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Abstract

We approach the problem of fiber tractography from the
viewpoint that a computational theory should relate to the
underlying quantity that is being measured – the diffusion of
water molecules. We characterize the brownian motion of
water by a 3D random walk described by a stochastic non-
linear differential equation. We show that the maximum-
likelihood trajectories are 3D elastica, or curves of least
energy. We illustrate the model with Monte-Carlo (sequen-
tial) simulations and then develop a more efficient (local,
parallelizable) implementation, based on the Fokker-Planck
equation. The final algorithm allows us to efficiently com-
pute stochastic completion fields to connect a source region
to a sink region, while taking into account the underlying
diffusion MRI data. We demonstrate promising tractogra-
phy results using high angular resolution diffusion data as
input.

1. Introduction

Diffusion magnetic resonance imaging (DMRI) [11] pro-
vides a noninvasive means to explore neural connectivity
between distinct areas of the brain, a subject of significant
interest in neuroscience [21]. DMRI is based on the in-vivo
measurement of the brownian motion of water molecules in
living organisms, and on the property that it is anisotropic in
brain white matter and other fibrous tissues. This anisotropy
is primarily caused by the presence of bundles of axons,
which restrict the diffusion of water in the direction perpen-
dicular to them. The direction of maximal diffusion is there-
fore assumed to coincide with the direction of fiber tracts
[12].

There is a growing body of research in various aspects
of DMRI including low-level tasks such as data acquisi-
tion and modeling, regularization, sharpening and the ex-
traction of invariant measures, as well as higher-level ones
such as fiber tractography. These tasks are all complicated

by the fact that the resolution of DMRI is typically on the
order of 8 mm3 while the diameter of the individual fibers
is between 1-30 µm. As a result, partial volume averaging
effects occur when more than one family of fibers are in
a crossing, branching, or merging configuration within the
same voxel.

This article focuses on the higher-level task of fiber trac-
tography, where the goal is to begin with DMRI data as in-
put and then find putative fiber tracts between distinct re-
gions. Measures of connectivity between the regions are
then typically obtained as a post-processing step. We depart
from most traditional tractography approaches in two ways.
First, we develop a computational model that is fundamen-
tally linked to the diffusion process itself, i.e., it character-
izes the diffusion of water molecules in a medium. Second,
we estimate putative tracts between a source and a sink re-
gion, along with their probabilities of occurring, simulta-
neously. We accomplish this by extending Williams and
Jacobs’ curve completion model in computer vision [24] to
3D. Their model has been applied to contour completion
tasks in computer vision, but to our knowledge it has not
yet been formulated in 3D nor has it been used for DMRI
analysis.

Our main contributions are: 1) the introduction of the
3D stochastic completion field to characterize the brownian
motion of water molecules in 3D and 2) an efficient (local
and parallelizable) implementation of the model based on
the Fokker-Planck equation. We utilize the method to ob-
tain probabilistic estimates of fiber tracts between two seed
regions selected from the corpus callosum, the cingulum
and the cortico-spinal tract. We begin with a brief review
of tractography methods in DMRI.

2. Background
2.1. Deterministic Tractography

Deterministic tractography methods seek to find the most
likely paths of connection between different regions, but
without an explicit probability model to capture the effects
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of signal noise, partial volume averaging or other artifacts.
The confidence in a path or a connectivity measure is usu-
ally obtained by examining the degree to which a recov-
ered path satisfies specified constraints, or by counting the
number of times the generated tracts pass through a spe-
cific voxel [16, 17, 5]. These techniques can be classi-
fied into two major groups: streamline tracking and energy
minimization-based tracking.

Streamline tracking techniques [13, 1, 7] propagate the
fiber path in a sequential manner using the local diffu-
sion tensor (DT) or orientation distribution function (ODF).
Mori et al.’s fiber assignment by continuous tracking
(FACT) algorithm starts from a seed point and follows the
direction of the tensor’s major eigenvector [13]. To avoid
generating discretized trajectories, a continuous smooth tra-
jectory is followed. Basser et al. [1] have used an interpo-
lation scheme to approximate a continuous tensor field in
order to evolve fiber tracts described by a differential equa-
tion. Although the generalization of streamline tracking to
use HARDI data can lead to improvements [19], the possi-
bility of swerving away from a true trajectory, due to noise
and imaging artifacts, still exists.

Energy minimization-based tracking algorithms [16, 17,
6, 5] seek to find the curves which fit the ODF/DT max-
ima while minimizing a predefined energy or cost function.
The methods of [16, 5] use an eikonal equation to evolve
a surface away from a seed region, using a level-set em-
bedding, with a speed function that is proportional to the
likelihood of diffusion in a particular direction. The recov-
ered tracts are obtained by using gradient descent on a time
of arrival map. A different class of methods combines a pri-
ori knowledge of the most probable fascicle directions with
the diffusion data. For example, using a framework of spin
glasses, where one or more spins are placed in each voxel
[6], a global regularization scheme can be carried out which
associates low curvature or low bending energy constraints
with fiber trajectories. This framework can compensate for
partial volume effects by choosing a more plausible orien-
tation when the major eigenvector is far from the true fiber
orientation, and the presence of two or more spins in each
voxel can be used to signal fiber crossings [6].

Although energy/cost minimization techniques can be
used to define a connectivity measure in which the uncer-
tainty of DMRI data is embedded, the explicit use of a prob-
ability model to capture the effects of noise and other imag-
ing artifacts (independent of the tractography method be-
ing used) and its incorporation into each tractography step
is a more principled alternative. Probabilistic tractography
methods deal with this challenge to some extent.

2.2. Probabilistic Tractography

Probabilistic tractography methods incorporate the local
uncertainty resulting from different artifacts at each voxel

during fiber propagation. These techniques can be divided
into two main groups: those which describe the local un-
certainty by some probability distribution function (PDF)
[15, 3, 2], and bootstrap based methods which capture the
uncertainty of the data by random selection from a set of
different measurements [8, 10, 4].

Among the first class of methods, Behrens et al. [3] esti-
mate the local uncertainty associated with a diffusion model
at each voxel by computing the posterior distribution on the
parameters of the corresponding model, given the diffusion
data. Associating a prior probability with the model pa-
rameters, a Markov Chain Monte Carlo (MCMC) sampling
scheme is implemented for the numerical estimation of the
local PDFs. The local uncertainty of model parameters is
later used in a streamline tractography framework to com-
pute inter-region connectivity measures. This framework
has been extended in [2] by acquiring more diffusion im-
ages which are used for Bayesian estimation of the parame-
ters of a multi-fiber diffusion model to handle complex fiber
architectures.

Whereas the above approaches show an improvement
over the deterministic ones, due to their dependence on the
underlying noise model and the prior distributions, the es-
timated PDFs may not always provide an accurate repre-
sentation of the true noise and imaging artifacts. Bootstrap
based probabilistic approaches [8, 10, 4] have circumvented
this limitation to an extent by a non-parametric estimation
of diffusion uncertainty. Jones et Pierpaoli’s [8] bootstrap
based method draws random samples from a limited num-
ber of DTI acquisitions to construct a large set of boot-
strapped DTI volumes on which streamline tractography is
carried out. A similar approach has been taken by Lazar et
al. [10], where an estimate of tract dispersion is obtained at
each voxel from the 2D distribution of fiber orientations in
the plane normal to the fiber direction.

3. 3D Stochastic Completion Fields

We depart from earlier tractography methods by con-
sidering the physical process which underlies DMRI. We
model the diffusion of water molecules in a medium by a
random walk, which is an extension of Williams and Ja-
cobs’ curve completion model in computer vision [24]. A
particle’s state in R3 × S2 (its position and orientation) is
updated using the following non-linear stochastic differen-
tial equation:

ẋ = sin θ · cosφ; ẏ = sin θ · sinφ; ż = cos θ

θ̇ = N
(
0, σ2

θ

)
; φ̇ = N

(
0, σ2

φ

)
.

(1)

Following [24], we also allow a certain fraction of particles
(1 − e−

1
ζ ) to decay per unit time to give greater support

to shorter paths. The key intuition is that a particle should

179



(x, y, z) (x+sin!cos" , y+sin! sin", z+cos!)

!

"

"+#"

!+#!

!+#!!

" "+#"

Figure 1. The 3D random walk. A particle takes a small step in
the direction it is presently heading, and then the tangent vector
is rotated by ∆θ and ∆φ in the osculating and binormal planes,
respectively.

Figure 2. A number of trajectories obtained using the 3D random
walk model with Monte-Carlo simulation. LEFT: Three trajecto-
ries with different values of σθ and σφ. MIDDLE: A stochastic
source field with σφ = σθ = 0.02, ζ = 150. RIGHT: A stochastic
source field with σφ = σθ = 0.2, ζ = 150. In the middle and
right panels transparency is inversely proportional to the probabil-
ity of reaching a particular state.

move with constant speed in a direction which is contin-
ually changing (slightly). These changes are described by
two successive deviations (see Fig. 1.) The first is a de-
viation by an amount proportional to σ2

φ in the xy-plane.
This corresponds to the amount of rotation in the osculat-
ing plane, i.e., the plane containing the tangent and normal
vectors of the local Frenet Frame. The second is a deviation
by an amount proportional to σ2

θ in the plane which con-
tains the current tangent vector and is perpendicular to the
xy-plane. This corresponds to the amount of rotation in the
binormal plane, i.e., the plane containing the tangent and
binormal vectors of the local Frenet Frame.

The main motivation for the above formulation is that it
allows us to use all machinery developed by Williams and
Jacobs for the 2D case (see [24]) to calculate the probabil-
ity p(x, y, z, θ, φ; t) that a particle beginning in a particular
source state (x0, y0, z0, θ0, φ0) will reach an arbitrary state
(x, y, z, θ, φ) in time t before decaying. In fact, the nec-

essary integral can be computed by convolution, exploit-
ing the translational and rotation symmetries of the Green’s
function G. In the 3D setting, G is a rank ten tensor rep-
resenting the transition probabilities of a Markov process
defined on the five-dimensional state space R3 × S2, while
satisfying Eq. 1. This leads to the notion of a stochastic
source field p(x, y, z, θ, φ) which represents the fraction of
paths which begin in a source state (x0, y0, z0, θ0, φ0) and
pass through state (x, y, z, θ, φ) before decaying. Fig. 2 il-
lustrates a few sample trajectories generated by the random
walk (left) and then two different stochastic source fields
obtained with different parameters but beginning from the
same initial state (middle and right). As the reader will
note, with small values of σθ, σφ the stochastic source field
has a dominant direction, while as these values grow large
the field resembles true brownian motion of water in an
isotropic medium.

A very similar construction leads to the notion of a
stochastic sink field, which represents the probability that a
particle beginning in a state (x, y, z, θ, φ) will reach a sink
state before decaying. The stochastic completion field is
then the product of these two fields [24]. It represents the
probabilities of paths beginning in a source state and end-
ing in a sink state. In other words, it provides a true proba-
bilistic view of likely trajectories between a source and sink
state. We shall show that when combined with DMRI data,
the stochastic completion field provides a suitable basis for
probabilistic fiber tractography.

4. Relationship to Elastica or Curves of Least
Energy

Using the Markovian property, the paths generated by
the random walk can be obtained by a number of indepen-
dent identically distributed (i.i.d.) discrete steps. It can be
shown that in analogy to the 2D case, the maximum like-
lihood (discrete) paths correspond to a form of 3D elastica
or curves of least energy. Imagine having a source voxel
at p and a sink voxel at q. A given particle begins its ran-
dom walk from p following a path called Γp which consists
of n unit length steps. At each step there are two changes
in the orientation, change in φ and change in θ, given by
κ1, . . . , κn and τ1, . . . , τn. Adopting the notation in [24],
the density function for the set of paths leaving source voxel
p (under the i.i.d. assumption) is given by:

f (Γp) =
n∏
i=1

e−
1
ζ

1
σφ
√

2π
e
− κ2

i
2σ2
φ

1
σθ
√

2π
e
− τ2i

2σ2
θ . (2)

Next, to get the density function for the set of paths starting
at source p and ending in sink q, i.e. Γpq , the above den-
sity function is divided by the integration of f (Γp) over all
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paths ending in q, i.e. Γq .

g (Γpq) =
1∫

Γq
f (Γp) dΓp

×
n∏
i=1

e−
1
ζ

1
σφ
√

2π
e
− κ2

i
2σ2
φ

1
σθ
√

2π
e
− τ2i

2σ2
θ . (3)

Taking logarithms of both sides, we have:

log g (Γpq) + C =
−n
ζ

− n log
(
σφ
√

2π
)
− n log

(
σθ
√

2π
)

−
n∑
i=1

κ2
i

2σ2
φ

−
n∑
i=1

τ2
i

2σ2
θ

. (4)

Now consider continuous curves which minimize the fol-
lowing energy in 3D

α

∫
Γ

κ (t)2
dt+ β

∫
Γ

τ (t)2
dt+ γ

∫
Γ

dt, (5)

which is a weighted linear combination of length, curva-
ture squared and torsion squared. Equation (5) provides
a natural extension of the notion of elastica in 2D (as in
[14]) to 3D. In the discrete case, in Eq. (4), the orientation
changes in the osculating plane κ1, . . . , κn correspond to
curvature values and those in the binormal plane τ1, . . . , τn
to torsion values. If we consider polygonal arcs with n seg-
ments having curvature and torsion values of κi and τi re-
spectively, the maximum likelihood paths in Eq. (4) can
be seen to minimize a weighted sum of length, curvature
squared and torsion squared, with α = 1

2σ2
φ

, β = 1
2σ2
θ

and

γ = 1
ζ + log

(
σθ
√

2π
)

+ log
(
σφ
√

2π
)
.

5. Differential Equation for the 3D Random
Walk

We now exploit the Fokker-Planck equation [18],
which describes the time evolution of the probabil-
ity density of the particles following a random walk
in space, to develop an efficient (local and paralleliz-
able) implementation of the random walk. Our develop-
ment is inspired by the course notes of Martin Bazant
available at “http://math.mit.edu/18.366/lec06/”. Using
the Markov property, the probability density function
PN+1 (X) after N + 1 steps for a given state X can
be written as PN+1 (X) =

∫
pN (X|X ′)PN (X ′) dX ′.

Defining a function P (X, t) such that P (X,N∆t) =
PN (X), where t = N∆t is a continuous time
variable, and a new transition probability function as
p (X, t+ ∆t|X ′, t) = pN (X|X ′), it follows that
P (X, t+ ∆t) =

∫
p (X, t+ ∆t|X ′, t)P (X ′, t) dX ′. A

partial differential equation can be derived for the func-
tion P (X, t) as N goes to infinity. Next, considering the
limit as ∆t → 0 leads to the Fokker-Planck equation (with
X = {X1, . . . , Xn} an N -dimensional variable):

∂P

∂∆t
+

N∑
i=1

∂

∂Xi

(
D

(1)
(i) (X, t)P

)
=

N∑
i=1

∂2

∂X2
i

(
D

(2)
(i) (X, t)P

)

D
(1)
(i) (X, t) = lim

∆t→0

M
(1)
(i) (X, t)

∆t

D
(2)
(i) (X, t) = lim

∆t→0

M
(2)
(i) (X, t)

2∆t
M

(n)
(i) (X, t) = 〈(X ′i −Xi)

n〉

=
∫
p (X ′i, t+ ∆t|Xi, t) (X ′i −Xi)

n
dX ′i,

(6)

Using Equation 1 which describes the random walk imple-
mented for 3D completion field, and defining a given state
X as (x, y, z, θ, φ), the corresponding Fokker-Planck equa-
tion can now be stated:

D
(1)
(x) (X, t) = lim

∆t→0

∫
p (x′, t+ ∆t|x, t) (x′ − x) dx′

∆t

= lim
∆t→0

∫
δ (x′ − x−∆t sin θ cosφ) (x′ − x) dx′

∆t

= lim
∆t→0

∆t sin θ cosφ
∆t

= sin θ cosφ

D
(2)
(x) (X, t) = lim

∆t→0

∫
p (x′, t+ ∆t|x, t) (x′ − x)2

dx′

2∆t

= lim
∆t→0

∫
(x′ − x−∆t sin θ cosφ) (x′ − x)2

dx′

2∆t

= lim
∆t→0

(∆t)2 sin2 θ cos2 φ

∆t
= 0.

(7)

D
(1)
(y) (X, t) , D(2)

(y) (X, t) , D(1)
(z) (X, t) and D

(2)
(z) (X, t) are

derived in a similar manner, resulting in:

D
(1)
(y) (X, t) = sin θ sinφ,

D
(1)
(z) (X, t) = cos θ,

D
(2)
(y) (X, t) = D

(2)
(z) (X, t) = 0. (8)

Next, we need to derive the corresponding D values for θ
and φ. It is worth mentioning that, since the changes in
θ and φ after each unit step are normally distributed with
sigma values of σθ and σφ, the corresponding changes in θ
and φ after a step equal to ∆t are governed by normal distri-
butions, with modified sigma values of σθ

√
∆t and σφ

√
∆t.
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Using this, we will have:

D
(1)
(θ) (X, t) = lim

∆t→0

∫
p (θ′, t+ ∆t|θ, t) (θ′ − θ) dθ′

∆t

= lim
∆t→0

∫
1√

2π∆tσ2
θ

exp
(
−∆θ′2

2∆tσ2
θ

)
∆θ′d∆θ′

∆t

= lim
∆t→0

Mean value of the normal distribution
∆t

= 0

D
(2)
(θ) (X, t) = lim

∆t→0

∫
p (θ′, t+ ∆t|θ, t) (θ′ − θ)2

dθ′

∆t

= lim
∆t→0

∫
1√

2π∆tσ2
θ

exp
(
−∆θ′2

2∆tσ2
θ

)
∆2θ′d∆θ′

2∆t

= lim
∆t→0

Variance of the normal distribution
2∆t

=
σ2
θ∆t

2∆t
=
σ2
θ

2
.

(9)

A similar result is obtained for D(1)
(φ) (X, t) and D(2)

(φ) (X, t):

D
(1)
(φ) (X, t) = 0, D

(2)
(φ) (X, t) =

σ2
φ

2
. (10)

Replacing ∆t by t for the sake of simplicity, the final
Fokker-Planck equation can be written as:

P (x, y, z, θ, φ; t′) = P (x, y, z, θ, φ; 0)

+
∫ t′

0

∂P (x, y, z, θ, φ; t)
∂t

dt(11)

∂P

∂t
= − sin θ cosφ∂P∂x − sin θ sinφ∂P∂y − cos θ ∂P∂z

+σ2
φ

2
∂2P
∂φ2 + σ2

θ

2
∂2P
∂θ2 −

1
ζP. (12)

6. Bayesian Stochastic Completion Field Trac-
tography

In the context of fiber tractography we are interested in
those curves of least energy between a source and a sink re-
gion that are also supported by the underlying DMRI data.
Using Bayes’ rule we can treat the stochastic completion
field at a particular voxel as a prior probability which needs
to be multiplied by a suitable conditional probability to give
the posterior probability of that completion field occurring.
If we further assume that the presence of a particular ODF
(ideally obtained from a high angular resolution diffusion
(HARD) dataset such as Q-ball imaging (QBI) [21] or a
fiber ODF [20]) is independent of the stochastic completion
field, which is a reasonable assumption, we can simply use

the underlying DMRI data as the conditional. This leads to
two computational methods for stochastic completion field
tractography.

6.1. A Sequential, Global Method

Given two sets of source and sink voxels, a sequential,
global approach can be divided into two steps: (1) Running
a Monte-Carlo based 3D-completion field algorithm, for a
set of uniformly sampled binormal vectors around each di-
rection in each source and sink voxel and (2) Multiplying
the value of the obtained stochastic completion field at each
position and orientation by the corresponding QBI or Fiber
ODF profile at that location. The second part can be done
either by just considering the values inside some cone of
uncertainties around ODF maxima or by considering the
whole ODF regardless of the orientation of ODF maxima.
The method is very easy to implement, but has the disad-
vantage that its computational complexity is quadratic in the
number of source and sink voxels.

6.2. A Local, Parallelizable Method

A much more efficient discrete method is based on the
Fokker-Planck differential equation developed in Section 5.
The Taylor series expansion of the PDE is used to define
the probabilities associated with each voxel at time t + 1
as a function of the values of the nearby voxels at time t.
Similar to the solution given in [24], the iterative method
described in Fig. 3 can give an approximate solution of
the Fokker-Planck equation. Here λθ = σ2

θ/2 (∆θ)2 and
λφ = σ2

φ/2 (∆φ)2. Running the above iterative method, the
source field, P ′ (x, y, z, θ, φ), is computed by integrating
P t (x, y, z, θ, φ) over time:

P ′ (x, y, z, θ, φ) =
∫ ∞

0

dtP t (x, y, z, θ, φ) . (13)

This integral can be approximated by considering the se-
quences up to some fixed time t′:

P ′ (x, y, z, θ, φ; t′) ≈
t′∑
0

P t (x, y, z, θ, φ) . (14)

The sink field can be computed in a similar way, follow-
ing which one again post-multiplies the obtained stochastic
completion field with QBI or fiber ODF data. This method
is both local and parallelizable and it has the significant
computational advantage that its complexity is linear in the
number of source and sink voxels. It also affords the possi-
bility of incorporating local DMRI data in the choice of the
parameters σθ, σφ of the completion field locally.

7. Experimental Results
To validate the performance of the above tractography

algorithms, a series of experiments were performed on QBI
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P
t+ 1

6
x,y,z,θ,φ = P tx,y,z,θ,φ − sin θ cosφ

{
P tx,y,z,θ,φ − P tx−1,y,z,θ,φ if sin θ cosφ > 0
P tx+1,y,z,θ,φ − P tx,y,z,θ,φ if sin θ cosφ < 0

P
t+ 1

3
x,y,z,θ,φ = P

t+ 1
6

x,y,z,θ,φ − sin θ sinφ

{
P
t+ 1

6
x,y,z,θ,φ − P

t+ 1
6

x,y−1,z,θ,φ if sin θ sinφ > 0

P
t+ 1

6
x,y+1,z,θ,φ − P

t+ 1
6

x,y,z,θ,φ if sin θ sinφ < 0

P
t+ 1

2
x,y,z,θ,φ = P

t+ 1
3

x,y,z,θ,φ − cos θ

{
P
t+ 1

3
x,y,z,θ,φ − P

t+ 1
3

x,y,z−1,θ,φ if cos θ > 0

P
t+ 1

3
x,y,z+1,θ,φ − P

t+ 1
3

x,y,z,θ,φ if cos θ < 0

P
t+ 2

3
x,y,z,θ,φ = λθP

t+ 1
2

x,y,z,θ−∆θ,φ + (1− 2λθ)P
t+ 1

2
x,y,z,θ,φ + λθP

t+ 1
2

x,y,z,θ+∆θ,φ

P
t+ 5

6
x,y,z,θ,φ = λφP

t+ 2
3

x,y,z,θ,φ−∆φ + (1− 2λφ)P t+
2
3

x,y,z,θ,φ + λφP
t+ 2

3
x,y,z,θ,φ+∆φ

P t+1
x,y,z,θ,φ = e−

1
ζ P

t+ 5
6

x,y,z,θ,φ

Figure 3. A local, parallelizable numerical method to solve the Fokker-Planck equation for the 3D stochastic completion field, based on an
extension of the technique in [23].

reconstructions of HARD data of the human brain. The
diffusion weighted images were acquired in vivo from a
healthy subject on a Siemens 3T Trio MR scanner (Siemens
Medical Systems, Erlangen, Germany) using an 8-channel
phased-array head coil. Diffusion encoding was achieved
using a single-shot spin-echo echo planar sequence with
twice-refocused balanced diffusion encoding gradients. A
dataset designed for high angular resolution reconstruction
was acquired with 99 diffusion encoding directions, 2mm
isotropic voxel size, 63 slices, b=3000 s/mm2, TE=121ms,
TR=11.1s, and GRAPPA parallel reconstruction. A 1mm
isotropic resolution T1 weighted anatomical scan was also
acquired (TR=9.7ms, TE=4ms, α = 12◦). The QBI recon-
struction was based on the technique of Tuch [21].

The performance of both the global and local 3D com-
pletion field algorithms was assessed by considering dif-
ferent pairs of ROIs connected through some of the major
fiber tracts in the brain. Figure 4 shows the three sets of
source and sink regions, marked by white squares on the
RGB image of the data. These regions were selected on
horizontal, sagittal, and coronal slices respectively to allow
for the extraction of part of the corpus callosum, cingulum
and cortico-spinal tracts. Each ROI is a 3 × 3 × 1 volume.
By setting ∆θ and ∆φ to π/10, 100 directions were cho-
sen on one hemisphere which together with their antipodal
counterparts was summed to give 200 different directions.
σθ and σφ were set to 0.2 for all the experiments. The tan-
gent orientations for the source and sink voxels were ini-
tialized by finding the ODF maxima in each voxel. Since
the direction of water diffusion is not encoded in the diffu-
sion information, both directions corresponding to a given
orientation were considered to generate the corresponding
source and sink fields. The sequential algorithm was run by
uniform sampling of the binormal vector around the initial
tangent orientation using a sampling interval of 2π/36, and

Figure 4. Different source and sink regions are indicated with
white squares overlaid on the principal diffusion tensor’s direc-
tion RGB map. In the RGB images, red represents left-right ori-
entation, green represents anterior-posterior orientation and blue
represents inferior-superior orientation. The tract systems are the
corpus callosum (left), the cingulum (middle) and the the cortico-
spinal tract (right).

then running 500 trails of the Monte-Carlo simulation for
each binormal vector. For the local method, the total num-
ber of iterations was set to be the size of the diagonal of
the overall volume. This number of iterations is essentially
enough for the local algorithm to propagate information to
far away points.

Figures 5, 6 and 7 1 show the connectivity paths obtained
for the given source and sink regions. The sink and source
regions are delimited with green and red blobs. To facili-
tate the visualization of the recovered paths, the probabil-
ity of reaching a particular state is inversely proportional to
the transparency of the corresponding line, i.e., the higher
the probability, the darker the line appears. Based on the
known anatomy of the human brain, the recovered connec-
tivity paths follow the true fiber tracts in all the experi-
ments performed. While both the global and local algo-
rithms provide connectivity paths that are similar, the com-

1The reader is encouraged to zoom-in on the figures in the electronic
version to get a better sense of the 3D characteristics and the transparency
values.
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Figure 5. Inference of the connection between a pair of source and
sink regions through part of the corpus callosum. Top row: Se-
quential algorithm. Bottom row: Local Algorithm. From left to
right: (1)Before incorporating the Q-Ball data, (2)Final connectiv-
ity path after incorporating the Q-Ball data, (3)Final connectivity
path overlaid on the T1-weighted image for reference.

Figure 6. Inference of the connection between a pair of source
and sink regions through part of the cingulum. Top row: Se-
quential algorithm. Bottom row: Local Algorithm. From left to
right: (1)Before incorporating the Q-Ball data, (2)Final connectiv-
ity path after incorporating the Q-Ball data, (3)Final connectivity
path overlaid on the T1-weighted image for reference.

pletion fields generated by the global algorithm seem to
have a narrower spread in all the cases examined. More-
over, the probability values associated with the underlying
states differ between the two algorithms. This observation
can be explained by the fact that although the number of tri-
als used in the Monte-Carlo simulation of the global method
proved to be sufficient for the extraction of the connectivity
pathways, the recovery of the true probability values may
require a larger number of trials. Since the local method
solves the differential equation of the underlying 3D ran-
dom walk, the corresponding estimated probabilities are a
better approximation of the true connectivity.

Figure 7. Inference of the connection between a pair of source and
sink regions through part of the cortico-spinal tract. Top row: Se-
quential algorithm. Bottom row: Local Algorithm. From left to
right: (1)Before incorporating the Q-Ball data, (2)Final connectiv-
ity path after incorporating the Q-Ball data, (3)Final connectivity
path overlaid on the T1-weighted image for reference.

8. Discussion

The experiments reported in the previous section, though
visually plausible, are nevertheless preliminary. Clearly,
more experimental work has to be carried out to assess the
utility of stochastic completion field tractography, includ-
ing comparisons with other methods. Nevertheless, we are
encouraged by the results obtained thus far and we believe
that a framework which models the diffusion process, along
with a probabilistic notion of likely fiber paths, as we have
done in this paper, is the basis of a more principled approach
for anatomical connectivity than has been reported in the
literature thus far. Our view is supported in philosophy by
some of the very recent tractography literature, including a
more heuristic formulation that combines probability maps
[9] and a minimal path approach [25]. Computationally
there is also a connection between stochastic completion
fields and the idea of tensor voting, as has been pointed out
by van Almsick et al. for the 2D case [22].

Tracing more subtle connectivity pathways between dif-
ferent cortical-subcortical ROIs and formulating a confi-
dence measure for the generated fiber tracts based on the
recovered probability values are both subjects of ongoing
work. We also intend to replace Q-Ball ODFs with fiber
ODFs, which are known to better represent the true fiber
structure. Our local method also allows for the incorpora-
tion of local diffusion parameters (σθ, σφ) from the under-
lying data, and this might lead to more efficient and infor-
mative solutions. Currently, the parameters used throughout
the experiments are chosen experimentally and are based on
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anatomical knowledge that the fibers are not highly curved
for the tract systems considered. The incorporation of diffu-
sion data and anatomical knowledge into the local method
would allow for automatic selection of the required param-
eters.

Finally, while in this paper we have illustrated the pro-
posed algorithms with tractography results, our future ob-
jective is to compute a reliable measure of connectivity be-
tween given source and sink regions. We expect that while
variations in the size and location of the source and sink re-
gions will effect the visualized pathways, the derived con-
nectivity measures will be less sensitive to such changes.
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References
[1] P. Basser, S. Pajevic, C. Pierpaoli, J. Duda, and A. Aldroubi.

In vitro fiber tractography using DT-MRI data. Magn. Reson.
Med., 44:625–632, 2000.

[2] T. Behrens. Probabilistic diffusion tractography with mul-
tiple fibre orientations: what can we gain? NeuroImage,
34:144–155, 2007.

[3] T. Behrens, M. Woolrich, M. Jenkinson, H. Johansen-Berg,
and R. N. et al. Characterization and propagation of un-
certainty in diffusion-weighted MR imaging. Magn. Reson.
Med., 50:1077–1088, 2003.

[4] J. Berman, S. Chung, P. Mukherjee, C. Hess, E. Han, and
R. Henrya. Probabilistic streamline q-ball tractography using
the residual bootstrap. NeuroImage, 39:215–222, 2008.

[5] J. Campbell, K. Siddiqi, V. Rymar, A. Sadikot, and B. Pike.
Flow-based fiber tracking with diffusion tensor q-ball data:
validation and comparison to principal diffusion direction
techniques. NeuroImage, 27:725–736, 2005.

[6] Y. Cointepas, C. Poupon, D. L. Bihan, and J. Mangin. A spin
glass framework to untangle fiber crossing in MR diffusion
based tracking. In Proceedings of the MICCAI 2002, pages
475–482, Tokyo, Japan, sep 2002.

[7] R. Deriche and M. Descoteaux. Splitting tracking through
crossing fibers: Multidirectional q-ball tracking. Biomedical
Imaging: From Nano to Macro, 2007.

[8] D. Jones and C. Pierpaoli. Confidence mapping in diffu-
sion tensor magnetic resonance imaging tractography using
a bootstrap approach. Magn. Reson. Med., 53:1143–1149,
2005.

[9] B. W. Kreher, S. Schnell, I. Mader, K. A. Il’yasov, J. Hen-
nig, V. G. Kiselev, and D. Saur. Connecting and merging
fibres: Pathway extraction by combining probability maps.
NeuroImage, 43:81–89, 2008.

[10] M. Lazar and A. Alexander. Bootstrap white matter tractog-
raphy (boottrac). NeuroImage, 24:524–532, 2005.

[11] D. LeBihan, E. Breton, D. Lallemand, P. Grenier, E. Cabanis,
and M. Laval-Jeantet. MR imaging of intravoxel incoherent

motions: application to diffusion and perfusion in neurologic
disorders. Radiology, 161:401–407, Nov. 1986.

[12] D. LeBihan, R. Turner, and P. Douek. Is water diffusion
restricted in human brain white matter? an echo-planar NMR
imaging study. NeuroReport, 4:887–890, July 1993.

[13] S. Mori, B. Crain, V. Chacko, and P. van Zijl. Three dimen-
sional tracking of axonal projections in the brain by magnetic
resonance imaging. Ann. Neurol., 45:265–269, 1999.

[14] D. Mumford. Algebraic Geometry and Its Applications,
chapter (31):Elastica and computer vision, pages 491–506.
Springer-Verlag, New York, 1994.

[15] G. Parker and D. Alexander. Probabilistic Monte Carlo based
mapping of cerebral connections utilising whole-brain cross-
ing fibre information. In Proceedings of IPMI, pages 684–
695, Ambleside, UK, jul 2003.

[16] G. Parker, C. Wheeler-Kingshott, and G. Barker. Estimat-
ing distributed anatomical connectivity using fast marching
methods and diffusion tensor imaging. Trans. Med. Imaging,
21:505–512, 2002.

[17] C. Poupon, C. Clark, V. Frouin, J. Regis, I. Bloch, D. LeBi-
han, and J. Mangin. Regularization of diffusion-based di-
rection maps for the tracking of brain white matter fascicles.
NeuroImage, 12:184–195, 2000.

[18] H. Risken and T. Frank. The Fokker-Planck Equation: Meth-
ods of Solutions and Applications, volume XIV of Series in
Synergetics. Springer, 1996.

[19] P. Savadjiev, J. Campbell, and B. P. K. Siddiqi. 3d curve
inference for diffusion MRI regularization and fibre tractog-
raphy. Med. Image Anal., 10:799–813, Aug. 2006.

[20] J. Tournier, F. Calamante, D. Gadian, and A. Connelly. Di-
rect estimation of the fiber orientation density function from
diffusion-weighted MRI data using spherical deconvolution.
NeuroImage, 23:1176–1185, Sept. 2004.

[21] D. S. Tuch. Q-ball imaging. Magn. Reson. Med., 52:1358–
1372, Dec. 2004.

[22] M. van Almsick, R. Duits, E. Franken, and B. ter
Haar Romeny. From stochastic completion fields to tensor
voting. In Proceedings of DSSCV, volume LNCS, 3753,
pages 124–134, Maastricht, the Netherlands, 2005.

[23] L. Williams and D. Jacobs. Local parallel computation of
stochastic completion fields. Neural Computation, 9:859–
881, 1997.

[24] L. Williams and D. Jacobs. Stochastic completion fields: A
neural model of illusory contour shape and salience. Neural
Computation, 9:837–858, 1997.

[25] A. Zalesky. Dt-mri fiber tracking: A shortest paths approach.
IEEE Transactions on Medical Imaging, 27(10):1458–1471,
October 2008.

185


