure 3. Multimodal (T1-T2) registration with spatial deforma-
tion only. We register the source image (b) onto the reference im-
age (a). The absolute transformation error between the true (c) and
estimated transformation (f) is reduced from 5.43 to 1.08 per pixel.
The composite view (e) demonstrates the accurate alignment.

(a) reference (b) source (c) true transform

(d) result (e) composite (f) found transform
Figure 4. Multimodal (PD-T2) registration with spatial deforma-
tion only. We register the source image (b) onto the reference im-
age (a). The absolute transformation error between the true (c) and
estimated transformation (f) is reduced from 5.12 to 1.22 per pixel.
The composite view (e) demonstrates the accurate alignment.

image from 256 to 15 distinct intensity levels (K = 15) by
piecewise thresholding. We precompute L = 200 (out of
39277!) leading eigenvectors and eigenvalues of G, which
takes around 2 min. The registration algorithm reduces the
average absolute transformation error from 5.24 to 1.23 per

Table 1. The average transformation error after the registration
(in pixels). The average initial transformation error was 5.12 per
pixel. We have conducted 20 experiments for each combinations
of images. The registration performance is accurate.

T1-T1 T1-T2 PD-T2 PD-T1
1.15± 0.52 1.32± 0.63 1.41± 0.74 1.39± 0.68

pixel and required around 3 min. Using the same set up,
Figure 6 demonstrates a multimodal (T2-T1) image regis-
tration with a source image corrupted by multiplicative in-
tensity field. The registration algorithm reduces the average
absolute transformation error from 4.96 to 1.03 per pixel.

We have conducted 20 experiments for each combina-
tions of image pairs: T1-T1, T1-T2, PD-T2, PD-T1. At
each run we artificially randomly deformed one of the im-
ages and corrupt it with random multiplicative intensity
field, similar to the ones shown in Figures 5,6. The aver-
ave transformation error before the registration was 5.12
per pixel. The average transformation error after the reg-
istration is shown in Table 1. The registration performance
is accurate.

For the comparison, we have also tested registration with
the SAD, SSD, CC, CR, MI, NMI similarity measures, im-
plemented in Deformable Registration using Discrete Op-
timization (DROP) software [11] and in Image Registra-
tion Toolkit (ITK) [19]. The performance of these similar-
ity measures was accurate with no intensity non-uniformity.
For the case of spatially varying intensity distortions, these
similarity measures do not give satisfactory results, because
of the spatially stationary underlying intensity relationship
assumption. Some other registration methods, including
SPM [9, 1] and ones based on local MI [12], implicitly as-
sume intensity non-stationarity and can produce a reason-
able registration results for our test images.

We have also tested the algorithm on the full 3D MRI im-
ages. The registration performance is equivalent to the one
shown for 2D case. The computational time to pre-compute
L = 50 largest eigenvectors was around 5 minutes. The size
of each eigenvector is equal to the size of the image, which
takes a big amount of memory in 3D case. As the com-
putational accuracy improves for the better approximation
(bigger L), the choice of the number of leading eigenvector
is a trade-off between the computational load and accuracy
of the registration. We discuss this and some other compu-
tational aspects in Sec. 5.

5. Discussion
Inverse kernel vector product: In Sec. 3, we have pro-
posed to approximate the kernel matrix G in terms of its
leading eigenvectors and eigenvalues. Such approximation
is adequate for our problem. Recall that we are trying to
transform image A so that it mostly lies withing a subspace
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of the leading eigenvectors. With a low rank matrix approx-
imation approach, we penalize all the smallest remaining
eigenprojections equally (instead of weighting them). For
the fast forward product Ga, we have proposed the fast
kernel vector product (FKVP) algorithm, which requires
O(KN log N) operations. Alternatively, one can compute
Ga approximately using Fast Gaussian Transform (FGT)
in O(pN), where p is a multiplicative constant [10, 22].
Unfortunately this constant rapidly increases for the higher
accuracy approximations. FGT works better for the data
easily clustered, which is not the case for digital images
where each data point represent intensity and spatial coor-
dinates. We note that FGT is a general algorithm, whereas
our FKVP work only for the digital images, taking advan-
tage of its structure. We prefer FKVP, because it computes
the product exactly with a similar to FGT complexity (em-
pirically FKVP is much faster).

The low rank matrix approximation is not the only way
to compute (G + µI)−1a quickly. We can also compute
it using linear conjugate gradients (CG) [16], as a solu-
tion to the symmetric positive definite (p.d.) linear system
(G+µI)z = a. This has the advantage of not requiring the
eigen decomposition and the storage of the leading eigen-
vectors, but unfortunately has to be done at every iteration
of the registration algorithm. In general, linear CG requires
at most N matrix vector Ga products, which can we can
compute fast through FKVP. Also, we can initialize the lin-
ear CG from the previous registration iteration (which will
be close to the solution) rather than solving each system
anew, and we can run only a few linear CG steps and ob-
tain an approximate but good enough solution. Thus the
computational complexity of linear CG in our problem is
O(pKN log N) per registration iteration, where p < N

is a number of CG steps. Such approach is much slower
than low matrix approximation strategy, but does not re-
quire storage of eigenvectors, and can be a choice for the
large data-set problems.

Colormap size: Recall that the computational complex-
ity of FKVP algorithm is O(KN log N), where K is the
nubmer of distinct intensity levels (or colormap size) in the
reference image, and N is the number of pixels. Thus the
computational time can be significantly reduced by resizing
the image or by reducing the colormap size. As the refer-
ence image is usually not intensity corrupted (e.g. when the
reference image is a model or an atlas), its colormap is small
or can be reduced to small without a significant loss of accu-
racy. Here we have used a simple piece-wise thresholding
method to roughly reduce the reference image colorspace to
15 intensity levels out of 256 initially. Other more accurate
methods, including the histogram clustering and dithering,
can be also used. In the case when the colormap of the ref-
erence image can not be significantly reduced, the FKVP is

still much faster than the direct approach, because the full
colormap is still much smaller than the total number of im-
age pixels.

Number of leading eigenvectors: The low-rank matrix
approximation requires selecting the number of the L lead-
ing eigenvectors and eigenvalues of G. The accuracy of
the approximation and the whole registration procedure de-
pends on L. The eigenspectra of Gaussian kernel matrix de-
cays fast in general, but the optimal selection of the number
of eigenvalues is a common problem in computer vision. In
our case, a heuristic approach is to consider that for a spe-
cial case G = GI the number of non-zero eigenvalues is
K and thus in the full case, when G w GI , the number of
the largest eigenvalues should be close to K. The choice of
the number of leading eigenvector is a trade-off between the
computational load and accuracy of the registration.

Intensity relationship: In this paper, we have used the
following image relationship A(x) = F(B(x),x), with
F : R

D+1 → R. Alternatively, we can also use the
constraint that image intensities are positive, e.g. using
A(x) = exp(F(log(B(x)),x)). This does not change the
derivative significantly, except the images should be log
transformed before the registration, i.e. a = log(A). The
positive mapping of grayscale images can be generalized
for tensor-valued images using matrix exponent, in order to
include the p.d. constraint.

Also, one can require the intensity mapping to be identity
transformation when its norm is zero. This can be accom-
plished using relationships A(x) = B(x) + F(B(x),x) or
A(x) = B(x) exp(F(log(B(x),x))), which leads to the
objective function rT (G+µI)−1r, where r = A(x)−B(x)
or r = log(A(x)) − log(B(x)). All these different variants
were briefly tested and have different performance depend-
ing on the problem. We do not include the detailed compar-
isons of such variants in this paper.

FKVP algorithm: We believe, the fast kernel vector
product (FKVP) is of general interest in computer vision.
For instance, kernel methods for image processing, includ-
ing kernel PCA [20] and spectral clustering [15], require to
find the eigenvectors of the kernel matrix (which is build
from spatial intensity image attributes) and/or to find the
forward kernel matrix vector product. Usually, people use
different kernel approximations, including truncating of the
kernel (finite support), subsampling of the images, FGT and
Nystrom approximations [8]. The FKVP algorithm is di-
rectly applicable for such kernel methods in image process-
ing with O(KN log N) computational complexity. Com-
pared to the other approaches, it is exact (no approxima-
tions) and is defined for general kernel (not necessarily
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Gaussian). Also FKVP can be further accelerated by re-
ducing the colormap size. Finally, the strong analogy of our
image registration approach with kernel PCA and spectral
clustering suggest further intuition and possible improve-
ments of our similarity measure, which we reserve for fu-
ture works.

6. Conclusion
We derived a new similarity measure, called the Map-

ping Complexity (MC) similarity measure. We derived it by
formulating the registration problem as the one that finds the
spatial and intensity mappings of minimal complexity that
make images exactly equal. Due to its general formulation,
the similarity measure is applicable for both complex in-
tensity relationships (e.g. multimodal registration) and for
spatially-varying intensity distortions. Our similarity mea-
sure can be interpreted as the one that favors one image to
lie mostly within a span of the leading eigenvectors of the
kernel matrix, where the kernel matrix is constructed from
the second image. We have proposed a fast algorithm to
compute the similarity measure. In particular, we introduce
a fast kernel vector product (FKVP) algorithm, which is of
general interest in computer vision. We have demonstrated
the accuracy of the new similarity measure on several mono
and multimodal examples with spatially varying intensity
distortions. The MC similarity measure shows accurate per-
formance on the given set of test images.
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