
 

 

 
Abstract 

 
This paper presents a method to simultaneously 

regularize diffusion weighted images and their estimated 
diffusion tensors, with the goal of suppressing noise and 
restoring tensor information. We enforce a data fidelity 
constraint, using coupled robust anisotropic diffusion 
filters, to ensure consistency of the restored diffusion 
tensors with the regularized diffusion weighted images. 
The filters are designed to take advantage of robust 
statistics and to be adopted to the anisotropic nature of 
diffusion tensors, which can effectively keep boundaries 
between piecewise constant regions in the tensor volume 
and also the diffusion weighted images during the 
regularized process. To facilitate Euclidean operations on 
the diffusion tensors, log-Euclidean metrics are adopted 
when performing the filtering. Experimental results on 
simulated and real image data demonstrate the 
effectiveness of the proposed method. 
 

1. Introduction 
Diffusion tensor imaging (DTI) has been widely used to 

delineate tissue micro-structures, particularly in white 
matter regions of the brain [1, 2]. The estimation of 
diffusion tensors (DTs) from diffusion-weighted images 
(DWIs) is often limited by imaging noise that leads to 
uncertainty in the computation of tensors and their derived 
quantities, such as principal directions. Since most fiber 
tracking algorithms rely on principal directions estimated 
from these tensors to reconstruct fiber pathways, it is 
crucial to reduce the effect of noise. 

Existing methods for regularizing diffusion tensors fall 
in two categories: two-step methods and one-step 
methods. Two-step methods perform diffusion tensor 
estimation and smoothing separately. Some of them focus 
on the smoothing of DWIs prior to the estimation of 
diffusion tensors. To smooth the vector valued DWIs, 
Perona-Malik nonlinear filtering, Weickert anisotropic 
filtering and a T-V norm minimization based method have 

been proposed [3-5]. In these methods, the problem of 
DWI smoothing is formulated in Partial Differential 
Equation (PDE) based frameworks. Recently, an adaptive 
smoothing method is proposed to smooth DWIs with 
weights inferred from properties of the estimated tensor 
field rather than from the DWIs themselves [6]. Other 
two-step methods perform regularization directly on the 
estimated diffusion tensors. In [7], the well known 
bilateral filtering method for scale images is extended to 
smooth diffusion tensors while preserving edges by means 
of weighted averaging of nearby image values. Markov 
model based method, vector based diffusion PDEs, 
median filtering and Fermat median filtering based on 
tensor images have also been proposed to regularize the 
tensor fields [8-12]. These methods regularize the 
diffusion tensors or their principal diffusion directions as a 
whole after the diffusion tensors are estimated from the 
DWIs. The major limitation of these methods is that the 
positive definiteness of the regularized tensors cannot be 
guaranteed.  

In contrast to the above-mentioned methods, one-step 
methods simultaneously regularize and estimate diffusion 
tensors from DWIs using energy minimization based 
frameworks [13-15]. The energy function to be minimized 
typically includes a tensor smoothness term and a data 
fidelity term, which ensure the consistency of the 
smoothed diffusion tensors with respect to the DWIs. The 
energy minimization problem can be solved using iterative 
algorithms which constrain the estimated and smoothed 
diffusion tensors in a valid tensor manifold. In [13], the 
diffusion tensor is parameterized by its Cholesky 
decomposition, which can ensure that positive definiteness 
of final regularized tensors.  However, as pointed out in 
[14], a better solution for the problem is to process tensors 
using Riemannian metrics [16]. Using log-Euclidean 
Riemannian metrics, operations on the diffusion tensors 
are identical to those in the Euclidean space, which makes 
computation simple and fast [17, 18]. Based on log-
Euclidean metrics, an anisotropic filter was proposed for 
regularizing diffusion tensors that are simultaneously 
estimated from DWIs [14]. These one-step methods 
provide a neat solution for smoothing diffusion tensor; 
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however the problem of how to make such smoothing stop 
at edge of tensors remains unsolved, causing unnecessary 
smoothing on important anatomical details. 

To achieve robust smoothing of diffusion tensors, we 
propose to simultaneously smooth the diffusion tensors 
and the DWIs using coupled robust anisotropic diffusion 
filters, which are subject to a data fidelity constraint in the 
Gaussian diffusion tensor model based on the Stejskal and 
Tanner equations [19]. An “edge-stopping” function based 
on Tukey’s biweight robust estimator is adopted to 
preserve sharp boundaries in both DWI space and 
diffusion tensor space [20], which will in the end ensure 
piecewise smoothing of diffusion tensors. Using the Log-
Euclidean metrics, the robust anisotropic diffusion filters 
can be implemented using simple Euclidean operations. 
The proposed method is validated using simulated DTI 
data and also in vivo human brain data. Quantitative and 
qualitative comparisons with state-of-the-art algorithms 
demonstrate the superiority of the proposed method. 

2. Method 
   DTI makes use of the anisotropic nature of water 
diffusivity in structured tissues to capture white matter 
structural information. Motion of water molecules is 
favored along the fiber direction and hindered in the 
orthogonal directions. Measurement of such water 
diffusivity at each voxel location provides an effective 
way of estimating the local fiber orientation. Water 
diffusivity can be represented by a ��� symmetry tensor 
D, which has six independent elements. In DTI, instead of 
a homogeneous magnetic field, the magnetic field is 
varied linearly by a pulsed field gradient so as to capture 
the water diffusivity in different directions.  

To calculate the tensor, at least 6 DWIs corresponding 
to different magnetic gradients and a baseline image (no 
magnetic gradient) is required. If the diffusion process is 
assumed to be Gaussian, the i-th DWI ��  and diffusion 
tensor D are related by the Stejskal-Tanner equation as 
follows. 
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where b is LeBihan’s b-factor, ig�  is the normalized 

magnetic diffusion gradient vector corresponding to the i-
th DWI, and �� is the image acquired with  0=ig

�
. The 

diffusion tensor D is a 33× symmetric tensor matrix, and 
has six degrees of freedom. Usually, a least-squares 
procedure is used to estimate the DTs. Obviously, the 
quality of the DTs hinges on that of the DWIs. It is 
therefore better to simultaneously restore the DWIs and 
diffusion tensors. 

2.1. Simultanous Estimation and Restoration of 
Diffusion Tensors 

To simultaneously restore the DWIs and the DTs, we 
adopt the framework proposed in [13] to optimize the 
energy minimization problem: 
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where N is the total number of diffusion gradients, � and � 
are regularization parameters. The optimization problem 
can be solved iteratively by a gradient descent approach. �./(=�. ��0� 123����� !�". # $ ) 3����� 4��!�"5.&�'(  

                                   +) 3*+,��+�-4��!�"5.&�'( 6            (3) 

where 0� is the step for each iteration, and parameters ��7�8�$ balance the smoothness terms of DWIs and 
diffusion tensors. The performance of such a solution is 
often limited if the smoothing functions are not properly 
defined, resulting in over-smoothing. 

2.2. Log-Euclidean space 
    In Log-Euclidean space, the DT, �9 is represented as �:; � <=>!�". The �:; can be calculated from � as 
follows. First, diagonalization of � is performed: �������������������������� � ?@A?����                                            (4) 

where  ? is a rotation matrix, and A�a diagonal matrix with 
the eigenvalues of � at its diagonal. Then each diagonal 
element of A is converted into its natural logarithm in 
order to obtain a new diagonal matrix �AB . Finally, using AC 
instead of A in equation (4), we obtain:  

                      �:; � ?@AC?                                            (5) 

2.3. Coupled Robust Anisotropic Diffusion Filters 
   To restore the diffusion tensors, and at the same time be 
robust to over-smoothing, we adopt a set of smoothing 
functions which are based on robust statistics [21]. 
Specifically, coupled robust anisotropic diffusion filters 
are used to simultaneously smooth DT and DWIs in the 
log-Euclidean space. 
   In the log-Euclidean space, tDE�F=GGEHI=�8��>�JEG�H�=K�JDE�E�EG>L�KM�FJ�=��7GE�GEIGEHE�JE8�7HN�������� !�:;" � O P(!Q3�:;!��"Q9 R("�S ,T��� �!U"����
������� !��!�:;"" � O PV!Q3!��!�:;""Q9 RV",T�S �� �!W"�
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where � is the image domain, P(!^" and PV!^" are the 
robust error norm, R(�and  RV�are the scale parameters. The 
effect of the outliers is minimized by making appropriate 
choices of  �1 and �2. 

For the robust estimation of function �1, and �2, we 
employ the Tukey’s biweight algorithm since it has proven 
to robustness for image denoising [20]. It is defined as: 

   P_4`9 R_5 � ab
c

dec � bfdef # bghdeg ������ i`i j R_9 k � l9m
(h ������������������������=JDEGn�HE           (9) 

By defining �o_4`9 R_5 p qrs4b9de5b ,  and �t � ��
�� E]I!�:;" �
�, with 
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we can compute the data gradient (divergence): 
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With these gradients, the diffusion tensor smoothing 
problem can be solved iteratively by:        
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The details on the numerical implementation of ~�~���, 3�:;�7�8�3t�, can be found in [13, 14].   

To use the Tukey’s biweight algorithm, we need to 
determine how large the image gradient or diffusion tensor 
gradient can be before we consider it to be an outlier, we 
automatically estimate the “robust scale” as [22]: 

  R( � ��R(� and �RV � ��RV�   (14) 

  R(� � l���mU�E8�7�|Q3�:;Q ��E8�7�!Q3�:;Q"}(15) 

  RV� � l���mU�E8�7�|Q3�!!�:;"Q 

                             ��E8�7�!Q3�!�:;"Q"}                    (16) 

To quantitatively evaluate the performance of the 
proposed method, we compute a summary statistic of the 
angle differences between principal diffusion directions 
(PDDs) of the original and restored tensors. The measure 
used is defined as the mean of angle difference:  

             �����><E��� � ) ��!�"9��!�"�Q�!�"QQ��!�"Q���) (��� ��� (17) 

where I, I�  are the principal diffusion directions of the 
smoothed data and the noise-free data. A small value for ��><E��� indicates good result. 

�� Experiment Results�
A set of experiments on simulated and in vivo DTI data 

have been performed to validate the proposed method. We 
have also compared the proposed method with two 
representative methods: adaptive smoothing of DWIs [6], 
and simultaneous smoothing and estimating diffusion 
tensors [14] using the R software and MedINRIA [6, 23], 
with the default parameters provided by the authors. The 
experimental results are displayed using ExploreDTI [24]. 

3.1. Simulated data 
     A set of simulated data, each consisting of concentric 
cylindrical shells, are generated to model 4 fiber bundles 
using R software [6]. Each of the dataset consists of 25 
diffusion weighed images in 25 directions and one image 
with a null gradient. The dimension of each of these 
images is U��U��mU. Fig. 1(a) shows one representative 
slice of the diffusion tensor image, depicted in its 
ellipsoidal representation map. Four rings, two closed and 
two unclosed can be observed.  

To test the performance of regularization algorithms, 
Rician noise is added to the original DWIs by first 
transforming the DWIs into k space and then adding 
Gaussian noise with a standard deviation of 25 to both the 
real and the imaginary parts. The resulting noise distorted 
diffusion ellipsoidal representation map is shown in Fig.1 
(b). 
    Applying the regularization algorithms, the results 
shown in Fig.1 (c-e) are obtained. As shown in Fig. 1(c), 
MedINRIA does not distinguish the ring, as pointed by the 
arrow (A), with other portions of the image, which might 
be due to the possibility that the smoothing did not stop at 
the edges. This result is consistent with that observed in 
[20], and hence indicates robust anisotropic diffusion 
filters are needed.  
     As shown in Fig. 1(d), the adaptive smoothing of DWIs 
method yields a better result and effectively recovers the 
rings. However, the fiber directions in the region pointed 
by the arrow are not correct, as indicated by the colors of 
ellipsoidal representation map. They should be consistent 
with those of Fig. 1(a).  
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The result obtained by the proposed method is shown in 
Fig.1 (e). The consistency of the tensor directions between  
Fig.1 (a) and (e) indicates that our method yields the best 
result.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   As shown in Fig. 1(f), all of the restoration algorithms 
can recover the original diffusion tensor to some extent. 
Using ��><E��� measure, the proposed method obtains 
the best results.  

                                (a)                                                          (b)                                                             (c) 
 

                                           (d)                                             (e)                                                          (f) 
 
Fig.1. Tensor ellipsoidal representation maps for (a) simulated diffusion tensors, (b) diffusion tensors distorted by Rician noise, (c) 
diffusion tensors restored by MedIRNIA, (d) diffusion tensors restored by adaptive smoothing of DWIs, and (e) diffusion tensors 
restored by the proposed method. Means of angle differences between PDDs of noisy and restored tensors with respect to the 
original tensors are shown in (f). 
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    The PDDs of the rectangle region pointed by arrow (A) 
also indicate that our result is the best. 

3.2. In vivo brain data 
A set of in vivo DWIs were acquired from a healthy 

subject. It was scanned with 30 gradient directions with a 
b value of 1000 sec/mm2. The image size is lm� { lm� {��. After processing with MedINRIA, R software and the  
proposed method, fiber tracts are generated using 
ExploreDTI with the FA threshold value set at 0.2 and the 
maximum angle of deviation limited by 30-degree. 
Although all methods yield seemingly similar results, the 
fiber tracts given by the proposed method is much more 
uniform, as shown in Fig. 2.   

4. Conclusion 
We have developed a DTI smoothing method, utilizing 

coupled robust anisotropic diffusion filtering, to estimate 
and smooth diffusion tensors. Tukey’s biweight algorithm 
is adopted to make smoothing stop effectively at edges. 
Compared with the results achieved by MedINRIA and R 
software, for the simulated data, both visual inspection and 
measurement of mean of PDD angle difference indicate 
that the proposed method gives the best performance. For 
in vivo human brain data, the tractography result shows 
that the proposed method obtains much more uniform 
fibers. In the future, we will examine the influence of the 
regularization parameters, and also validate the proposed 
method using larger datasets. 
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